1
|
Shen C, Lemmen K, Alexander J, Pennekamp F. Connecting higher-order interactions with ecological stability in experimental aquatic food webs. Ecol Evol 2023; 13:e10502. [PMID: 37693938 PMCID: PMC10483096 DOI: 10.1002/ece3.10502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/11/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023] Open
Abstract
Community ecology is built on theories that represent the strength of interactions between species as pairwise links. Higher-order interactions (HOIs) occur when a species changes the pairwise interaction between a focal pair. Recent theoretical work has highlighted the stabilizing role of HOIs for large, simulated communities, yet it remains unclear how important higher-order effects are in real communities. Here, we used experimental communities of aquatic protists to examine the relationship between HOIs and stability (as measured by the persistence of a species in a community). We cultured a focal pair of consumers in the presence of additional competitors and a predator and collected time series data of their abundances. We then fitted competition models with and without HOIs to measure interaction strength between the focal pair across different community compositions. We used survival analysis to measure the persistence of individual species. We found evidence that additional species positively affected persistence of the focal species and that HOIs were present in most of our communities. However, persistence was only linked to HOIs for one of the focal species. Our results vindicate community ecology theory positing that species interactions may deviate from assumptions of pairwise interactions, opening avenues to consider possible consequences for coexistence and stability.
Collapse
Affiliation(s)
- Chenyu Shen
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Department of Environmental Systems ScienceInstitute for Integrative Biology, Swiss Federal Institute of TechnologyZurichSwitzerland
| | - Kimberley Lemmen
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Jake Alexander
- Department of Environmental Systems ScienceInstitute for Integrative Biology, Swiss Federal Institute of TechnologyZurichSwitzerland
| | - Frank Pennekamp
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
2
|
Saade C, Kéfi S, Gougat-Barbera C, Rosenbaum B, Fronhofer EA. Spatial autocorrelation of local patch extinctions drives recovery dynamics in metacommunities. Proc Biol Sci 2022; 289:20220543. [PMID: 35414238 PMCID: PMC9006024 DOI: 10.1098/rspb.2022.0543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human activities put ecosystems under increasing pressure, often resulting in local extinctions. However, it is unclear how local extinctions affect regional processes, such as the distribution of diversity in space, especially if extinctions show spatial patterns, such as being clustered. Therefore, it is crucial to investigate extinctions and their consequences in a spatially explicit framework. Using highly controlled microcosm experiments and theoretical models, we ask here how the number and spatial autocorrelation of extinctions interactively affect metacommunity dynamics. We found that local patch extinctions increased local diversity (α-diversity) and inter-patch diversity (β-diversity) by delaying the exclusion of inferior competitors. Importantly, recolonization dynamics depended more strongly on the spatial distribution than on the number of patch extinctions: clustered local patch extinctions resulted in slower recovery, lower α-diversity and higher β-diversity. Our results highlight that the spatial distribution of perturbations should be taken into account when studying and managing spatially structured communities.
Collapse
Affiliation(s)
- Camille Saade
- ISEM, CNRS, Univ. Montpellier, IRD, EPHE, Montpellier, France
| | - Sonia Kéfi
- ISEM, CNRS, Univ. Montpellier, IRD, EPHE, Montpellier, France.,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | | | - Benjamin Rosenbaum
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | | |
Collapse
|
3
|
Govaert L, Gilarranz LJ, Altermatt F. Competition alters species' plastic and genetic response to environmental change. Sci Rep 2021; 11:23518. [PMID: 34876603 PMCID: PMC8651732 DOI: 10.1038/s41598-021-02841-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022] Open
Abstract
Species react to environmental change via plastic and evolutionary responses. While both of them determine species' survival, most studies quantify these responses individually. As species occur in communities, competing species may further influence their respective response to environmental change. Yet, how environmental change and competing species combined shape plastic and genetic responses to environmental change remains unclear. Quantifying how competition alters plastic and genetic responses of species to environmental change requires a trait-based, community and evolutionary ecological approach. We exposed unicellular aquatic organisms to long-term selection of increasing salinity-representing a common and relevant environmental change. We assessed plastic and genetic contributions to phenotypic change in biomass, cell shape, and dispersal ability along increasing levels of salinity in the presence and absence of competition. Trait changes in response to salinity were mainly due to mean trait evolution, and differed whether species evolved in the presence or absence of competition. Our results show that species' evolutionary and plastic responses to environmental change depended both on competition and the magnitude of environmental change, ultimately determining species persistence. Our results suggest that understanding plastic and genetic responses to environmental change within a community will improve predictions of species' persistence to environmental change.
