1
|
Kamikawatoko T, Yotsuya M, Owada A, Ishizuka S, Kasahara M, Yamamoto M, Abe S, Sekine H. Early changes in asporin levels in osteoarthritis of the temporomandibular joint. J Oral Biosci 2024; 66:546-553. [PMID: 38936470 DOI: 10.1016/j.job.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVES The present study aimed to elucidate the pathogenesis of temporomandibular joint (TMJ) osteoarthritis (TMJ-OA) in a mouse model. We investigated morphological and histological changes in the head of mandible cartilage and early immunohistochemical (IHC) changes in transforming growth factor (TGF)-β, phosphorylated Smad-2/3 (p-Smad2/3), a TGF-β signaling molecule, and asporin. METHODS TMJ-OA was induced in a mouse model through unilateral partial discectomy. Micro-computed tomography (micro-CT) and safranin-O staining were performed to morphologically and histologically evaluate the degeneration of the head of mandible caused by TMJ-OA. IHC staining for TGF-β, p-Smad2/3, and asporin was performed to evaluate the changes in protein expression. RESULTS In the experimental group, three-dimensional (3D) morphometry revealed an enlarged head of mandible and safranin-O staining showed degeneration of cartilage tissue in the early stages of TMJ-OA compared to the control group. IHC staining revealed that TGF-β, p-Smad2/3, and asporin expression increased in the head of mandible cartilage before the degeneration of cartilage tissue, and subsequently decreased for a short period. CONCLUSION The findings suggested a negative feedback relationship between the expression of asporin and the TGF-β/Smad transduction pathway, which may be involved in the degeneration of the head of mandible in the early stages of TMJ-OA. Asporin is a potential biomarker of the early stages of TMJ-OA, which ultimately leads to the irreversible degeneration of TMJ tissues.
Collapse
Affiliation(s)
- Toshihiko Kamikawatoko
- Department of Fixed Prosthodontics, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo, Japan
| | - Mamoru Yotsuya
- Department of Fixed Prosthodontics, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo, Japan.
| | - Aoi Owada
- Department of Fixed Prosthodontics, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo, Japan
| | - Satoshi Ishizuka
- Department of Pharmacology, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo, Japan
| | - Masataka Kasahara
- Department of Pharmacology, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo, Japan
| | - Masahito Yamamoto
- Department of Anatomy, Division of Basic Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo, Japan
| | - Hideshi Sekine
- Department of Fixed Prosthodontics, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
2
|
Liu Y, Jia F, Li K, Liang C, Lin X, Geng W, Li Y. Critical signaling molecules in the temporomandibular joint osteoarthritis under different magnitudes of mechanical stimulation. Front Pharmacol 2024; 15:1419494. [PMID: 39055494 PMCID: PMC11269110 DOI: 10.3389/fphar.2024.1419494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The mechanical stress environment in the temporomandibular joint (TMJ) is constantly changing due to daily mandibular movements. Therefore, TMJ tissues, such as condylar cartilage, the synovial membrane and discs, are influenced by different magnitudes of mechanical stimulation. Moderate mechanical stimulation is beneficial for maintaining homeostasis, whereas abnormal mechanical stimulation leads to degeneration and ultimately contributes to the development of temporomandibular joint osteoarthritis (TMJOA), which involves changes in critical signaling molecules. Under abnormal mechanical stimulation, compensatory molecules may prevent degenerative changes while decompensatory molecules aggravate. In this review, we summarize the critical signaling molecules that are stimulated by moderate or abnormal mechanical loading in TMJ tissues, mainly in condylar cartilage. Furthermore, we classify abnormal mechanical stimulation-induced molecules into compensatory or decompensatory molecules. Our aim is to understand the pathophysiological mechanism of TMJ dysfunction more deeply in the ever-changing mechanical environment, and then provide new ideas for discovering effective diagnostic and therapeutic targets in TMJOA.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yanxi Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Jasiński T, Turek B, Kaczorowski M, Brehm W, Skierbiszewska K, Bonecka J, Domino M. Equine Models of Temporomandibular Joint Osteoarthritis: A Review of Feasibility, Biomarkers, and Molecular Signaling. Biomedicines 2024; 12:542. [PMID: 38540155 PMCID: PMC10968442 DOI: 10.3390/biomedicines12030542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 11/11/2024] Open
Abstract
Osteoarthritis (OA) of the temporomandibular joint (TMJ) occurs spontaneously in humans and various animal species, including horses. In humans, obtaining tissue samples is challenging and clinical symptoms appear late in the disease progression. Therefore, genetically modified, induced, and naturally occurring animal models play a crucial role in understanding the pathogenesis and evaluating potential therapeutic interventions for TMJ OA. Among the naturally occurring models, the equine TMJ OA model is characterized by slow, age-related progression, a wide range of clinical examinations, and imaging modalities that can be performed on horses, as well as easy tissue and synovial fluid collection. The morphological and functional similarities of TMJ structures in both species make the equine model of TMJ OA an excellent opportunity to track disease progression and response to treatment. However, much work remains to be carried out to determine the utility of human TMJ OA biomarkers in horses. Among the main TMJ OA biomarkers, IL-1, IL-6, TGF-β, TNF-α, and PGE2 have been recently investigated in the equine model. However, the majority of biomarkers for cartilage degradation, chondrocyte hypertrophy, angiogenesis, and TMJ overload-as well as any of the main signaling pathways-have not been studied so far. Therefore, it would be advisable to focus further research on equine specimens, considering both mediators and signaling.
