1
|
Pijeira MSO, Nunes PSG, Chaviano SL, Diaz AMA, DaSilva JN, Ricci-Junior E, Alencar LMR, Chen X, Santos-Oliveira R. Medicinal (Radio) Chemistry: Building Radiopharmaceuticals for the Future. Curr Med Chem 2024; 31:5481-5534. [PMID: 37594105 DOI: 10.2174/0929867331666230818092634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Radiopharmaceuticals are increasingly playing a leading role in diagnosing, monitoring, and treating disease. In comparison with conventional pharmaceuticals, the development of radiopharmaceuticals does follow the principles of medicinal chemistry in the context of imaging-altered physiological processes. The design of a novel radiopharmaceutical has several steps similar to conventional drug discovery and some particularity. In the present work, we revisited the insights of medicinal chemistry in the current radiopharmaceutical development giving examples in oncology, neurology, and cardiology. In this regard, we overviewed the literature on radiopharmaceutical development to study overexpressed targets such as prostate-specific membrane antigen and fibroblast activation protein in cancer; β-amyloid plaques and tau protein in brain disorders; and angiotensin II type 1 receptor in cardiac disease. The work addresses concepts in the field of radiopharmacy with a special focus on the potential use of radiopharmaceuticals for nuclear imaging and theranostics.
Collapse
Affiliation(s)
- Martha Sahylí Ortega Pijeira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
| | - Paulo Sérgio Gonçalves Nunes
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas SP13083-970, Brazil
| | - Samila Leon Chaviano
- Laboratoire de Biomatériaux pour l'Imagerie Médicale, Axe Médicine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC, Canada
| | - Aida M Abreu Diaz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean N DaSilva
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Eduardo Ricci-Junior
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Av. dos Portugueses, 1966, Vila Bacanga, São Luís MA65080-805, Brazil
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil
| |
Collapse
|
2
|
Abreu Diaz AM, Rodriguez Riera Z, Lee Y, Esteves LM, Normandeau CO, Fezas B, Hernandez Saiz A, Tournoux F, Juneau D, DaSilva JN. [ 18 F]Fluoropyridine-losartan: A new approach toward human Positron Emission Tomography imaging of Angiotensin II Type 1 receptors. J Labelled Comp Radiopharm 2023; 66:73-85. [PMID: 36656923 DOI: 10.1002/jlcr.4014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/27/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Angiotensin II type 1 receptors (AT1 R) blocker losartan is used in patients with renal and cardiovascular diseases. [18 F]fluoropyridine-losartan has shown favorable binding profile for quantitative renal PET imaging of AT1 R with selective binding in rats and pigs, low interference of radiometabolites and appropriate dosimetry for clinical translation. A new approach was developed to produce [18 F]fluoropyridine-losartan in very high molar activity. Automated radiosynthesis was performed in a three-step, two-pot, and two-HPLC-purification procedure within 2 h. Pure [18 F]FPyKYNE was obtained by radiofluorination of NO2 PyKYNE and silica-gel-HPLC purification (40 ± 9%), preventing the formation of nitropyridine-losartan in the second step. Conjugation with trityl-losartan azide via click chemistry, followed by acid hydrolysis, C18-HPLC purification and reformulation provided [18 F]fluoropyridine-losartan in 11 ± 2% (decay-corrected from [18 F]fluoride, EOB). Using tris[(1-(3-hydroxypropyl)-1H-1,2,3-triazol-4-yl)methyl]-amine (THPTA) as a Cu(I)-stabilizing agent for coupling [18 F]FPyKYNE to the unprotected losartan azide afforded [18 F]fluoropyridine-losartan in similar yields (11 ± 3%, decay-corrected from [18 F]fluoride, EOB). Reverse-phase HPLC was optimized by reducing the pH of the mobile phase to achieve complete purification and high molar activities (467 ± 60 GBq/μmol). The use of radioprotectants prevented tracer radiolysis for 10 h (RCP > 99%). The product passed the quality control testing. This reproducible automated radiosynthesis process will allow in vivo PET imaging of AT1 R expression in several diseases.
