1
|
Hasan T, Shimoda N, Nakamura S, Fox BA, Bzik DJ, Ushio-Watanabe N, Nishikawa Y. Protective efficacy of recombinant Toxoplasma gondii dense granule protein 15 against toxoplasmosis in C57BL/6 mice. Vaccine 2024; 42:2299-2309. [PMID: 38429153 DOI: 10.1016/j.vaccine.2024.02.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Toxoplasma gondii is a pervasive protozoan parasite that is responsible for significant zoonoses. A wide array of vaccines using different effector molecules of T. gondii have been studied worldwide to control toxoplasmosis. None of the existing vaccines are sufficiently effective to confer protective immunity. Among the different Toxoplasma-derived effector molecules, T. gondii dense granule protein 15 from the type II strain (GRA15 (II)) was recently characterized as an immunomodulatory molecule that induced host immunity via NF-κB. Therefore, we assessed the immunostimulatory and protective efficacy of recombinant GRA15 (II) (rGRA15) against T. gondii infection in a C57BL/6 mouse model. We observed that rGRA15 treatment increased the production of IL-12p40 from mouse peritoneal macrophages in vitro. Immunization of mice with rGRA15 induced the production of anti-TgGRA15-specific IgG, IgG1 and IgG2c antibodies. The rGRA15-sensitized spleen cells from mice inoculated with the same antigen strongly promoted spleen cell proliferation and IFN-γ production. Immunization with rGRA15 significantly enhanced the survival rate of mice and dramatically decreased parasite burden in mice challenged with the Pru (type II) strain. These results suggested that rGRA15 triggered humoral and cellular immune responses to control infection. However, all of the immunized mice died when challenged with the GRA15-deficient Pru strain or the RH (type I) strain. These results suggest that GRA15 (II)-dependent immunity plays a crucial role in protection against challenge infection with the type II strain of T. gondii. This study is the first report to show GRA15 (II) as a recombinant vaccine antigen against Toxoplasma infection.
Collapse
Affiliation(s)
- Tanjila Hasan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan; Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi 4225, Chattogram, Bangladesh.
| | - Naomi Shimoda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| | - Shu Nakamura
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Barbara A Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA.
| | - David J Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA.
| | - Nanako Ushio-Watanabe
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
2
|
Shao Y, Yuan X, Du B, Zhang X, Li X, Zhang X, Gong P, Zhang N, Wang X, Li J. Neospora caninum peroxiredoxin 1 is an essential virulence effector with antioxidant function. Vet Parasitol 2024; 327:110117. [PMID: 38262172 DOI: 10.1016/j.vetpar.2024.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/25/2024]
Abstract
Neospora caninum, an obligate intracellular parasitic protozoan discovered by Dubey in 1988, is the pathogen of neosporosis, which causes neurological symptoms in dogs and abortions in cows. Since there is no effective drug or vaccine against N. caninum, a deeper understanding of the molecules critical to parasite survival inside host cells is necessary. This study aimed to determine the role of N. caninum peroxiredoxin 1 (NcPrx1) in maintaining redox homeostasis and virulence of N. caninum. By determining the localization of NcPrx1 protein and establishing NcPrx1 gene knockout strain (ΔNcPrx1), the roles of NcPrx1 in N. caninum for invasion, replication, growth, oxidative stress, as well as pathogenicity were investigated. Our results showed that a predicted Alkyl Hydroperoxide1 (AHP1) domain was found in the amino acid sequence of NcPrx1, which displayed a high degree of similarity to homologs of several protozoa. Immunofluorescence assay (IFA) indicated that NcPrx1 was a cytoplasmic protein in N. caninum tachyzoites. Compared to wild type (WT) strain, ΔNcPrx1 strain showed reduced plaque area, invasion and egress rates. Reactive oxygen species (ROS) and malondialdehyde (MDA) were accumulated, and total antioxidant capacity (T-AOC) was attenuated in ΔNcPrx1 tachyzoites, which indicated that ΔNcPrx1 strain was more sensitive to oxidative stress. Furthermore, ΔNcPrx1 strain-infected C57BL/6 mice showed improved survival rate, reduced parasite burden, alleviated pathological changes in tissues, and decreased secretions of IL-6, IL-12, TNF-α, and IFN-γ in serum compared to the WT strain group. These findings suggested that NcPrx1 was a virulence factor of N. caninum which played an important role in maintaining the redox homeostasis of the parasite.
Collapse
Affiliation(s)
- Yutao Shao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaodan Yuan
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Boya Du
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuancheng Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xin Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xu Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Pengtao Gong
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Nan Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaocen Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Jianhua Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
3
|
Udonsom R, Adisakwattana P, Popruk S, Reamtong O, Jirapattharasate C, Thiangtrongjit T, Rerkyusuke S, Chanlun A, Hasan T, Kotepui M, Siri S, Nishikawa Y, Mahittikorn A. Evaluation of Immunodiagnostic Performances of Neospora caninum Peroxiredoxin 2 (NcPrx2), Microneme 4 (NcMIC4), and Surface Antigen 1 (NcSAG1) Recombinant Proteins for Bovine Neosporosis. Animals (Basel) 2024; 14:531. [PMID: 38396498 PMCID: PMC10885977 DOI: 10.3390/ani14040531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/22/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Bovine neosporosis is among the main causes of abortion in cattle worldwide, causing serious economic losses in the beef and dairy industries. A highly sensitive and specific diagnostic method for the assessment of the epidemiology of the disease, as well as it surveillance and management, is imperative, due to the absence of an effective treatment or vaccine against neosporosis. In the present study, the immunodiagnostic performance of Neospora caninum peroxiredoxin 2 (NcPrx2), microneme 4 (NcMIC4), and surface antigen 1 (NcSAG1) to detect IgG antibodies against N. caninum in cattle were evaluated and compared with that of the indirect fluorescent antibody test (IFAT). The results revealed that NcSAG1 had the highest sensitivity and specificity, with values of 88.4% and 80.7%, respectively, followed by NcPrx2, with a high sensitivity of 87.0% but a low specificity of 67.0%, whereas NcMIC4 showed sensitivity and specificity of 84.1% and 78.9%, respectively, when compared with IFAT. A high degree of agreement was observed for NcSAG1 (k = 0.713) recombinant protein, showing the highest diagnostic capability, followed by NcMIC4 (k = 0.64) and NcPrx2 (k = 0.558). The present study demonstrates that NcSAG1 is helpful as an antigen marker and also demonstrates the potential immunodiagnostic capabilities of NcPrx2 and NcMIC4, which could serve as alternative diagnostic markers for detecting N. caninum infection in cattle. These markers may find utility in future treatment management, surveillance, and risk assessment of neosporosis in livestock or other animal host species. Further research should be directed toward understanding the in vivo immune response differences resulting from immunization with both recombinant proteins.