Collapse
Affiliation(s)
- Tomasz Jasiński
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (T.J.); (K.S.)
| | - Bernard Turek
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (T.J.); (K.S.)
| | | | - Walter Brehm
- Department for Horses, Veterinary Teaching Hospital, University of Leipzig, 04103 Leipzig, Germany;
| | - Katarzyna Skierbiszewska
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (T.J.); (K.S.)
| | - Joanna Bonecka
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland;
| | - Małgorzata Domino
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (T.J.); (K.S.)
| |
Collapse
|
4
|
Zhou J, Ren R, Li Z, Zhu S, Jiang N. Temporomandibular joint osteoarthritis: A review of animal models induced by surgical interventions. Oral Dis 2023; 29:2521-2528. [PMID: 35615772 DOI: 10.1111/odi.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The pathological mechanism of temporomandibular joint osteoarthritis (TMJOA) is still unclear. Animal models induced by surgical interventions are one of the most ideal tools to imitate human pathological conditions. This review aims to define the similarities and differences of different surgical animal models. METHODS Articles of TMJOA surgical animal models were collected including anterior disc displacement, disc perforation, and discectomy. We analyzed their experiments strategies based on comparing preoperative selection, intraoperative methodology, and postoperative manifestations. RESULTS No matter which surgical intervention is selected, abnormal stress forces the whole joint to remodel its structure so that it could adapt to functional requirements, resulting in TMJOA eventually. However, anterior disc displacement needs more than 16 weeks to obtain typical manifestations, where the methodology is complicated. The course of perforation and discectomy is around 12-16 weeks, but they could cause excessive damage to the TMJ structure. CONCLUSIONS All surgical interventions can cause TMJOA, but the extent of pathology varies from each other. This review will assist future experiments to better understand the pathogenesis of TMJOA and choose the most appropriate model.
Collapse
Affiliation(s)
- Jiahao Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rong Ren
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
van der Kraan PM. Inhibition of transforming growth factor-β in osteoarthritis. Discrepancy with reduced TGFβ signaling in normal joints. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100238. [PMID: 36474474 PMCID: PMC9718219 DOI: 10.1016/j.ocarto.2022.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 10/19/2022] Open
Abstract
Objective Transforming growth factor-β (TGFβ) is a pleiotropic cytokine that is central in the regulation of joint health and disease. Inhibition of TGFβ activity/signaling in experimental osteoarthritis (OA) has been performed to modulate OA severity and progression. In this narrative review we discuss the potential reasons for the variable results of TGFβ inhibition in these models. Design A literature study was performed using the search terms; experimental osteoarthritis and TGFβ. Papers were selected that describe the effect TGFβ activity/signaling inhibition on experimental OA. Based on the selected papers a narrative review has been written about the potential therapeutic role of TGFβ inhibition in OA and potential causes for its variable effects are discussed. Results Inhibition of TGFβ activity in experimental models of OA does not result in either straightforward protection or deleterious effects. More than half of the studies (13/19), but not all, report that inhibition of TGFβ in experimental OA reduces OA severity. This is in contrast with the protective role of TGFβ in healthy joints. Conclusions The effect of TGFβ inhibition on joint damage in experimental OA is variable. Most likely this is a consequence of the changing function of TGFβ in normal and OA joints. As a result, the overall outcome of TGFβ modulation in OA will be unpredictable. To develop OA therapies based on modulation of TGFβ activity specific protective and damaging signaling routes should be identified and tools developed to block the damaging ones.