Collapse
Affiliation(s)
- Aida Mary Abreu Diaz
- Laboratoire de Radiochimie et Cyclotron, Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de pharmacologie et physiologie, Faculté de médecine, Université de Montréal, Pavillon Paul-G. Desmarais, Montréal, Québec, Canada
- Institut de génie biomédical, Faculté de médecine, Université de Montréal, Pavillon Paul-G. Desmarais, Montréal, Québec, Canada
- Departamento de Radioquímica, Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de la Habana, La Habana, Cuba
| | - Zalua Rodriguez Riera
- Departamento de Radioquímica, Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de la Habana, La Habana, Cuba
| | - Yanick Lee
- Laboratoire de Radiochimie et Cyclotron, Centre de Recherche du CHUM, Montréal, Québec, Canada
- Institut de génie biomédical, Faculté de médecine, Université de Montréal, Pavillon Paul-G. Desmarais, Montréal, Québec, Canada
| | - Luis Miguel Esteves
- Laboratoire de Radiochimie et Cyclotron, Centre de Recherche du CHUM, Montréal, Québec, Canada
- CRCHUM site, Isologic Innovative Radiopharmaceuticals, Lachine, Québec, Canada
| | | | - Baptiste Fezas
- Laboratoire de Radiochimie et Cyclotron, Centre de Recherche du CHUM, Montréal, Québec, Canada
| | | | - François Tournoux
- Laboratoire de Radiochimie et Cyclotron, Centre de Recherche du CHUM, Montréal, Québec, Canada
- Centre cardiovasculaire, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Daniel Juneau
- Laboratoire de Radiochimie et Cyclotron, Centre de Recherche du CHUM, Montréal, Québec, Canada
- Médecine nucléaire, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de radiologie, radio-oncologie et médecine nucléaire, Faculté de médecine, Université de Montréal, Pavillon Roger-Gaudry, Montréal, Québec, Canada
| | - Jean N DaSilva
- Laboratoire de Radiochimie et Cyclotron, Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de pharmacologie et physiologie, Faculté de médecine, Université de Montréal, Pavillon Paul-G. Desmarais, Montréal, Québec, Canada
- Institut de génie biomédical, Faculté de médecine, Université de Montréal, Pavillon Paul-G. Desmarais, Montréal, Québec, Canada
- Département de radiologie, radio-oncologie et médecine nucléaire, Faculté de médecine, Université de Montréal, Pavillon Roger-Gaudry, Montréal, Québec, Canada
| |
Collapse
|
3
|
Teyssier VR, Tournoux F, Simard JM, Gaudette F, Boudjemeline M, Petrenyov DR, DaSilva JN. Novel O-[ 11C]-methylated derivatives of the neprilysin inhibitor sacubitril: Radiosynthesis, autoradiography and plasma stability evaluation. Nucl Med Biol 2021; 102-103:34-44. [PMID: 34601168 DOI: 10.1016/j.nucmedbio.