Collapse
Affiliation(s)
- Lynn Govaert
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland. .,URPP Global Change and Biodiversity, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany.
| | - Luis J. Gilarranz
- grid.418656.80000 0001 1551 0562Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Florian Altermatt
- grid.7400.30000 0004 1937 0650Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland ,grid.418656.80000 0001 1551 0562Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland ,grid.7400.30000 0004 1937 0650URPP Global Change and Biodiversity, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
4
|
Holenstein K, Harvey E, Altermatt F. Patch size distribution affects species invasion dynamics in dendritic networks. OIKOS 2021. [DOI: 10.1111/oik.08679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Kathrin Holenstein
- Dept of Aquatic Ecology, Eawag, Swiss Federal Inst. of Aquatic Science and Technology Dübendorf Switzerland
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Zürich Switzerland
| | - Eric Harvey
- Dept of Aquatic Ecology, Eawag, Swiss Federal Inst. of Aquatic Science and Technology Dübendorf Switzerland
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Zürich Switzerland
- Dépt de Sciences Biologiques, Univ. de Montréal Montréal QC Canada
| | - Florian Altermatt
- Dept of Aquatic Ecology, Eawag, Swiss Federal Inst. of Aquatic Science and Technology Dübendorf Switzerland
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Zürich Switzerland
| |
Collapse
|
5
|
Thompson P, Hürlemann S, Altermatt F. Species Interactions Limit the Predictability of Community Responses to Environmental Change. Am Nat 2021; 198:694-705. [PMID: 34762574 DOI: 10.1086/716724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractPredicting how ecological communities will respond to environmental change is challenging but highly relevant in this era of global change. Ecologists commonly use current spatial relationships between species and environmental conditions to make predictions about the future. This assumes that species will track conditions by shifting their distributions. However, theory and experimental evidence suggest that species interactions prevent communities from predictably tracking temporal changes in environmental conditions on the basis of current spatial relationships between species and environmental gradients. We tested this hypothesis by assessing the dynamics of protist species in replicated two-patch microcosm landscapes that experienced different regimes of spatial and temporal environmental heterogeneity (light vs. dark). Populations were kept in monocultures or polycultures to assess the effect of species interactions. In monocultures, abundances were predictable on the basis of current environmental conditions, regardless of whether the populations had experienced temporal environmental change. But in polycultures, abundances also depended on the history of the environmental conditions experienced. This suggests that because of species interactions, communities should respond differently to spatial versus temporal environmental changes. Thus, species interactions likely reduce the accuracy of predictions about future communities that are based on current spatial relationships between species and the environment.
Collapse
|
6
|
Krug RM, Petchey OL. Metadata Made Easy: Develop and Use Domain-Specific Metadata Schemes by following the dmdScheme approach. Ecol Evol 2021; 11:9174-9181. [PMID: 34306613 PMCID: PMC8293710 DOI: 10.1002/ece3.7764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/22/2021] [Accepted: 05/14/2021] [Indexed: 11/24/2022] Open
Abstract
Metadata plays an essential role in the long-term preservation, reuse, and interoperability of data. Nevertheless, creating useful metadata can be sufficiently difficult and weakly enough incentivized that many datasets may be accompanied by little or no metadata. One key challenge is, therefore, how to make metadata creation easier and more valuable. We present a solution that involves creating domain-specific metadata schemes that are as complex as necessary and as simple as possible. These goals are achieved by co-development between a metadata expert and the researchers (i.e., the data creators). The final product is a bespoke metadata scheme into which researchers can enter information (and validate it) via the simplest of interfaces: a web browser application and a spreadsheet.We provide the R package dmdScheme (dmdScheme: An R package for working with domain specific MetaData schemes (Version v0.9.22), 2019) for creating a template domain-specific scheme. We describe how to create a domain-specific scheme from this template, including the iterative co-development process, and the simple methods for using the scheme, and simple methods for quality assessment, improvement, and validation.The process of developing a metadata scheme following the outlined approach was successful, resulting in a metadata scheme which is used for the data generated in our research group. The validation quickly identifies forgotten metadata, as well as inconsistent metadata, therefore improving the quality of the metadata. Multiple output formats are available, including XML.Making the provision of metadata easier while also ensuring high quality must be a priority for data curation initiatives. We show how both objectives are achieved by close collaboration between metadata experts and researchers to create domain-specific schemes. A near-future priority is to provide methods to interface domain-specific schemes with general metadata schemes, such as the Ecological Metadata Language, to increase interoperability.