Collapse
|
6
|
Lu K, Ma F, Yi D, Yu H, Tong L, Chen D. Molecular signaling in temporomandibular joint osteoarthritis. J Orthop Translat 2022; 32:21-27. [PMID: 35591935 PMCID: PMC9072795 DOI: 10.1016/j.jot.2021.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Objective Temporomandibular joint (TMJ) osteoarthritis (OA) is a type of TMJ disorders with clinical symptoms of pain, movement limitation, cartilage degeneration and joint dysfunction. This review article is aiming to summarize recent findings on signaling pathways involved in TMJ OA development and progression. Methods Most recent findings in TMJ OA studies have been reviewed and cited. Results TMJ OA is caused by inflammation, abnormal mechanical loading and genetic abnormalities. The molecular mechanisms related to TMJ OA have been determined using different genetic mouse models. Recent studies demonstrated that several signaling pathways are involved in TMJ OA pathology, including Wnt/β-catenin, TGF-β and BMP, Indian Hedgehog, FGF, NF-κB, and Notch pathways, which are summarized in this review article. Alterations of these signaling pathways lead to the pathological changes in TMJ tissues, affecting cartilage matrix degradation, catabolic metabolism and chondrocyte apoptosis. Conclusion Multiple signaling pathways were involved in the pathological process of TMJ OA. New therapeutic strategies, such as stem cell application, gene editing and other techniques may be utilized for TMJ OA treatment. The translational potential of this article TMJ OA is a most important subtype of TMJ disorders and may lead to substantial joint pain, dysfunction, dental malocclusion, and reduced health-related quality of life. This review article summarized current findings of signaling pathways involved in TMJ OA, including Wnt/β-catenin, TGF-β and BMP, Indian Hedgehog, FGF, NF-κB, and Notch pathways, to better understand the pathological mechanisms of TMJ OA and define the molecular targets for TMJ OA treatment.
Collapse
Affiliation(s)
- Ke Lu
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Feng Ma
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitié-Salpétrière, Sorbonne University, 91, bd de l’Hôpital, 75013, Paris, France
| | - Dan Yi
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Huan Yu
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liping Tong
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Di Chen
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Corresponding author. Faculty of Pharmaceutical Sciences, China.
| |
Collapse
|
7
|
Reed DA, Zhao Y, Han M, Mercuri LG, Miloro M. Mechanical Loading Disrupts Focal Adhesion Kinase Activation in Mandibular Fibrochondrocytes During Murine Temporomandibular Joint Osteoarthritis. J Oral Maxillofac Surg 2021; 79:2058.e1-2058.e15. [PMID: 34153254 PMCID: PMC8500914 DOI: 10.1016/j.joms.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE Mechanical overloading is a key initiating condition for temporomandibular joint (TMJ) osteoarthritis (OA). The integrin-focal adhesion kinase (FAK) signaling axis is implicated in the mechanobiological response of cells through phosphorylation at Tyr397 (pFAK) but poorly defined in TMJ health and disease. We hypothesize that mechanical overloading disrupts TMJ homeostasis through dysregulation of FAK signaling. MATERIALS AND METHODS To assess if FAK and pFAK are viable clinical targets for TMJ OA, peri-articular tissues were collected from patients with TMJ OA receiving a total TMJ replacement. To compare clinical samples with preclinical in vivo studies of TMJ OA, the joints of c57/bl6 mice were surgically destabilized and treated with and without inhibitor of pFAK (iFAK). FAK signaling and TMJ OA progression was evaluated and compared using RT-PCR, western blot, immunohistochemistry, and histomorphometry. To evaluate mechanical overloading in vitro, primary murine mandibular fibrochondrocytes were seeded in a 4% agarose-collagen scaffold and loaded in a compression bioreactor with and without iFAK. RESULTS FAK/pFAK was mostly absent from the articular cartilage layer in the clinical sample and suppressed on the central condyle and elevated on the lateral and medial condyle in murine TMJ OA. In vitro, compressive loading lowered FAK/pFAK levels and elevated the expression of TGFβ, NG2, and MMP-13. iFAK treatment suppressed MMP13 and Col6 and elevated TGFβ, NG2, and ACAN in a load independent manner. In vivo, iFAK treatment moderately attenuated OA progression and increased collagen maturation. CONCLUSION These data illustrate that FAK/pFAK is implicated in the signaled dysfunction of excessive mechanical loading during TMJ OA and that iFAK treatment can moderately attenuate the progression of cartilage degeneration in the mandibular condyle.