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The O-[11C]methylated derivatives of the clinically used neprilysin inhibitor (NEPi) sacubitril ([11C]SacOMe, (2R,4S)-ethyl 5-([biphenyl]-4-yl)-4-(4-[11C]methoxy-4-oxobutanamido)-2-methylpentanoate) and LBQ657 ([11C]MeOLBQ, (2R,4S)-5-(biphenyl-4-yl)-4-[(3-carboxypropionyl)amino]-2-methylpentanoic acid [11C]methyl ester and [11C]LBQOMe, (2R,4S)-5-(biphenyl-4-yl)-4-[(4-[11C]methoxy-4-oxobutanamido)]-2-methylpentanoic acid) were evaluated to determine their potential as PET imaging tracers and investigate the effect of such labeling esterification on neprilysin (NEP) binding. METHODS [11C]MeOLBQ, [11C]SacOMe and [11C]LBQOMe were synthesized by O-[11C]methylation using [11C]methyl triflate. Binding of these radiolabeled derivatives (5 nM) were assessed by autoradiography on rat neprilysin rich kidney slices with or without 10 μM NEPi (thiorphan or sacubitril) for 20 min at 37 °C. [11C]LBQOMe was further tested for binding selectivity in the presence of 10 μM of angiotensin-converting enzyme inhibitor (ACEi, captopril) or angiotensin II AT1 receptor blocker (AT1R, losartan). Radioligands were evaluated for their in vitro stability up to 20 min after incubation at 37 °C in rat and human plasma by reverse-phase column-switch HPLC. Non-radioactive SacOMe incubated in rat and human plasma was analyzed by HPLC-coupled with high resolution mass spectrometry (HRMS) to confirm the metabolites' identity. [11C]SacOMe main labeled metabolite was further analyzed by HPLC after incubation in rat kidney slices at 37 °C. RESULTS The novel [11C]SacOMe and [11C]LBQOMe were produced in 32 ± 3% RCY and 15 ± 6% at EOS (decay-corrected from [11C]CO2, n = 3), high molar activity (407 ± 92 GBq/μmol and 260 ± 92 GBq/μmol), and high chemical (≥90%) and radiochemical (≥99%) purities in a total synthesis time of 31 and 34 min, respectively. High accumulation of [11C]SacOMe and [11C]LBQOMe in kidneys was completely blocked (>99.9%) by pre-incubation with NEPi, whereas [11C]MeOLBQ displayed negligible uptake in autoradiography studies. [11C]LBQOMe binding was not affected by saturating doses of losartan or captopril indicating binding selectivity for NEP. While [11C]SacOMe and [11C]LBQOMe were stable in human plasma (>92%) even after 20 min incubation at 37 °C, rat plasma analyses exhibited >95% biotransformation of [11C]SacOMe, 40% of [11C]LBQOMe and >80% loss of the 11C-methyl group of [11C]MeOLBQ after 5 min of incubation. Comparable results using the non-radioactive SacOMe were obtained by HPLC-HRMS. Radio-HPLC analysis of the extracted activity of rat kidney slices incubated with [11C]SacOMe demonstrated that >95% of the radioactive signal corresponded to [11C]LBQOMe as the main metabolite. CONCLUSION The desethyl active metabolite of [11C]SacOMe, [11C]LBQOMe, displayed stability in human plasma, binding selectivity for neprilysin over ACE or AT1R in rat kidney slices. Rapid plasmatic dealkylation at the 2-methylbutanoic acid position is in line with the necessity of incorporating the labeling group on oxobutanoic acid side in the strategy to develop a stable O-alkylated labeled derivative of sacubitril.