Collapse
Affiliation(s)
- Rainer M. Krug
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZürichZurichSwitzerland
| | - Owen L. Petchey
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZürichZurichSwitzerland
| |
Collapse
|
7
|
Jacquet C, Altermatt F. The ghost of disturbance past: long-term effects of pulse disturbances on community biomass and composition. Proc Biol Sci 2020; 287:20200678. [PMID: 32635861 DOI: 10.1098/rspb.2020.0678] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Current global change is associated with an increase in disturbance frequency and intensity, with the potential to trigger population collapses and to cause permanent transitions to new ecosystem states. However, our understanding of ecosystem responses to disturbances is still incomplete. Specifically, there is a mismatch between the diversity of disturbance regimes experienced by ecosystems and the one-dimensional description of disturbances used in most studies on ecological stability. To fill this gap, we conducted a full factorial experiment on microbial communities, where we varied the frequency and intensity of disturbances affecting species mortality, resulting in 20 different disturbance regimes. We explored the direct and long-term effects of these disturbance regimes on community biomass. While most communities were able to recover biomass and composition states similar to undisturbed controls after a halt of the disturbances, we identified some disturbance thresholds that had long-lasting legacies on communities. Using a model based on logistic growth, we identified qualitatively the sets of disturbance frequency and intensity that had equivalent long-term negative impacts on experimental communities. Our results show that an increase in disturbance intensity is a bigger threat for biodiversity and biomass recovery than the occurrence of more frequent but less intense disturbances.
Collapse
Affiliation(s)
- Claire Jacquet
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Florian Altermatt
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| |
Collapse
|
8
|
Tabi A, Pennekamp F, Altermatt F, Alther R, Fronhofer EA, Horgan K, Mächler E, Pontarp M, Petchey OL, Saavedra S. Species multidimensional effects explain idiosyncratic responses of communities to environmental change. Nat Ecol Evol 2020; 4:1036-1043. [PMID: 32572220 DOI: 10.1038/s41559-020-1206-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/15/2020] [Indexed: 01/30/2023]
Abstract
Environmental change can alter species' abundances within communities consistently; for example, increasing all abundances by the same percentage, or more idiosyncratically. Here, we show how comparing effects of temperature on species grown in isolation and when grown together helps our understanding of how ecological communities more generally respond to environmental change. In particular, we find that the shape of the feasibility domain (the parameter space of carrying capacities compatible with positive species' abundances) helps to explain the composition of experimental microbial communities under changing environmental conditions. First, we introduce a measure to quantify the asymmetry of a community's feasibility domain using the column vectors of the corresponding interaction matrix. These column vectors describe the effects each species has on all other species in the community (hereafter referred to as species' multidimensional effects). We show that as the asymmetry of the feasibility domain increases the relationship between species' abundance when grown together and when grown in isolation weakens. We then show that microbial communities experiencing different temperature environments exhibit patterns consistent with this theory. Specifically, communities at warmer temperatures show relatively more asymmetry; thus, the idiosyncrasy of responses is higher compared with that in communities at cooler temperatures. These results suggest that while species' interactions are typically defined at the pairwise level, multispecies dynamics can be better understood by focusing on the effects of these interactions at the community level.