Collapse
Affiliation(s)
- Ruenruetai Udonsom
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (R.U.); (S.P.)
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Supaluk Popruk
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (R.U.); (S.P.)
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (O.R.); (T.T.)
| | - Charoonluk Jirapattharasate
- Department of Pre-Clinic and Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (O.R.); (T.T.)
| | - Sarinya Rerkyusuke
- Division of Livestock Medicine, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.R.); (A.C.)
| | - Aran Chanlun
- Division of Livestock Medicine, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.R.); (A.C.)
| | - Tanjila Hasan
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh;
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Sukhontha Siri
- Department of Epidemiology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand;
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Aongart Mahittikorn
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (R.U.); (S.P.)
| |
Collapse
|
4
|
Chu KB, Quan FS. Recent progress in vaccine development targeting pre-clinical human toxoplasmosis. PARASITES, HOSTS AND DISEASES 2023; 61:231-239. [PMID: 37648228 PMCID: PMC10471472 DOI: 10.3347/phd.22097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/30/2023] [Indexed: 09/01/2023]
Abstract
Toxoplasma gondii is an intracellular parasitic organism affecting all warm-blooded vertebrates. Due to the unavailability of commercialized human T. gondii vaccine, many studies have been reported investigating the protective efficacy of pre-clinical T. gondii vaccines expressing diverse antigens. Careful antigen selection and implementing multifarious immunization strategies could enhance protection against toxoplasmosis in animal models. Although none of the available vaccines could remove the tissue-dwelling parasites from the host organism, findings from these pre-clinical toxoplasmosis vaccine studies highlighted their developmental potential and provided insights into rational vaccine design. We herein explored the progress of T. gondii vaccine development using DNA, protein subunit, and virus-like particle vaccine platforms. Specifically, we summarized the findings from the pre-clinical toxoplasmosis vaccine studies involving T. gondii challenge infection in mice published in the past 5 years.
Collapse
Affiliation(s)
- Ki-Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute, School of Medicine, Kyung Hee University, Seoul 02447,
Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute, School of Medicine, Kyung Hee University, Seoul 02447,
Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447,
Korea
| |
Collapse
|
5
|
Udonsom R, Reamtong O, Adisakwattana P, Popruk S, Jirapattharasate C, Nishikawa Y, Inpankaew T, Toompong J, Kotepui M, Mahittikorn A. Immunoproteomics to identify species-specific antigens in Neospora caninum recognised by infected bovine sera. Parasite 2022; 29:60. [PMID: 36562441 PMCID: PMC9879140 DOI: 10.1051/parasite/2022059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Bovine neosporosis is a disease of concern due to its global distribution and significant economic impact through massive losses in the dairy and meat industries. To date, there is no effective chemotherapeutic drug or vaccine to prevent neosporosis. Control of this disease is therefore dependent on efficient detection tests that may affect treatment management strategies. This study was conducted to identify the specific immunoreactive proteins of Neospora caninum tachyzoites recognised by sera from cattle infected with N. caninum, Toxoplasma gondii, Cryptosporidium parvum, Babesia bovis and B. bigemina, and by sera from uninfected cattle using two-DE dimensional gel electrophoresis (2-DE) combined with immunoblot and mass spectrometry (LC-MS/MS). Among 70 protein spots that reacted with all infected sera, 20 specific antigenic spots corresponding to 14 different antigenic proteins were recognised by N. caninum-positive sera. Of these immunoreactive antigens, proteins involved in cell proliferation and invasion process were highly immunogenic, including HSP90-like protein, putative microneme 4 (MIC4), actin, elongation factor 1-alpha and armadillo/beta-catenin-like repeat-containing protein. Interestingly, we discovered an unnamed protein product, rhoptry protein (ROP1), possessing strong immunoreactivity against N. caninum but with no data on function available. Moreover, we identified cross-reactive antigens among these apicomplexan parasites, especially N. caninum, T. gondii and C. parvum. Neospora caninum-specific immunodominant proteins were identified for immunodiagnosis and vaccine development. The cross-reactive antigens could be evaluated as potential common vaccine candidates or drug targets to control the diseases caused by these apicomplexan protozoan parasites.
Collapse
Affiliation(s)
- Ruenruetai Udonsom
-
Department of Protozoology, Faculty of Tropical Medicine, Mahidol University Bangkok 10400 Thailand
| | - Onrapak Reamtong
-
Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University Bangkok 10400 Thailand
| | - Poom Adisakwattana
-
Department of Helminthology, Faculty of Tropical Medicine, Mahidol University Bangkok 10400 Thailand
| | - Supaluk Popruk
-
Department of Protozoology, Faculty of Tropical Medicine, Mahidol University Bangkok 10400 Thailand
| | - Charoonluk Jirapattharasate
-
Department of Pre-clinic and Animal Science, Faculty of Veterinary Science, Mahidol University Salaya Nakhon Pathom 73170 Thailand
| | - Yoshifumi Nishikawa
-
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine Obihiro Hokkaido 080-8555 Japan
| | - Tawin Inpankaew
-
Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University Bangkok 10900 Thailand
| | - Jitbanjong Toompong
-
Department of Parasitology, Faculty of Veterinary Medicine, Mahanakorn University of Technology Bangkok 10530 Thailand
| | - Manas Kotepui
-
Medical Technology, School of Allied Health Sciences, Walailak University Tha Sala Nakhon Si Thammarat 80160 Thailand
| | - Aongart Mahittikorn
-
Department of Protozoology, Faculty of Tropical Medicine, Mahidol University Bangkok 10400 Thailand
,Corresponding author:
| |
Collapse
|
6
|
Wanvimonsuk S, Jaree P, Kawai T, Somboonwiwat K. Prx4 acts as DAMP in shrimp, enhancing bacterial resistance via the toll pathway and prophenoloxidase activation. iScience 2022; 26:105793. [PMID: 36619979 PMCID: PMC9813724 DOI: 10.1016/j.isci.2022.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/01/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Peroxiredoxin (Prx), an antioxidant enzyme family, has been identified as immune modulating damage-associated molecular patterns (DAMPs) in mammals but not in shrimp. Acute non-lethal heat shock (NLHS) that enhances shrimp Penaeus vannamei resistance to Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease (VPAHPND). Among the five P. vannamei Prxs (LvPrx) isoforms, LvPrx4, the most abundant in unchallenged shrimp hemocytes that was upregulated in hemocytes following NLHS treatment, is of great interest. The escalation of the LvPrx4 monomer in hemolymph of NLHS treated shrimp indicates that it probably acts as DAMP. This study revealed that pre-challenge with rLvPrx4 could prolong VPAHPND-infected shrimp survival, increase prophenoloxidase (proPO) activity and promote Toll pathway-related genes expression mediated by Toll-like receptor (TLR) 1 and 2. The presented findings elucidated the molecular mechanism of LvPrx4 monomer as DAMP in NLHS-induced VPAHPND resistance by inducing the TLR1/2 signaling pathway and the proPO activating system.