Collapse
Affiliation(s)
- David A. Reed
- Department of Oral Biology, University of Illinois at Chicago, Chicago IL,Corresponding author: David A. Reed,
| | - Yan Zhao
- Department of Oral Biology, University of Illinois at Chicago, Chicago IL
| | - Michael Han
- Department of Oral and Maxillofacial Surgery, University of Illinois at Chicago, Chicago IL
| | - Louis G. Mercuri
- Department of Orthopaedic Surgery, Rush University, Chicago IL, Adjunct Professor, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Michael Miloro
- Department of Oral and Maxillofacial Surgery, University of Illinois at Chicago, Chicago IL
| |
Collapse
|
8
|
Jiang W, Liu H, Wan R, Wu Y, Shi Z, Huang W. Mechanisms linking mitochondrial mechanotransduction and chondrocyte biology in the pathogenesis of osteoarthritis. Ageing Res Rev 2021; 67:101315. [PMID: 33684550 DOI: 10.1016/j.arr.2021.101315] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Mechanical loading is essential for chondrocyte health. Chondrocytes can sense and respond to various extracellular mechanical signals through an integrated set of mechanisms. Recently, it has been found that mitochondria, acting as critical mechanotransducers, are at the intersection between extracellular mechanical signals and chondrocyte biology. Much attention has been focused on identifying how mechanical loading-induced mitochondrial dysfunction contributes to the pathogenesis of osteoarthritis. In contrast, little is known regarding the mechanisms underlying functional alterations in mitochondria induced by mechanical stimulation. In this review, we describe how chondrocytes perceive environmental mechanical signals. We discuss how mechanical load induces mitochondrial functional alterations and highlight the major unanswered questions in this field. We speculate that AMP-activated protein kinase (AMPK), a master regulator of energy homeostasis, may play an important role in coupling force transmission to mitochondrial health and intracellular biological responses.
Collapse
|
9
|
Zhao Z, Li Y, Wang M, Zhao S, Zhao Z, Fang J. Mechanotransduction pathways in the regulation of cartilage chondrocyte homoeostasis. J Cell Mol Med 2020; 24:5408-5419. [PMID: 32237113 PMCID: PMC7214151 DOI: 10.1111/jcmm.15204] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 02/05/2023] Open
Abstract
Mechanical stress plays a critical role in cartilage development and homoeostasis. Chondrocytes are surrounded by a narrow pericellular matrix (PCM), which absorbs dynamic and static forces and transmits them to the chondrocyte surface. Recent studies have demonstrated that molecular components, including perlecan, collagen and hyaluronan, provide distinct physical properties for the PCM and maintain the essential microenvironment of chondrocytes. These physical signals are sensed by receptors and molecules located in the cell membrane, such as Ca2+ channels, the primary cilium and integrins, and a series of downstream molecular pathways are involved in mechanotransduction in cartilage. All mechanoreceptors convert outside signals into chemical and biological signals, which then regulate transcription in chondrocytes in response to mechanical stresses. This review highlights recent progress and focuses on the function of the PCM and cell surface molecules in chondrocyte mechanotransduction. Emerging understanding of the cellular and molecular mechanisms that regulate mechanotransduction will provide new insights into osteoarthritis pathogenesis and precision strategies that could be used in its treatment.