Collapse
Affiliation(s)
- Andrea Tabi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | - Frank Pennekamp
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Roman Alther
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Emanuel A Fronhofer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Katherine Horgan
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Elvira Mächler
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Mikael Pontarp
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Owen L Petchey
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
9
|
Garnier A, Hulot FD, Petchey OL. Manipulating the strength of organism-environment feedback increases nonlinearity and apparent hysteresis of ecosystem response to environmental change. Ecol Evol 2020; 10:5527-5543. [PMID: 32607172 PMCID: PMC7319241 DOI: 10.1002/ece3.6294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 11/08/2022] Open
Abstract
Theory predicts that organism-environment feedbacks play a central role in how ecological communities respond to environmental change. Strong feedback causes greater nonlinearity between environmental change and ecosystem state, increases the likelihood of hysteresis in response to environmental change, and augments the possibility of alternative stable regimes. To illustrate these predictions and their dependence on a temporal scale, we simulated a minimal ecosystem model. To test the predictions, we manipulated the feedback strength between the metabolism and the dissolved oxygen concentration in an aquatic heterotrophic tri-trophic community in microecosystems. The manipulation consisted of five levels, ranging from low to high feedback strength by altering the oxygen diffusivity: free gas exchange between the microcosm atmosphere and the external air (metabolism not strongly affecting environmental oxygen), with the regular addition of 200, 100, or 50 ml of air and no gas exchange. To test for nonlinearity and hysteresis in response to environmental change, all microecosystems experienced a gradual temperature increase from 15 to 25°C and then back to 15°C. We regularly measured the dissolved oxygen concentration, total biomass, and species abundance. Nonlinearity and hysteresis were higher in treatments with stronger organism-environment feedbacks. There was no evidence that stronger feedback increased the number of observed ecosystem states. These empirical results are in broad agreement with the theory that stronger feedback increases nonlinearity and hysteresis. They therefore represent one of the first direct empirical tests of the importance of feedback strength. However, we discuss several limitations of the study, which weaken confidence in this interpretation. Research demonstrating the causal effects of feedback strength on ecosystem responses to environmental change should be placed at the core of efforts to plan for sustainable ecosystems.
Collapse
Affiliation(s)
- Aurélie Garnier
- URPP Global Change and BiodiversityUniversity of ZurichZürichSwitzerland
- Institute for Marine Ecosystem and Fisheries ScienceUniversity of HamburgHamburgGermany
| | - Florence D. Hulot
- Université Paris‐SaclayCNRS, AgroParisTechEcologie Systématique et EvolutionOrsayFrance
| | - Owen L. Petchey
- URPP Global Change and BiodiversityUniversity of ZurichZürichSwitzerland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland
| |
Collapse
|
10
|
Jacquet C, Gounand I, Altermatt F. How pulse disturbances shape size-abundance pyramids. Ecol Lett 2020; 23:1014-1023. [PMID: 32282125 DOI: 10.1111/ele.13508] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/27/2019] [Accepted: 03/02/2020] [Indexed: 01/04/2023]
Abstract
Ecological pyramids represent the distribution of abundance and biomass of living organisms across body-sizes. Our understanding of their expected shape relies on the assumption of invariant steady-state conditions. However, most of the world's ecosystems experience disturbances that keep them far from such a steady state. Here, using the allometric scaling between population growth rate and body-size, we predict the response of size-abundance pyramids within a trophic guild to any combination of disturbance frequency and intensity affecting all species in a similar way. We show that disturbances narrow the base of size-abundance pyramids, lower their height and decrease total community biomass in a nonlinear way. An experimental test using microbial communities demonstrates that the model captures well the effect of disturbances on empirical pyramids. Overall, we demonstrate both theoretically and experimentally how disturbances that are not size-selective can nonetheless have disproportionate impacts on large species.