Collapse
Affiliation(s)
- Supitcha Wanvimonsuk
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Phattarunda Jaree
- Center of Applied Shrimp Research and Innovation, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Corresponding author
| |
Collapse
|
7
|
Fereig RM, Omar MA, Alsayeqh AF. Exploiting the Macrophage Production of IL-12 in Improvement of Vaccine Development against Toxoplasma gondii and Neospora caninum Infections. Vaccines (Basel) 2022; 10:vaccines10122082. [PMID: 36560492 PMCID: PMC9783364 DOI: 10.3390/vaccines10122082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Toxoplasmosis and neosporosis are major protozoan diseases of global distribution. Toxoplasma gondii is the cause of toxoplasmosis, which affects almost all warm-blooded animals, including humans, while Neospora caninum induces neosporosis in many animal species, especially cattle. The current defective situation with control measures is hindering all efforts to overcome the health hazards and economic losses of toxoplasmosis and neosporosis. Adequate understanding of host-parasite interactions and host strategies to combat such infections can be exploited in establishing potent control measures, including vaccine development. Macrophages are the first defense line of innate immunity, which is responsible for the successful elimination of T.gondii or N. caninum. This action is exerted via the immunoregulatory interleukin-12 (IL-12), which orchestrates the production of interferon gamma (IFN-γ) from various immune cells. Cellular immune response and IFN-γ production is the hallmark for successful vaccine candidates against both T. gondii and N. caninum. However, the discovery of potential vaccine candidates is a highly laborious, time-consuming and expensive procedure. In this review, we will try to exploit previous knowledge and our research experience to establish an efficient immunological approach for exploring potential vaccine candidates against T. gondii and N. caninum. Our previous studies on vaccine development against both T. gondii and N. caninum revealed a strong association between the successful and potential vaccine antigens and their ability to promote the macrophage secretion of IL-12 using a murine model. This phenomenon was emphasized using different recombinant antigens, parasites, and experimental approaches. Upon these data and research trials, IL-12 production from murine macrophages can be used as an initial predictor for judgment of vaccine efficacy before further evaluation in time-consuming and laborious in vivo experiments. However, more studies and research are required to conceptualize this immunological approach.
Collapse
Affiliation(s)
- Ragab M. Fereig
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
- Correspondence: (R.M.F.); (A.F.A.)
| | - Mosaab A. Omar
- Department of Parasitology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah 51452, Saudi Arabia
| | - Abdullah F. Alsayeqh
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah 51452, Saudi Arabia
- Correspondence: (R.M.F.); (A.F.A.)
| |
Collapse
|
8
|
Rosini AM, Teixeira SC, Milian ICB, Silva RJ, de Souza G, Luz LC, Gomes AO, Mineo JR, Mineo TWP, Ferro EAV, Barbosa BF. LPS-mediated activation of TLR4 controls Toxoplasma gondii growth in human trophoblast cell (BeWo) and human villous explants in a dependent-manner of TRIF, MyD88, NF-κB and cytokines. Tissue Cell 2022; 78:101907. [DOI: 10.1016/j.tice.2022.101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/22/2022] [Accepted: 08/22/2022] [Indexed: 02/07/2023]
|
9
|
Protein and antigen profiles of third-stage larvae of Gnathostoma spinigerum assessed with next-generation sequencing transcriptomic information. Sci Rep 2022; 12:6915. [PMID: 35484317 PMCID: PMC9051128 DOI: 10.1038/s41598-022-10826-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
Gnathostomiasis is a food-borne zoonotic disease that can affect humans who eat improperly cooked meat containg infective third-stage larvae. Definitive diagnosis is through larval recovery. However, this is an invasive technique and is impractical if the larvae have encysted in inaccessible areas of the body. Antigen or antibody detection might be more interesting techniques for diagnosis. Proteomic could elucidate diagnostic markers and improve our understanding of parasite biology. However, proteomic studies on Gnathostoma spinigerum are hampered by the lack of a comprehensive database for protein identification. This study aimed to explore the protein and antigen profiles of advanced third-stage G. spinigerum larvae (aL3Gs) using interrogation of mass spectrometry data and an in-house transcriptomic database for protein identification. Immunoproteomic analysis found 74 proteins in 24-kDa SDS-PAGE bands, which is size-specific for the immunodiagnosis of gnathostomiasis. Moreover, 13 proteins were found in 2-DE 24-kDa bands. The data suggest that collagenase 3, cathepsin B, glutathione S-transferase 1, cuticle collagen 14, major antigen, zinc metalloproteinase nas-4, major egg antigen, peroxiredoxin, and superoxide dismutase [Cu–Zn] may be good candidates for novel human gnathostomiasis diagnostic assays. These findings improve our understanding of the parasite’s biology and provide additional potential targets for novel therapeutics, diagnostics, and vaccines.