Collapse
Affiliation(s)
- Zhenxing Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yifei Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Mengjiao Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sen Zhao
- Department of Orthodontics, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Reed DA, Yotsuya M, Gubareva P, Toth PT, Bertagna A. Two-photon fluorescence and second harmonic generation characterization of extracellular matrix remodeling in post-injury murine temporomandibular joint osteoarthritis. PLoS One 2019; 14:e0214072. [PMID: 30897138 PMCID: PMC6428409 DOI: 10.1371/journal.pone.0214072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/06/2019] [Indexed: 12/28/2022] Open
Abstract
End stage temporomandibular joint osteoarthritis (TMJ-OA) is characterized by fibrillations, fissures, clefts, and erosion of the mandibular condylar cartilage. The goal of this study was to define changes in pericellular and interterritorial delineations of the extracellular matrix (ECM) that occur preceding and concurrent with the development of this end stage degeneration in a murine surgical instability model. Two-photon fluorescence (TPF) and second harmonic generation (SHG) microscopy was used to evaluate TMJ-OA mediated changes in the ECM. We illustrate that TPF/SHG microscopy reconstructs the three-dimensional network of key fibrillar and micro-fibrillar collagens altered during the progression of TMJ-OA. This method not only generates spatially distinct pericellular and interterritorial delineations of the ECM but distinguishes early and end stage TMJ-OA by signal organization, orientation, and composition. Early stage TMJ-OA at 4- and 8-weeks post-injury is characterized by two structurally distinct regions containing dense, large fiber collagens and superficial, small fiber collagens rich in types I, III, and VI collagen oriented along the mesiodistal axis of the condyle. At 8-weeks post-injury, type VI collagen is locally diminished on the central and medial condyle, but the type I/III rich superficial layer is still present. Twelve- and 16-weeks post-injury mandibular cartilage is characteristic of end-stage disease, with hypocellularity and fibrillations, fissures, and clefts in the articular layer that propagate along the mediolateral axis of the MCC. We hypothesize that the localized depletion of interterritorial and pericellular type VI collagen may signify an early marker for the transition from early to end stage TMJ-OA, influence the injury response of the tissue, and underlie patterns of degeneration that follow attritional modes of failure.
Collapse
Affiliation(s)
- David A. Reed
- University of Illinois at Chicago, Department of Oral Biology, Chicago, United States of America
| | - Mamoru Yotsuya
- University of Illinois at Chicago, Department of Oral Biology, Chicago, United States of America
- Tokyo Dental College, Department of Fixed Prosthodontics, Tokyo, Japan
| | - Polina Gubareva
- University of Illinois at Chicago, Department of Oral Biology, Chicago, United States of America
| | - Peter T. Toth
- University of Illinois at Chicago, Research Resources Center Imaging Core, Chicago, United States of America
| | - Andrew Bertagna
- University of Illinois at Chicago, Department of Oral Biology, Chicago, United States of America
| |
Collapse
|
11
|
Aberrant activation of latent transforming growth factor-β initiates the onset of temporomandibular joint osteoarthritis. Bone Res 2018; 6:26. [PMID: 30210898 PMCID: PMC6131160 DOI: 10.1038/s41413-018-0027-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 02/05/2023] Open
Abstract
There is currently no effective medical treatment for temporomandibular joint osteoarthritis (TMJ-OA) due to a limited understanding of its pathogenesis. This study was undertaken to investigate the key role of transforming growth factor-β (TGF-β) signalling in the cartilage and subchondral bone of the TMJ using a temporomandibular joint disorder (TMD) rat model, an ageing mouse model and a Camurati–Engelmann disease (CED) mouse model. In the three animal models, the subchondral bone phenotypes in the mandibular condyles were evaluated by µCT, and changes in TMJ condyles were examined by TRAP staining and immunohistochemical analysis of Osterix and p-Smad2/3. Condyle degradation was confirmed by Safranin O staining, the Mankin and OARSI scoring systems and type X collagen (Col X), p-Smad2/3a and Osterix immunohistochemical analyses. We found apparent histological phenotypes of TMJ-OA in the TMD, ageing and CED animal models, with abnormal activation of TGF-β signalling in the condylar cartilage and subchondral bone. Moreover, inhibition of TGF-β receptor I attenuated TMJ-OA progression in the TMD models. Therefore, aberrant activation of TGF-β signalling could be a key player in TMJ-OA development. Blocking the activity of a critical growth factor could help treat degenerative disease of the jaw joint, according to experiments in three rodent models. Xuedong Zhou from Sichuan University in Chengdu, China, examined the cartilage and adjoining layer of bone found at the ends of the jawbone in a rat model of temporomandibular joint disorder and in two related mouse models. In all three, the researchers observed tissue abnormalities consistent with what’s seen in humans with osteoarthritis of the jaw joint, a condition with no effective therapeutic options. They showed that transforming growth factor-β, a master regulatory protein, displayed aberrant signalling patterns in these tissues and that blocking this protein’s receptor with a drug attenuated the disease process. The findings help explain what drives jaw joint osteoarthritis — and point to a strategy for treating it.