Collapse
Affiliation(s)
- Claire Jacquet
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland.,Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
| | - Isabelle Gounand
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland.,Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland.,Sorbonne Université, CNRS, UPEC, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement, IEES,, Paris, France
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland.,Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
| |
Collapse
|
11
|
The Biomolecular Spectrum Drives Microbial Biology and Functions in Agri-Food-Environments. Biomolecules 2020; 10:biom10030401. [PMID: 32143510 PMCID: PMC7175317 DOI: 10.3390/biom10030401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 11/17/2022] Open
Abstract
Microbial biomolecules have huge commercial and industrial potential. In nature, biological interactions are mostly associated with biochemical and biological diversity, especially with the discovery of associated biomolecules from microbes. Within cellular or subcellular systems, biomolecules signify the actual statuses of the microorganisms. Understanding the biological prospecting of the diverse microbial community and their complexities and communications with the environment forms a vital basis for active, innovative biotechnological breakthroughs. Biochemical diversity rather than the specific chemicals that has the utmost biological importance. The identification and quantification of the comprehensive biochemical diversity of the microbial molecules, which generally consequences in a diversity of biological functions, has significant biotechnological potential. Beneficial microbes and their biomolecules of interest can assist as potential constituents for the wide-range of natural product-based preparations and formulations currently being developed on an industrial scale. The understanding of the production methods and functions of these biomolecules will contribute to valorisation of agriculture, food bioprocessing and biopharma, and prevent human diseases related to the environment.
Collapse
|
12
|
Zhuo Q, Yu B, Zhou J, Zhang J, Zhang R, Xie J, Wang Q, Zhao S. Lysates of Lactobacillus acidophilus combined with CTLA-4-blocking antibodies enhance antitumor immunity in a mouse colon cancer model. Sci Rep 2019; 9:20128. [PMID: 31882868 PMCID: PMC6934597 DOI: 10.1038/s41598-019-56661-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
Previous reports have suggested that many gut microbiomes were associated with the development of colorectal cancer (CRC), and could modulate response to numerous forms of cancer therapy, including checkpoint blockade immunotherapy. Here we evaluated the protective efficacy of Lactobacillus acidophilus (L. acidophilus) cell lysates combined with an anti-CTL antigen-4 blocking antibody (CTLA-4 mAb) in syngeneic BALB/c mice CRC models induce by a single intraperitoneal injection of 10 mg/kg azoxymethane (AOM), followed by three cycles of 2% dextran sulfate sodium (DSS) in drinking water. In contrast to CTLA-4 mAb monotherapy, L. acidophilus lysates could attenuate the loss of body weight and the combined administration significantly protected mice against CRC development, which suggested that the lysates enhanced antitumor activity of CTLA-4 mAb in model mice. The enhanced efficacy was associated with the increased CD8 + T cell, increased effector memory T cells (CD44 + CD8 + CD62L+), decreased Treg (CD4 + CD25 + Foxp3+) and M2 macrophages (F4/80 + CD206+) in the tumor microenvironment. In addition, our results revealed that L. acidophilus lysates had an immunomodulatory effect through inhibition the M2 polarization and the IL-10 expressed levels of LPS-activated Raw264.7 macrophages. Finally, the 16S rRNA gene sequencing of fecal microbiota demonstrated that the combined administration significantly inhibited the abnormal increase in the relative abundance of proteobacteria and partly counterbalance CRC-induced dysbiosis in model mice. Overall, these data support promising clinical possibilities of L. acidophilus lysates with CTLA-4 mAb in cancer patients and the hypothesis that probiotics help shape the anticancer immune response.
Collapse
Affiliation(s)
- Qian Zhuo
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.,Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Bohai Yu
- Medical Laboratory Department, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518034, China
| | - Jing Zhou
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Jingyun Zhang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Runling Zhang
- University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen, Guangdong, 518106, China
| | - Jingyan Xie
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Qingling Wang
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
13
|
Maynard DS, Miller ZR, Allesina S. Predicting coexistence in experimental ecological communities. Nat Ecol Evol 2019; 4:91-100. [DOI: 10.1038/s41559-019-1059-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/13/2019] [Indexed: 11/09/2022]
|
14
|
Tabi A, Petchey OL, Pennekamp F. Warming reduces the effects of enrichment on stability and functioning across levels of organisation in an aquatic microbial ecosystem. Ecol Lett 2019; 22:1061-1071. [PMID: 30985066 DOI: 10.1111/ele.13262] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/28/2018] [Accepted: 03/01/2019] [Indexed: 01/19/2023]
Abstract
Warming and nutrient enrichment are major environmental factors shaping ecological dynamics. However, cross-scale investigation of their combined effects by linking theory and experiments is lacking. We collected data from aquatic microbial ecosystems investigating the interactive effects of warming (constant and rising temperatures) and enrichment across levels of organisation and contrasted them with community models based on metabolic theory. We found high agreement between our observations and theoretical predictions: we observed in many cases the predicted antagonistic effects of high temperature and high enrichment across levels of organisation. Temporal stability of total biomass decreased with warming but did not differ across enrichment levels. Constant and rising temperature treatments with identical mean temperature did not show qualitative differences. Overall, we conclude that model and empirical results are in broad agreement due to robustness of the effects of temperature and enrichment, that the mitigating effects of temperature on effects of enrichment may be common, and that models based on metabolic theory provide qualitatively robust predictions of the combined ecological effects of enrichment and temperature.