Collapse
|
10
|
Mining the Proteome of Toxoplasma Parasites Seeking Vaccine and Diagnostic Candidates. Animals (Basel) 2022; 12:ani12091098. [PMID: 35565525 PMCID: PMC9099775 DOI: 10.3390/ani12091098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary The One Health concept to toxoplasmosis highlights that the health of humans is closely related to the health of animals and our common environment. Toxoplasmosis outcomes might be severe and fatal in patients with immunodeficiency, diabetes, and pregnant women and infants. Consequently, the development of effective vaccine and diagnostic strategies is urgent for the elimination of this disease. Proteomics analysis has allowed the identification of key proteins that can be utilized in the development of novel disease diagnostics and vaccines. This work presents relevant proteins found in the proteome of the life cycle-specific stages of Toxoplasma parasites. In fact, it brings together the main functionality key proteins from Toxoplasma parasites coming from proteomic approaches that are most likely to be useful in improving the disease management, and critically proposes innovative directions to finally develop promising vaccines and diagnostics tools. Abstract Toxoplasma gondii is a pathogenic protozoan parasite that infects the nucleated cells of warm-blooded hosts leading to an infectious zoonotic disease known as toxoplasmosis. The infection outcomes might be severe and fatal in patients with immunodeficiency, diabetes, and pregnant women and infants. The One Health approach to toxoplasmosis highlights that the health of humans is closely related to the health of animals and our common environment. The presence of drug resistance and side effects, the further improvement of sensitivity and specificity of serodiagnostic tools and the potentiality of vaccine candidates to induce the host immune response are considered as justifiable reasons for the identification of novel targets for the better management of toxoplasmosis. Thus, the identification of new critical proteins in the proteome of Toxoplasma parasites can also be helpful in designing and test more effective drugs, vaccines, and diagnostic tools. Accordingly, in this study we present important proteins found in the proteome of the life cycle-specific stages of Toxoplasma parasites that are potential diagnostic or vaccine candidates. The current study might help to understand the complexity of these parasites and provide a possible source of strategies and biomolecules that can be further evaluated in the pathobiology of Toxoplasma parasites and for diagnostics and vaccine trials against this disease.
Collapse
|
11
|
Venancio-Brochi JC, Pereira LM, Baroni L, Abreu-Filho PG, Yatsuda AP. Characterization of the Neospora caninum peroxiredoxin: a novel peroxidase and antioxidant enzyme. Parasitol Res 2022; 121:1735-1748. [PMID: 35362740 DOI: 10.1007/s00436-022-07497-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/15/2022] [Indexed: 01/13/2023]
Abstract
Neospora caninum, an apicomplexan parasite, is the etiological agent of neosporosis, a disease that leads to neurological symptoms in dogs and abortion in cattle. Vaccine or drug treatments for neosporosis remain to be determined. Therefore, it is of undeniable relevance to investigate new molecules involved in the parasite's successful survival within the host cell. The aim of this study was to characterize the N. caninum peroxiredoxin (NcPrx), an enzyme involved in the redox system of the parasite. The NcPrx amino acid sequence showed high identity and similarity compared to homologues representatives of Apicomplexa phylum. The recombinant NcPrx (rNcPrx) was cloned and expressed in Escherichia coli (BL21) with the predicted molecular weight (22 kDa), and the identity of monomer and dimer forms of rNcPrx was confirmed by mass spectrometry. Native and recombinant NcPrx were detected by ELISA and western blot, using the polyclonal anti-rNcPrx serum. Multiphoton analysis showed that NcPrx is localized in tachyzoite cytosol. H2O2 treatment increased the rNcPrx dimerization in vitro, and associated with the in silico data, we suggest that NcPrx belongs to typical 2-Cys Prx group (AhpC/Prx1 family). rNcPrx also increased the H2O2 clearance and protected plasmidial DNA under oxidative conditions. Finally, H2O2 increased the NcPrx dimerization in intracellular and extracellular tachyzoites suggesting that it is enrolled in H2O2 clearance and sensing in N. caninum.
Collapse
Affiliation(s)
- Jade Cabestre Venancio-Brochi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av Do Café, sn/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Luiz Miguel Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av Do Café, sn/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Luciana Baroni
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av Do Café, sn/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Péricles Gama Abreu-Filho
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av Do Café, sn/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Ana Patrícia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av Do Café, sn/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
12
|
Genetic Disruption of Toxoplasma gondii peroxiredoxin (TgPrx) 1 and 3 Reveals the Essential Role of TgPrx3 in Protecting Mice from Fatal Consequences of Toxoplasmosis. Int J Mol Sci 2022; 23:ijms23063076. [PMID: 35328497 PMCID: PMC8951120 DOI: 10.3390/ijms23063076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
Toxoplasma gondii is a worldwide protozoan parasite that endangers human health and causes enormous economic losses to the animal production sector. A safe and effective vaccine or treatment is needed to reduce these hazards. In this study, we revealed the cyto-nuclear and mitochondrial localization of TgPrx1 and TgPrx3 proteins, respectively. We knocked out the T. gondii peroxiredoxin (TgPrxKO) 1 and 3 genes using a parental type II Prugniaud strain lacking KU80 and HXGPRT genes (PruΔku80Δhxgprt) via CRISPR-Cas9 technology. The successful KO was confirmed using PCR, IFAT, and Western blotting in two clones of both target genes, named TgPrx1KO and TgPrx3KO. Regarding in vitro assays, no significant variations between any of the knocked-out clones in TgPrx1KO or TgPrx3KO parasite strains, or even PruΔku80Δhxgprt, were obtained in rates of infection, proliferation, or egress. Nevertheless, mice that were infected with tachyzoites of the TgPrx3KO strain showed a marked decrease in survival rate compared with TgPrx1KO- and PruΔku80Δhxgprt-infected mice. This effect was confirmed using different mouse strains (ICR and C57BL/6J mice), sexes (male and female), and immunological backgrounds (ICR and SCID mice). In addition, TgPrx1KO and TgPrx3KO induced high levels of interferon gamma (IFN-γ) in infected mice at 8 days post infection, and increased IL-6 and IL-12p40 production from murine macrophages cultivated in vitro. The results of the present study suggested that TgPrx3 can induce anti-T. gondii immune responses that protect the mice from fatal consequences of toxoplasmosis. The results of our current and previous studies represent TgPrx3 as an excellent candidate for sub-unit vaccines, suggesting it may contribute to the control of toxoplasmosis for susceptible humans and animals.