Collapse
|
12
|
Xiao L, Xu S, Xu Y, Liu C, Yang B, Wang J, Xu H. TGF-β/SMAD signaling inhibits intermittent cyclic mechanical tension-induced degeneration of endplate chondrocytes by regulating the miR-455-5p/RUNX2 axis. J Cell Biochem 2018; 119:10415-10425. [PMID: 30132981 DOI: 10.1002/jcb.27391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/09/2018] [Indexed: 12/30/2022]
Abstract
A mechanical stimulation plays a pivotal role in maintaining normal cartilage function. Our objective was to reveal the mechanism of action of the tension-sensitive molecule miR-455-5p in the degeneration of endplate chondrocytes and to identify whether the transforming growth factor beta (TGF-β)/SMAD signaling pathway has a regulatory effect on it. The expression profiles of members of the TGF-β/SMAD pathway, miR-455-5p, and RUNX2 were determined by microRNA microarray analysis, reverse transcription quantitative polymerase chain reaction, luciferase reporter assay, and Western blot analysis. Intermittent cyclic mechanical tension (ICMT) induced the degeneration of endplate chondrocytes without affecting their viability. The tension-sensitive molecule miR-455-5p specifically bound to RUNX2, a gene involved in the degeneration of endplate chondrocytes. Activation of the TGF-β/SMAD signaling pathway upregulated miR-455-5p expression and thus inhibited RUNX2 levels. Therefore, the TGF-β/SMAD signaling pathway inhibits the ICMT-induced degeneration of endplate chondrocytes by regulating the miR-455-5p/RUNX2 axis.
Collapse
Affiliation(s)
- Liang Xiao
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Shujuan Xu
- Department of Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Yongming Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Chen Liu
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Bijing Yang
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Jing Wang
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Hongguang Xu
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
13
|
Varela-Eirin M, Loureiro J, Fonseca E, Corrochano S, Caeiro JR, Collado M, Mayan MD. Cartilage regeneration and ageing: Targeting cellular plasticity in osteoarthritis. Ageing Res Rev 2018; 42:56-71. [PMID: 29258883 DOI: 10.1016/j.arr.2017.12.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/20/2017] [Accepted: 12/15/2017] [Indexed: 01/15/2023]
Abstract
Ageing processes play a major contributing role for the development of Osteoarthritis (OA). This prototypic degenerative condition of ageing is the most common form of arthritis and is accompanied by a general decline, chronic pain and mobility deficits. The disease is primarily characterized by articular cartilage degradation, followed by subchondral bone thickening, osteophyte formation, synovial inflammation and joint degeneration. In the early stages, osteoarthritic chondrocytes undergo phenotypic changes that increase cell proliferation and cluster formation and enhance the production of matrix-remodelling enzymes. In fact, chondrocytes exhibit differentiation plasticity and undergo phenotypic changes during the healing process. Current studies are focusing on unravelling whether OA is a consequence of an abnormal wound healing response. Recent investigations suggest that alterations in different proteins, such as TGF-ß/BMPs, NF-Kß, Wnt, and Cx43, or SASP factors involved in signalling pathways in wound healing response, could be directly implicated in the initiation of OA. Several findings suggest that osteoarthritic chondrocytes remain in an immature state expressing stemness-associated cell surface markers. In fact, the efficacy of new disease-modifying OA drugs that promote chondrogenic differentiation in animal models indicates that this may be a drug-sensible state. In this review, we highlight the current knowledge regarding cellular plasticity in chondrocytes and OA. A better comprehension of the mechanisms involved in these processes may enable us to understand the molecular pathways that promote abnormal repair and cartilage degradation in OA. This understanding would be advantageous in identifying novel targets and designing therapies to promote effective cartilage repair and successful joint ageing by preventing functional limitations and disability.
Collapse
Affiliation(s)
- Marta Varela-Eirin
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Jesus Loureiro
- Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Universidade de Santiago de Compostela (USC), Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Eduardo Fonseca
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, 84, 15006 A Coruña, Spain
| | | | - Jose R Caeiro
- Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Universidade de Santiago de Compostela (USC), Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Manuel Collado
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Maria D Mayan
- CellCOM research group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), Xubias de Arriba, 84, 15006 A Coruña, Spain.
| |
Collapse
|