Collapse
Affiliation(s)
- Andrea Tabi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Owen L Petchey
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Frank Pennekamp
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| |
Collapse
|
15
|
Pennekamp F, Pontarp M, Tabi A, Altermatt F, Alther R, Choffat Y, Fronhofer EA, Ganesanandamoorthy P, Garnier A, Griffiths JI, Greene S, Horgan K, Massie TM, Mächler E, Palamara GM, Seymour M, Petchey OL. Biodiversity increases and decreases ecosystem stability. Nature 2018; 563:109-112. [PMID: 30333623 DOI: 10.1038/s41586-018-0627-8] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/24/2018] [Indexed: 11/09/2022]
Abstract
Losses and gains in species diversity affect ecological stability1-7 and the sustainability of ecosystem functions and services8-13. Experiments and models have revealed positive, negative and no effects of diversity on individual components of stability, such as temporal variability, resistance and resilience2,3,6,11,12,14. How these stability components covary remains poorly understood15. Similarly, the effects of diversity on overall ecosystem stability16, which is conceptually akin to ecosystem multifunctionality17,18, remain unknown. Here we studied communities of aquatic ciliates to understand how temporal variability, resistance and overall ecosystem stability responded to diversity (that is, species richness) in a large experiment involving 690 micro-ecosystems sampled 19 times over 40 days, resulting in 12,939 samplings. Species richness increased temporal stability but decreased resistance to warming. Thus, two stability components covaried negatively along the diversity gradient. Previous biodiversity manipulation studies rarely reported such negative covariation despite general predictions of the negative effects of diversity on individual stability components3. Integrating our findings with the ecosystem multifunctionality concept revealed hump- and U-shaped effects of diversity on overall ecosystem stability. That is, biodiversity can increase overall ecosystem stability when biodiversity is low, and decrease it when biodiversity is high, or the opposite with a U-shaped relationship. The effects of diversity on ecosystem multifunctionality would also be hump- or U-shaped if diversity had positive effects on some functions and negative effects on others. Linking the ecosystem multifunctionality concept and ecosystem stability can transform the perceived effects of diversity on ecological stability and may help to translate this science into policy-relevant information.
Collapse
Affiliation(s)
- Frank Pennekamp
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | - Mikael Pontarp
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Andrea Tabi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Roman Alther
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Yves Choffat
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Emanuel A Fronhofer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Pravin Ganesanandamoorthy
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Aurélie Garnier
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jason I Griffiths
- Department of Mathematics, University of Utah, Salt Lake City, UT, USA
| | - Suzanne Greene
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,MIT Center for Transportation & Logistics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katherine Horgan
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Thomas M Massie
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Elvira Mächler
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Gian Marco Palamara
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Systems Analysis, Integrated Assessment and Modelling, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Mathew Seymour
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, UK
| | - Owen L Petchey
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Griffiths JI, Petchey OL, Pennekamp F, Childs DZ. Linking intraspecific trait variation to community abundance dynamics improves ecological predictability by revealing a growth–defence trade‐off. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12997] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jason I. Griffiths
- Department of Animal and Plant SciencesUniversity of Sheffield Sheffield UK
| | - Owen L. Petchey
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich Switzerland
| | - Frank Pennekamp
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich Switzerland
| | - Dylan Z. Childs
- Department of Animal and Plant SciencesUniversity of Sheffield Sheffield UK
| |
Collapse
|