Collapse
|
13
|
Fereig RM, Nishikawa Y. Macrophage Stimulation as a Useful Approach for Immunoscreening of Potential Vaccine Candidates Against Toxoplasma gondii and Neospora caninum Infections. Methods Mol Biol 2022; 2411:129-144. [PMID: 34816403 DOI: 10.1007/978-1-0716-1888-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Toxoplasmosis and neosporosis are protozoan diseases that adversely affect the medical and additionally veterinary sectors, respectively. Toxoplasmosis is caused by Toxoplasma gondii which infects almost all warm-blooded animals including humans. While, neosporosis is caused by Neospora caninum, which induces infection in many animal species particularly in cattle. Currently, control measures for both infections are defective because of no effective vaccine or treatment. Macrophages constitute the first line of innate immunity, which contributes to the effective elimination of T. gondii or N. caninum. This action is mediated by IL-12, which is critical for the secretion of interferon gamma (IFN-γ). Successful vaccine candidates against both protozoan parasites should possess the ability to induce the cellular immune response and IFN-γ production. In this chapter, we will focus on an efficient immunological approach for discovery of potential vaccine candidates against above-mentioned parasites. Our previous studies revealed a strong correlation between vaccine antigens that enhanced the macrophage secretion of IL-12 and their efficacy as potential vaccine candidates in murine model. In case of T. gondii, peroxiredoxin 1 (TgPrx1) and peroxiredoxin 3 stimulated the production of IL-12 from murine peritoneal macrophages and conferred strong to moderate protection in C57BL/6 mice, respectively. At the same context, Neospora antigens of dense granule protein 6 (NcGRA6) and cyclophilin entrapped with oligo-mannose coated-liposomes stimulated macrophage IL-12 secretion and substantially protected immunized BALB/c mice. Therefore, we can deduce that macrophage stimulation evidenced in IL-12 production can be used as a useful approach for judgment of vaccine efficacy before further evaluation using in vivo experiments. Methods of vaccine preparation and macrophage stimulation will be fully described for TgPrx1 and NcGRA6 as potential vaccine candidates against toxoplasmosis and neosporosis, respectively.
Collapse
Affiliation(s)
- Ragab M Fereig
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.
| |
Collapse
|
14
|
Fereig RM, Abdelbaky HH, Nishikawa Y. Comparative Evaluation of Four Potent Neospora caninum Diagnostic Antigens Using Immunochromatographic Assay for Detection of Specific Antibody in Cattle. Microorganisms 2021; 9:microorganisms9102133. [PMID: 34683454 PMCID: PMC8541029 DOI: 10.3390/microorganisms9102133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
Neospora caninum is an intracellular protozoan parasite responsible for numerous abortion outbreaks and neonatal abnormalities in cattle. Rapid and accurate diagnosis is critical for N. caninum control owing to the lack of vaccine or drug-based control strategies. Herein, we evaluated the performance of four frequently used antigens in the diagnosis of N. caninum infection using immunochromatographic tests (ICTs) as a rapid, affordable, and field applicable tool. These antigens included recombinant proteins of N. caninum surface antigen 1 (NcSAG1), dense granule proteins 7 (NcGRA7) and 6 (NcGRA6), in addition to native Neospora lysate antigen (NLA). Our study revealed the utility of all antigen-based ICTs for detection of specific antibodies to N. caninum. However, the NcSAG1-based ICT was the best for detection of all control N. caninum-infected mouse or cattle sera, while NcGRA7 and NcGRA6-based ICTs exhibited specific ability to detect samples from acute and sub-acute infection in mice and cattle, respectively. Analyses of the NcSAG1-based ICT against enzyme-linked immunosorbent assays (ELISAs) of the same antigen revealed its efficiency in detection of field cattle samples as observed in high sensitivity (84.2%), specificity (93.5%), agreement (90%), and kappa value (0.78). The current knowledge provides an efficient platform for N. caninum control through on-site diagnosis of infected cattle.
Collapse
Affiliation(s)
- Ragab M. Fereig
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan; (R.M.F.); (H.H.A.)
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Hanan H. Abdelbaky
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan; (R.M.F.); (H.H.A.)
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan; (R.M.F.); (H.H.A.)
- Correspondence:
| |
Collapse
|
15
|
Sanfelice RADS, Bortoleti BTDS, Tomiotto-Pellissier F, Silva TF, Bosqui LR, Nakazato G, Castilho PM, de Barros LD, Garcia JL, Lazarin-Bidóia D, Conchon-Costa I, Pavanelli WR, Costa IN. Biogenic silver nanoparticles (AgNp-Bio) reduce Toxoplasma gondii infection and proliferation in HeLa cells, and induce autophagy and death of tachyzoites by apoptosis-like mechanism. Acta Trop 2021; 222:106070. [PMID: 34331897 DOI: 10.1016/j.actatropica.2021.106070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022]
Abstract
Toxoplasma gondii is a protozoan parasite that can cause severe and debilitating diseases, especially in immunocompromised individuals. The available treatment is based on drugs that have low efficacy, high toxicity, several adverse effects, and need long periods of treatment. Thus, the search for therapeutic alternatives is urgently needed. Biogenic silver nanoparticles (AgNp-Bio) have been associated with several biological effects, as antiproliferative, pro-apoptotic, antioxidant, antiviral, antifungal, and antiprotozoal activity. Thus, the objective was evaluating AgNp-Bio effect on HeLa cells infected with T. gondii (RH strain). First, nontoxic AgNp-Bio concentrations for HeLa cells (1.5 - 6 µM) were determined, which were tested on cells infected with T. gondii. A significant reduction in infection, proliferation, and intracellular parasitic load was observed, also an increase in ROS and IL-6. Additionally, the evaluation of the action mechanisms of the parasite showed that AgNp-Bio acts directly on tachyzoites, inducing depolarization of the mitochondrial membrane, ROS increase, and lipid bodies accumulation, as well as triggering an autophagic process, causing damage to the parasite membrane, and phosphatidylserine exposure. Based on this, it was inferred that AgNp-Bio affects T. gondii by inducing immunomodulation and microbicidal molecules produced by infected cells, and acts on parasites, by inducing autophagy and apoptosis.