Collapse
Affiliation(s)
- Valentin R Teyssier
- Laboratoire de Radiochimie et Cyclotron, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec H2X 0A9, Canada; Institut de Génie Biomédical, Faculté de Médecine, Université de Montréal, Pavillon Paul-G. Desmarais, 2960 chemin de la Tour, Montréal, Québec H3T 1J4, Canada
| | - François Tournoux
- Laboratoire de Recherche @CoeurLab, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec H2X 0A9, Canada; Regroupement Cardio-vasculaire, Centre Hospitalier de l'Université de Montréal, 1051 Rue Sanguinet, Montréal, Québec H2X 3E4, Canada
| | - José-Mathieu Simard
- Laboratoire de Radiochimie et Cyclotron, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Fleur Gaudette
- Plateforme de Pharmacocinétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Mehdi Boudjemeline
- Laboratoire de Radiochimie et Cyclotron, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Daniil R Petrenyov
- Laboratoire de Radiochimie et Cyclotron, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Jean N DaSilva
- Laboratoire de Radiochimie et Cyclotron, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec H2X 0A9, Canada; Institut de Génie Biomédical, Faculté de Médecine, Université de Montréal, Pavillon Paul-G. Desmarais, 2960 chemin de la Tour, Montréal, Québec H3T 1J4, Canada; Département de Radiologie, radio-oncologie et médecine nucléaire, Faculté de médecine, Université de Montréal, Pavillon Roger-Gaudry, 2900 boulevard Edouard Montpetit, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
4
|
Klinkhammer BM, Lammers T, Mottaghy FM, Kiessling F, Floege J, Boor P. Non-invasive molecular imaging of kidney diseases. Nat Rev Nephrol 2021; 17:688-703. [PMID: 34188207 PMCID: PMC7612034 DOI: 10.1038/s41581-021-00440-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
In nephrology, differential diagnosis or assessment of disease activity largely relies on the analysis of glomerular filtration rate, urinary sediment, proteinuria and tissue obtained through invasive kidney biopsies. However, currently available non-invasive functional parameters, and most serum and urine biomarkers, cannot capture intrarenal molecular disease processes specifically. Moreover, although histopathological analyses of kidney biopsy samples enable the visualization of pathological morphological and molecular alterations, they only provide information about a small part of the kidney and do not allow longitudinal monitoring. These limitations not only hinder understanding of the dynamics of specific disease processes in the kidney, but also limit the targeting of treatments to active phases of disease and the development of novel targeted therapies. Molecular imaging enables non-invasive and quantitative assessment of physiological or pathological processes by combining imaging technologies with specific molecular probes. Here, we discuss current preclinical and clinical molecular imaging approaches in nephrology. Non-invasive visualization of the kidneys through molecular imaging can be used to detect and longitudinally monitor disease activity and can therefore provide companion diagnostics to guide clinical trials, as well as the safe and effective use of drugs.
Collapse
Affiliation(s)
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
- Department of Pharmaceutics, Utrecht University, Utrecht, Netherlands
- Department of Targeted Therapeutics, University of Twente, Enschede, Netherlands
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Jürgen Floege
- Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany.
- Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany.
- Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
5
|
Abreu Diaz AM, Drumeva GO, Laporte P, Alonso Martinez LM, Petrenyov DR, Carrier JF, DaSilva JN. Evaluation of the high affinity [ 18F]fluoropyridine-candesartan in rats for PET imaging of renal AT 1 receptors. Nucl Med Biol 2021; 96-97:41-49. [PMID: 33798796 DOI: 10.1016/j.nucmedbio.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Alterations in the expression of the Angiotensin II type 1 receptors (AT1R) have been demonstrated in the development of several heart and renal diseases. The aim of this study was to evaluate the novel compound [18F]fluoropyridine-candesartan as a PET imaging tracer of AT1R in rat kidneys. METHODS Competition binding assays were carried out with membranes from CHO-K1 cells expressing human AT1R. Binding to plasma proteins was assessed by ultrafiltration. Radiolabeled metabolites in rat plasma and kidneys of control and pretreated animals (candesartan 10 mg/kg or losartan 30 mg/kg) were analyzed by column-switch HPLC. Dynamic PET/CT images of [18F]fluoropyridine-candesartan in male Sprague-Dawley rats were acquired for 60 min at baseline, pre-treatment with the AT1R antagonist losartan (30 mg/kg) or the AT2R antagonist PD123,319 (5 mg/kg). RESULTS Fluoropyridine-candesartan bound with a high affinity for AT1R (Ki = 5.9 ± 1.1 nM), comparable to fluoropyridine-losartan but lower than the parent compound candesartan (Ki = 0.4 ± 0.1 nM). [18F]Fluoropyridine-candesartan bound strongly to plasma proteins (99.3%) and was mainly metabolized to radiolabeled hydrophilic compounds, displaying minimal interference on renal AT1R binding with 82% of unchanged tracer in the kidneys at 20 min post-injection. PET imaging displayed high renal and liver accumulations and slow clearances, with maximum tissue-to-blood ratios of 14 ± 3 and 54 ± 12 in kidney cortex and liver, respectively, at 10 min post-injection. Binding specificity for AT1R was demonstrated with marked reductions in kidney cortex (-84%) and liver (-93%) tissue-to-blood ratios at 20 min post-injection, when blocking with AT1R antagonist losartan (30 mg/kg). No change was observed in kidney cortex of rats pre-treated with AT2R antagonist PD 123,319 (5 mg/kg), confirming binding selectivity for AT1 over AT2 receptors. CONCLUSION High kidney-to-blood ratios and binding selectivity to renal AT1R combined with tracer in vivo stability displaying minimal interference from labeled metabolites support further PET imaging studies with [18F]fluoropyridine-candesartan.