Collapse
Affiliation(s)
| | | | | | - Taylon Felipe Silva
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer - LIDNC, State University of Londrina, PR, Brazil
| | - Larissa Rodrigues Bosqui
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer - LIDNC, State University of Londrina, PR, Brazil
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, State University of Londrina, PR, Brazil
| | - Pablo Menegon Castilho
- Department of Preventive Veterinary Medicine, Laboratory of Animal Protozoology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Pr 445 km 380, 86057-970, Londrina, PR, Brazil
| | - Luiz Daniel de Barros
- Department of Preventive Veterinary Medicine, Laboratory of Animal Protozoology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Pr 445 km 380, 86057-970, Londrina, PR, Brazil
| | - João Luis Garcia
- Department of Preventive Veterinary Medicine, Laboratory of Animal Protozoology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Pr 445 km 380, 86057-970, Londrina, PR, Brazil
| | - Danielle Lazarin-Bidóia
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer - LIDNC, State University of Londrina, PR, Brazil
| | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer - LIDNC, State University of Londrina, PR, Brazil
| | - Wander Rogério Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer - LIDNC, State University of Londrina, PR, Brazil
| | - Idessania Nazareth Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer - LIDNC, State University of Londrina, PR, Brazil.
| |
Collapse
|
16
|
Relevance of peroxiredoxins in pathogenic microorganisms. Appl Microbiol Biotechnol 2021; 105:5701-5717. [PMID: 34258640 DOI: 10.1007/s00253-021-11360-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022]
Abstract
The oxidative and nitrosative responses generated by animals and plants are important defenses against infection and establishment of pathogenic microorganisms such as bacteria, fungi, and protozoa. Among distinct oxidant species, hydroperoxides are a group of chemically diverse compounds that comprise small hydrophilic molecules, such as hydrogen peroxide and peroxynitrite, and bulky hydrophobic species, such as organic hydroperoxides. Peroxiredoxins (Prx) are ubiquitous enzymes that use a highly reactive cysteine residue to decompose hydroperoxides and can also perform other functions, like molecular chaperone and phospholipase activities, contributing to microbial protection against the host defenses. Prx are present in distinct cell compartments and, in some cases, they can be secreted to the extracellular environment. Despite their high abundance, Prx expression can be further increased in response to oxidative stress promoted by host defense systems, by treatment with hydroperoxides or by antibiotics. In consequence, some isoforms have been described as virulence factors, highlighting their importance in pathogenesis. Prx are very diverse and are classified into six different classes (Prx1-AhpC, BCP-PrxQ, Tpx, Prx5, Prx6, and AhpE) based on structural and biochemical features. Some groups are absent in hosts, while others present structural peculiarities that differentiate them from the host's isoforms. In this context, the intrinsic characteristics of these enzymes may aid the development of new drugs to combat pathogenic microorganisms. Additionally, since some isoforms are also found in the extracellular environment, Prx emerge as attractive targets for the production of diagnostic tests and vaccines. KEY POINTS: • Peroxiredoxins are front-line defenses against host oxidative and nitrosative stress. • Functional and structural peculiarities differ pathogen and host enzymes. • Peroxiredoxins are potential targets to microbicidal drugs.
Collapse
|
17
|
López L, Chiribao ML, Girard MC, Gómez KA, Carasi P, Fernandez M, Hernandez Y, Robello C, Freire T, Piñeyro MD. The cytosolic tryparedoxin peroxidase from Trypanosoma cruzi induces a pro-inflammatory Th1 immune response in a peroxidatic cysteine-dependent manner. Immunology 2021; 163:46-59. [PMID: 33410127 PMCID: PMC8044337 DOI: 10.1111/imm.13302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/25/2020] [Accepted: 12/19/2020] [Indexed: 12/25/2022] Open
Abstract
Trypanosoma cruzi cytosolic tryparedoxin peroxidase (c-TXNPx) is a 2-Cys peroxiredoxin (Prx) with an important role in detoxifying host cell oxidative molecules during parasite infection. c-TXNPx is a virulence factor, as its overexpression enhances parasite infectivity and resistance to exogenous oxidation. As Prxs from other organisms possess immunomodulatory properties, we studied the effects of c-TXNPx in the immune response and analysed whether the presence of the peroxidatic cysteine is necessary to mediate these properties. To this end, we used a recombinant c-TXNPx and a mutant version (c-TXNPxC52S) lacking the peroxidatic cysteine. We first analysed the oligomerization profile, oxidation state and peroxidase activity of both proteins by gel filtration, Western blot and enzymatic assay, respectively. To investigate their immunological properties, we analysed the phenotype and functional activity of macrophage and dendritic cells and the T-cell response by flow cytometry after injection into mice. Our results show that c-TXNPx, but not c-TXNPxC52S, induces the recruitment of IL-12/23p40-producing innate antigen-presenting cells and promotes a strong specific Th1 immune response. Finally, we studied the cellular and humoral immune response developed in the context of parasite natural infection and found that only wild-type c-TXNPx induces proliferation and high levels of IFN-γ secretion in PBMC from chronic patients without demonstrable cardiac manifestations. In conclusion, we demonstrate that c-TXNPx possesses pro-inflammatory properties that depend on the presence of peroxidatic cysteine that is essential for peroxidase activity and quaternary structure of the protein and could contribute to rational design of immune-based strategies against Chagas disease.
Collapse
Affiliation(s)
- Lucía López
- Laboratorio de Inmunomodulación y Desarrollo de VacunasDepartamento de InmunobiologíaFacultad de MedicinaUniversidad de La RepúblicaMontevideoUruguay
- Unidad de Biología MolecularInstitut Pasteur MontevideoMontevideoUruguay
| | - María Laura Chiribao
- Unidad de Biología MolecularInstitut Pasteur MontevideoMontevideoUruguay
- Departamento de BioquímicaFacultad de MedicinaUniversidad de La RepúblicaMontevideoUruguay
| | - Magalí C. Girard
- Laboratorio de Inmunología de las Infecciones por TripanosomátidosInstituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI‐CONICET)Buenos AiresArgentina
| | - Karina A. Gómez
- Laboratorio de Inmunología de las Infecciones por TripanosomátidosInstituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI‐CONICET)Buenos AiresArgentina
| | - Paula Carasi
- Laboratorio de Inmunomodulación y Desarrollo de VacunasDepartamento de InmunobiologíaFacultad de MedicinaUniversidad de La RepúblicaMontevideoUruguay
| | - Marisa Fernandez
- Instituto Nacional de Parasitología ‘Doctor Mario Fatala Chabén’Buenos AiresArgentina
| | - Yolanda Hernandez
- Instituto Nacional de Parasitología ‘Doctor Mario Fatala Chabén’Buenos AiresArgentina
| | - Carlos Robello
- Unidad de Biología MolecularInstitut Pasteur MontevideoMontevideoUruguay
- Departamento de BioquímicaFacultad de MedicinaUniversidad de La RepúblicaMontevideoUruguay
| | - Teresa Freire
- Laboratorio de Inmunomodulación y Desarrollo de VacunasDepartamento de InmunobiologíaFacultad de MedicinaUniversidad de La RepúblicaMontevideoUruguay
| | - María Dolores Piñeyro
- Unidad de Biología MolecularInstitut Pasteur MontevideoMontevideoUruguay
- Departamento de BioquímicaFacultad de MedicinaUniversidad de La RepúblicaMontevideoUruguay
| |
Collapse
|
18
|
Chu KB, Quan FS. Advances in Toxoplasma gondii Vaccines: Current Strategies and Challenges for Vaccine Development. Vaccines (Basel) 2021; 9:vaccines9050413. [PMID: 33919060 PMCID: PMC8143161 DOI: 10.3390/vaccines9050413] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Toxoplasmosis, caused by the apicomplexan parasite Toxoplasma gondii, is one of the most damaging parasite-borne zoonotic diseases of global importance. While approximately one-third of the entire world’s population is estimated to be infected with T. gondii, an effective vaccine for human use remains unavailable. Global efforts in pursuit of developing a T. gondii vaccine have been ongoing for decades, and novel innovative approaches have been introduced to aid this process. A wide array of vaccination strategies have been conducted to date including, but not limited to, nucleic acids, protein subunits, attenuated vaccines, and nanoparticles, which have been assessed in rodents with promising results. Yet, translation of these in vivo results into clinical studies remains a major obstacle that needs to be overcome. In this review, we will aim to summarize the current advances in T. gondii vaccine strategies and address the challenges hindering vaccine development.
Collapse
Affiliation(s)
- Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
19
|
Liu ZZ, Li XY, Fu LL, Yuan F, Tang RX, Liu YS, Zheng KY. Evaluation of toxoplasmosis in pregnant women using dot-immunogold-silver staining with recombinant Toxoplasma gondii peroxiredoxin protein. BMC Infect Dis 2020; 20:694. [PMID: 32962648 PMCID: PMC7507715 DOI: 10.1186/s12879-020-05414-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Toxoplasma gondii infection endangers human health and affects animal husbandry. Serological detection is the main method used for epidemiological investigations and diagnosis of toxoplasmosis. The key to effective diagnosis of toxoplasmosis is the use of a standardized antigen and a specific and sensitive detection method. Peroxiredoxin is an antigenic protein and vaccine candidate antigen of T. gondii that has not yet been exploited for diagnostic application. METHODS In this study, recombinant T. gondii peroxiredoxin protein (rTgPrx) was prepared and used in dot-immunogold-silver staining (Dot-IGSS) to detect IgG antibodies in serum from mice and pregnant women. The rTgPrx-Dot-IGSS method was established and optimized using mouse serum. Furthermore, serum samples from pregnant women were analyzed by rTgPrx-Dot-IGSS. RESULTS Forty serum samples from mice infected with T. gondii and twenty negative serum samples were analyzed. The sensitivity and specificity of rTgPrx-Dot-IGSS were 97.5 and 100%, respectively, equivalent to those of a commercial ELISA kit for anti-Toxoplasma IgG antibody. Furthermore, 540 serum samples from pregnant women were screened with a commercial ELISA kit. Eighty-three positive and 60 negative serum samples were analyzed by rTgPrx-Dot-IGSS. The positive rate was 95.18%, comparable to that obtained with the commercial ELISA kit. CONCLUSIONS The Dot-IGSS method with rTgPrx as an antigen might be useful for diagnosing T. gondii infection in individuals.
Collapse
Affiliation(s)
- Zhuan-Zhuan Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xue-Yan Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Lin-Lin Fu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Fei Yuan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ren-Xian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yi-Sheng Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
20
|
Fereig RM, Nishikawa Y. Urological detection of specific antibodies against Neospora caninum infection in mice: A prospect for novel diagnostic approach of Neospora. Exp Parasitol 2020; 216:107942. [PMID: 32598889 DOI: 10.1016/j.exppara.2020.107942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022]
Abstract
The intracellular protozoan parasite Neospora caninum is incriminated to induce drastic economic losses in both livestock and pet animal industries. Neosporosis is primarily characterized by abortion in cattle and paralytic symptoms in dogs. Because there are no effective treatments or vaccines, diagnosis is critical for Neospora control. Thus, diversification of laboratory tests and specimens used for diagnosis of N. caninum is an essential scientific endeavor to judge and select the most appropriate diagnostic tool. Herein, we provide the first evidence for the utility of urine samples for demonstration of specific antibodies against N. caninum employing an experimentally infected murine model. Specific antibodies to recombinant N. caninum dense granule 7, surface antigen 1, and lysate antigen were assayed using different antibodies-based ELISAs. Urine based IgG ELISA efficiently discriminated between infected mice (acute or chronic infection), and those of non-infected mice. This effect was also noticed for IgG1 and IgG2a suggesting the utility of urine for assessment of T-helper 2- and T-helper 1-mediated immunities, respectively. In addition, reactivity of specific antibody in urine was also confirmed against parasites when indirect fluorescent antibody test was employed. Usefulness of urine as an additional clinical sample for Neospora diagnosis was confirmed via comparison with the relevant control non-infected and infected mouse sera as reference samples. Because of minimum invasiveness and ease of urine collection, this approach might offer new diagnostic opportunities for N. caninum either for the field or research purposes. However, further studies are required to extrapolate this preliminary study and results in the animal species of interest particularly in dogs.