Collapse
Affiliation(s)
- Aida M Abreu Diaz
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada; Département de pharmacologie et physiologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada; Institute de génie biomédical, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada; Departamento de Radioquímica, Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de la Habana, La Habana, Cuba
| | - Gergana O Drumeva
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada; Département de pharmacologie et physiologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Philippe Laporte
- Institute de génie biomédical, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada; Département de physique, Faculté des arts et des sciences, Université de Montréal, Montréal, Québec, Canada
| | - Luis M Alonso Martinez
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada; Département de pharmacologie et physiologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada; Institute de génie biomédical, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Daniil R Petrenyov
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Jean-François Carrier
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada; Institute de génie biomédical, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada; Département de physique, Faculté des arts et des sciences, Université de Montréal, Montréal, Québec, Canada; Département de radiologie, radio-oncologie et médecine nucléaire, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean N DaSilva
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada; Département de pharmacologie et physiologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada; Institute de génie biomédical, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada; Département de radiologie, radio-oncologie et médecine nucléaire, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
6
|
Veitch MR, Thai K, Zhang Y, Desjardins JF, Kabir G, Connelly KA, Gilbert RE. Late intervention in the remnant kidney model attenuates proteinuria but not glomerular filtration rate decline. Nephrology (Carlton) 2021; 26:270-279. [PMID: 33179827 DOI: 10.1111/nep.13828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/21/2020] [Accepted: 11/08/2020] [Indexed: 11/25/2022]
Abstract
AIM The use of animal models to predict the response to new therapies in humans is a vexing issue in nephrology. Unlike patients with chronic kidney disease (CKD), few rodent models develop a progressive decline in glomerular filtration rate (GFR) so that experimental studies frequently report a reduction in proteinuria as the primary efficacy outcome. Moreover, while humans present with established kidney disease that continues to progress, many experimental studies investigate therapies in the prevention rather than in a therapeutic setting. METHODS We used the remnant kidney (subtotal nephrectomy [SNX]) rat model that develops a decline in GFR in conjunction with heavy proteinuria and hypertension along with the histological hallmarks of CKD in humans, glomerulosclerosis and tubulointerstitial fibrosis. Using agents that had been shown to improve GFR as well as proteinuria in the prevention setting, angiotensin-converting enzyme (ACE) inhibition with enalapril and SIRT1 activation with SRT3025, treatment was initiated 6 weeks after SNX. RESULTS While enalapril reduced blood pressure, proteinuria and histological injury, it did not improve GFR, as measured by inulin clearance. SRT3025 improved neither GFR nor structural damage despite a reduction in proteinuria. CONCLUSION These findings demonstrate that neither a reduction in proteinuria nor a reversal of structural damage in the kidney will necessarily translate to a restoration of kidney function.