Collapse
Affiliation(s)
- Ragab M Fereig
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan; Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena, 83523, Egypt
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
21
|
Fereig RM, Shimoda N, Abdelbaky HH, Kuroda Y, Nishikawa Y. Neospora GRA6 possesses immune-stimulating activity and confers efficient protection against Neospora caninum infection in mice. Vet Parasitol 2019; 267:61-68. [PMID: 30878088 DOI: 10.1016/j.vetpar.2019.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/06/2019] [Accepted: 02/09/2019] [Indexed: 10/27/2022]
Abstract
Vaccination has the potential to be the most cost-effective control measure for reducing the economic burden of neosporosis in cattle. In this study, the immune-stimulatory effect of recombinant Neospora caninum dense granule protein 6 (NcGRA6) was confirmed via its triggering of IL-12p40 production in murine macrophages. BALB/c mice were immunized with recombinant NcGRA6 fused with glutathione S-transferase (GST) protein with or without oligomannose-coated-liposomes (OMLs) as the potential adjuvant. Specific IgG1 antibody production was observed from 21 and 35 days after the first immunization in NcGRA6+GST- and NcGRA6+GST-OML-immunized mice, respectively. However, specific IgG2a was detected 1 week after the infection, and IgG2a levels of the NcGRA6+GST- group were higher than those of the NcGRA6+GST-OML-group. Moreover, spleen cell proliferation with concomitant interferon-gamma production was detected in mice immunized with NcGRA6+GST, indicating that a significant cellular immune response was induced. Mouse survival rates against N. caninum challenge infection were 91.7% for NcGRA6+GST and 83.3% for NcGRA6+GST-OML, which were significantly higher than those of control groups (GST-OML: 25%, phosphate-buffered saline: 16.7%). This indicates that naked NcGRA6+GST induced protective immunity. Thus, our findings highlight the immune-stimulating potential of NcGRA6 and the ability to induce protective immunity against N. caninum infection in mice.
Collapse
Affiliation(s)
- Ragab M Fereig
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan; Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Naomi Shimoda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Hanan H Abdelbaky
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Yasuhiro Kuroda
- Department of Applied Biochemistry, Tokai University, Kita-kaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
22
|
Borges M, Magalhães Silva T, Brito C, Teixeira N, Roberts CW. How does toxoplasmosis affect the maternal-foetal immune interface and pregnancy? Parasite Immunol 2018; 41:e12606. [PMID: 30471137 DOI: 10.1111/pim.12606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Toxoplasma gondii is a zoonotic parasite which, depending on the geographical location, can infect between 10% and 90% of humans. Infection during pregnancy may result in congenital toxoplasmosis. The effects on the foetus vary depending on the stage of gestation in which primary maternal infection arises. A large body of research has focused on understanding immune response to toxoplasmosis, although few studies have addressed how it is affected by pregnancy or the pathological consequences of infection at the maternal-foetal interface. There is a lack of knowledge about how maternal immune cells, specifically macrophages, are modulated during infection and the resulting consequences for parasite control and pathology. Herein, we discuss the potential of T. gondii infection to affect the maternal-foetal interface and the potential of pregnancy to disrupt maternal immunity to T. gondii infection.
Collapse
Affiliation(s)
- Margarida Borges
- UCIBIO/REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Tânia Magalhães Silva
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Carina Brito
- UCIBIO/REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Natércia Teixeira
- UCIBIO/REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Craig W Roberts
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
23
|
Girard MC, Acevedo GR, López L, Ossowski MS, Piñeyro MD, Grosso JP, Fernandez M, Hernández Vasquez Y, Robello C, Gómez KA. Evaluation of the immune response against Trypanosoma cruzi cytosolic tryparedoxin peroxidase in human natural infection. Immunology 2018; 155:367-378. [PMID: 29972690 DOI: 10.1111/imm.12979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/08/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022] Open
Abstract
Trypanosoma cruzi, the aetiological agent of Chagas disease, has a highly efficient detoxification system to deal with the oxidative burst imposed by its host. One of the antioxidant enzymes involved is the cytosolic tryparedoxin peroxidase (c-TXNPx), which catalyses the reduction to hydrogen peroxide, small-chain organic hydroperoxides and peroxynitrite. This enzyme is present in all parasite stages, and its overexpression renders parasites more resistant to the oxidative defences of macrophages, favouring parasite survival. This work addressed the study of the specific humoral and cellular immune response triggered by c-TXNPx in human natural infection. Thus, sera and peripheral blood mononuclear cells (PBMC) were collected from chronically infected asymptomatic and cardiac patients, and non-infected individuals. Results showed that levels of IgG antibodies against c-TXNPx were low in sera from individuals across all groups. B-cell epitope prediction limited immunogenicity to a few, small regions on the c-TXNPx sequence. At a cellular level, PBMC from asymptomatic and cardiac patients proliferated and secreted interferon-γ after c-TXNPx stimulation, compared with mock control. However, only proliferation was higher in asymptomatic patients compared with cardiac and non-infected individuals. Furthermore, asymptomatic patients showed an enhanced frequency of CD19+ CD69+ cells upon exposure to c-TXNPx. Overall, our results show that c-TXNPx fails to induce a strong immune response in natural infection, being measurable only in those patients without any clinical symptoms. The low impact of c-TXNPx in the human immune response could be strategic for parasite survival, as it keeps this crucial antioxidant enzyme activity safe from the mechanisms of adaptive immune response.
Collapse
Affiliation(s)
- Magalí C Girard
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Gonzalo R Acevedo
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Lucía López
- Unidad de Biología Molecular, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Micaela S Ossowski
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - María D Piñeyro
- Unidad de Biología Molecular, Institut Pasteur Montevideo, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Juan P Grosso
- Laboratorio de Insectos Sociales, IFIBYNE-CONICET, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisa Fernandez
- Instituto Nacional de Parasitología "Doctor Mario Fatala Chabén", Buenos Aires, Argentina
| | | | - Carlos Robello
- Unidad de Biología Molecular, Institut Pasteur Montevideo, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Karina A Gómez
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| |
Collapse
|