Collapse
Affiliation(s)
- Matthew R Veitch
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Kerri Thai
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Yanling Zhang
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jean-Francois Desjardins
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Golam Kabir
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Richard E Gilbert
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Abreu Diaz AM, Drumeva GO, Petrenyov DR, Carrier JF, DaSilva JN. Synthesis of the Novel AT 1 Receptor Tracer [ 18F]Fluoropyridine-Candesartan via Click Chemistry. ACS OMEGA 2020; 5:20353-20362. [PMID: 32832788 PMCID: PMC7439361 DOI: 10.1021/acsomega.0c02310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
A novel 7-((4-(3-((2-[18F]fluoropyridin-3-yl)oxy)propyl)-1H-1,2,3-triazol-1-yl)methyl)-1H-benzo[d]imidazole derivative of the angiotensin II type-1 receptor (AT1R) blocker candesartan, [18F]fluoropyridine-candesartan, was synthesized via the copper-catalyzed azide-alkyne cycloaddition click reaction between 2-[18F]fluoro-3-(pent-4-yn-1-yloxy)pyridine ([18F]FPyKYNE) and the tetrazole-protected azido-candesartan derivative, followed by acid deprotection. This three-step, two-pot, and two-step purification synthesis was done within 2 h. The use of tris[(1-hydroxypropyl-1H-1,2,3-triazol-4-yl)methyl]amine (THPTA) as a Cu(I) stabilizing agent increased the overall radiochemical yield by 4-fold (10 ± 2%, n = 13) compared to the reaction without THPTA (2.4 ± 0.2%, n = 3; decay-corrected from 18F produced at the end-of-beam). Complete separation of [18F]FPyKYNE from its nitro precursor and [18F]fluoropyridine-candesartan from the deprotected azido-candesartan allowed for high molar activities (>380 GBq/μmol) of the tracer. The use of 0.1% trifluoroacetic acid in water for reformulation and the addition of sodium ascorbate to the final formulation (1.6 ± 0.2 GBq/mL, n = 3) prevented tracer radiolysis with >97% radiochemical purity for a period of up to 10 h after the end-of-synthesis. A significant reduction in the uptake (86 ± 3%, n = 8) of the tracer was observed ex vivo in rats (at 20 min postinjection) in the AT1R-rich kidney cortex following pretreatment with saturating doses of the AT1R antagonist candesartan or losartan. This specific binding to AT1R was confirmed in vitro in the rat renal cortex (autoradiography) by a reduction of 26 ± 5% (n = 12) with losartan coincubation (10 μM). These favorable binding properties support further studies to assess the potential of [18F]fluoropyridine-candesartan as a tracer for the positron emission tomography imaging of renal AT1R.
Collapse
Affiliation(s)
- Aida M. Abreu Diaz
- Centre
de Recherche du CHUM, 900 rue Saint-Denis, Montréal, Québec H2X 0A9, Canada
- Département
de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Pavillon Paul-G. Desmarais, 2960
chemin de la Tour, Montréal, Québec H3T 1J4, Canada
- Institut
de Génie Biomédicale, Faculté de Médecine, Université de Montréal, Pavillon Paul-G. Desmarais, 2960
chemin de la Tour, Montréal, Québec H3T 1J4, Canada
- Departamento
de Radioquímica, Instituto Superior de Tecnologías y
Ciencias Aplicadas, Universidad de la Habana, Ave. Salvador Allende y Luaces,
Quinta de los Molinos, La Habana 10400, Cuba
| | - Gergana O. Drumeva
- Centre
de Recherche du CHUM, 900 rue Saint-Denis, Montréal, Québec H2X 0A9, Canada
- Département
de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Pavillon Paul-G. Desmarais, 2960
chemin de la Tour, Montréal, Québec H3T 1J4, Canada
| | - Daniil R. Petrenyov
- Centre
de Recherche du CHUM, 900 rue Saint-Denis, Montréal, Québec H2X 0A9, Canada
| | - Jean-François Carrier
- Centre
de Recherche du CHUM, 900 rue Saint-Denis, Montréal, Québec H2X 0A9, Canada
- Institut
de Génie Biomédicale, Faculté de Médecine, Université de Montréal, Pavillon Paul-G. Desmarais, 2960
chemin de la Tour, Montréal, Québec H3T 1J4, Canada
- Département
de Physique, Faculté des Arts et des Sciences, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
- Département
de Radiologie, Radio-Oncologie et Médecine Nucléaire,
Faculté de Médecine, Université
de Montréal, Pavillon
Roger-Gaudry, 2900 Boulevard Edouard Montpetit, Montréal, Québec H3T 1J4, Canada
| | - Jean N. DaSilva
- Centre
de Recherche du CHUM, 900 rue Saint-Denis, Montréal, Québec H2X 0A9, Canada
- Département
de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Pavillon Paul-G. Desmarais, 2960
chemin de la Tour, Montréal, Québec H3T 1J4, Canada
- Institut
de Génie Biomédicale, Faculté de Médecine, Université de Montréal, Pavillon Paul-G. Desmarais, 2960
chemin de la Tour, Montréal, Québec H3T 1J4, Canada
- Département
de Radiologie, Radio-Oncologie et Médecine Nucléaire,
Faculté de Médecine, Université
de Montréal, Pavillon
Roger-Gaudry, 2900 Boulevard Edouard Montpetit, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
8
|
Chen X, Hirano M, Werner RA, Decker M, Higuchi T. Novel 18F-Labeled PET Imaging Agent FV45 Targeting the Renin-Angiotensin System. ACS OMEGA 2018; 3:10460-10470. [PMID: 30288456 PMCID: PMC6166228 DOI: 10.1021/acsomega.8b01885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Renin-angiotensin system (RAS) plays an important role in the regulation of blood pressure and hormonal balance. Using positron emission tomography (PET) technology, it is possible to monitor the physiological and pathological distribution of angiotensin II type 1 receptors (AT1), which reflects the functionality of RAS. A new 18F-labeled PET tracer derived from the clinically used AT1 antagonist valsartan showing the least possible chemical alteration from the valsartan structure has been designed and synthesized with several strategies, which can be applied for the syntheses of further derivatives. Radioligand binding study showed that the cold reference FV45 (K i 14.6 nM) has almost equivalent binding affinity as its lead valsartan (K i 11.8 nM) and angiotensin II (K i 1.7 nM). Successful radiolabeling of FV45 in a one-pot radiofluorination followed by the deprotection procedure with 21.8 ± 8.5% radiochemical yield and >99% radiochemical purity (n = 5) enabled a distribution study in rats and opened a path to straightforward large-scale production. A fast and clear kidney uptake could be observed, and this renal uptake could be selectively blocked by pretreatment with AT1-selective antagonist valsartan. Overall, as the first 18F-labeled PET tracer based on a derivation from clinically used drug valsartan with almost identical chemical structure, [18F]FV45 will be a new tool for assessing the RAS function by visualizing AT1 receptor distributions and providing further information regarding cardiovascular system malfunction as well as possible applications in inflammation research and cancer diagnosis.
Collapse
Affiliation(s)
- Xinyu Chen
- Department
of Nuclear Medicine, Comprehensive Heart Failure Center, University
Hospital of Würzburg, Würzburg 97080, Germany
| | - Mitsuru Hirano
- Department
of Bio-Medical Imaging, National Cerebral
and Cardiovascular Center, Osaka 565-0873, Japan
| | - Rudolf A. Werner
- Department
of Nuclear Medicine, Comprehensive Heart Failure Center, University
Hospital of Würzburg, Würzburg 97080, Germany
- The
Russell H. Morgan Department of Radiology and Radiological Science,
Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Michael Decker
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Takahiro Higuchi
- Department
of Nuclear Medicine, Comprehensive Heart Failure Center, University
Hospital of Würzburg, Würzburg 97080, Germany
- Department
of Bio-Medical Imaging, National Cerebral
and Cardiovascular Center, Osaka 565-0873, Japan
| |
Collapse
|