1
|
Ngisiange N, Tarimo B, Daudi L, Mwangi S, Malesa F, George R, Kyewalyanga MS, Gullström M, Osore M, Mwaluma J, Winder M. Seasonal fish larvae abundance and composition in seagrass habitats of coastal East Africa. Sci Rep 2024; 14:11203. [PMID: 38755235 PMCID: PMC11099122 DOI: 10.1038/s41598-024-62012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/13/2024] [Indexed: 05/18/2024] Open
Abstract
Seagrass habitats play a major role in fisheries productivity through nursery functions and feeding grounds for diverse fish species. However, little is known about the seasonal distribution of fish larvae at large spatial scales in coastal East Africa. We investigated drivers of the seasonal fish larvae abundance and composition in seagrass habitats in Kenya and Tanzania. We found a high diversity of fish larvae (54 families) inhabiting seagrass habitats that differed between sites and seasons. Fish larvae abundance were highest in Kenya, particularly during the northeast monsoon season. Overall, total larval abundances per site were low, reaching less than 190 individuals/100 m3 in Kenya and less than 40 individuals/100 m3 in Tanzania, likely related to the low productivity and strong hydrodynamic processes in this region. Our data suggests that most of the fish spawn year-round in these tropical waters as we did not find strong seasonal patterns. All sites had a high relative abundance of larvae from demersal spawning fishes, indicating that many fish species move to coastal sites for spawning. Primary productivity and dissolved oxygen, driven by hydrodynamics conditions are positively related to fish larvae productivity both in Kenya and Tanzania. These findings indicate that the occurrence of both resident and transient fish larvae in seagrass meadows is driven by strong hydrodynamic and tidal processes that transport fish larvae across adjacent habitats.
Collapse
Affiliation(s)
- Noah Ngisiange
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.
- Directorate of Ocean and Coastal Systems, Kenya Marine and Fisheries Research Institute, Mombasa, Kenya.
| | - Barnabas Tarimo
- Institute of Marine Sciences, University of Dar es Salaam, Zanzibar, Tanzania
| | - Lillian Daudi
- Directorate of Ocean and Coastal Systems, Kenya Marine and Fisheries Research Institute, Mombasa, Kenya
| | - Stephen Mwangi
- Directorate of Ocean and Coastal Systems, Kenya Marine and Fisheries Research Institute, Mombasa, Kenya
| | - Fadhili Malesa
- School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Zanzibar, Tanzania
| | | | | | - Martin Gullström
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Melckzedeck Osore
- Directorate of Ocean and Coastal Systems, Kenya Marine and Fisheries Research Institute, Mombasa, Kenya
| | - James Mwaluma
- Directorate of Ocean and Coastal Systems, Kenya Marine and Fisheries Research Institute, Mombasa, Kenya
| | - Monika Winder
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
2
|
Fogg LG, Cortesi F, Gache C, Lecchini D, Marshall NJ, de Busserolles F. Developing and adult reef fish show rapid light-induced plasticity in their visual system. Mol Ecol 2023; 32:167-181. [PMID: 36261875 PMCID: PMC10099556 DOI: 10.1111/mec.16744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 12/29/2022]
Abstract
The visual capabilities of fish are optimized for their ecology and light environment over evolutionary time. Similarly, fish vision can adapt to regular changes in light conditions within their lifetime, e.g., ontogenetic or seasonal variation. However, we do not fully understand how vision responds to irregular short-term changes in the light environment, e.g., algal blooms and light pollution. In this study, we investigated the effect of short-term exposure to unnatural light conditions on opsin gene expression and retinal cell densities in juvenile and adult diurnal reef fish (convict surgeonfish; Acanthurus triostegus). Results revealed phenotypic plasticity in the retina across ontogeny, particularly during development. The most substantial differences at both molecular and cellular levels were found under constant dim light, while constant bright light and simulated artificial light at night had a lesser effect. Under dim light, juveniles and adults increased absolute expression of the cone opsin genes, sws2a, rh2c and lws, within a few days and juveniles also decreased densities of cones, inner nuclear layer cells and ganglion cells. These changes potentially enhanced vision under the altered light conditions. Thus, our study suggests that plasticity mainly comes into play when conditions are extremely different to the species' natural light environment, i.e., a diurnal fish in "constant night". Finally, in a rescue experiment on adults, shifts in opsin expression were reverted within 24 h. Overall, our study showed rapid, reversible light-induced changes in the retina of A. triostegus, demonstrating phenotypic plasticity in the visual system of a reef fish throughout life.
Collapse
Affiliation(s)
- Lily G. Fogg
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fabio Cortesi
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Camille Gache
- PSL Research University, EPHE‐UPVD‐CNRS, UAR3278 CRIOBEPapetoaiFrench Polynesia
- Laboratoire d'Excellence “CORAIL”ParisFrance
| | - David Lecchini
- PSL Research University, EPHE‐UPVD‐CNRS, UAR3278 CRIOBEPapetoaiFrench Polynesia
- Laboratoire d'Excellence “CORAIL”ParisFrance
| | - N. Justin Marshall
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fanny de Busserolles
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
3
|
Fogg LG, Cortesi F, Lecchini D, Gache C, Marshall NJ, de Busserolles F. Development of dim-light vision in the nocturnal reef fish family Holocentridae. II: Retinal morphology. J Exp Biol 2022; 225:jeb244740. [PMID: 35929495 PMCID: PMC9482369 DOI: 10.1242/jeb.244740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022]
Abstract
Ontogenetic changes in the habitats and lifestyles of animals are often reflected in their visual systems. Coral reef fishes start life in the shallow open ocean but inhabit the reef as juveniles and adults. Alongside this change in habitat, some species also change lifestyles and become nocturnal. However, it is not fully understood how the visual systems of nocturnal reef fishes develop and adapt to these significant ecological shifts over their lives. Therefore, we used a histological approach to examine visual development in the nocturnal coral reef fish family, Holocentridae. We examined 7 representative species spanning both subfamilies, Holocentrinae (squirrelfishes) and Myripristinae (soldierfishes). Pre-settlement larvae showed strong adaptation for photopic vision with high cone densities and had also started to develop a multibank retina (i.e. multiple rod layers), with up to two rod banks present. At reef settlement, holocentrids showed greater adaptation for scotopic vision, with higher rod densities and higher summation of rods onto the ganglion cell layer. By adulthood, they had well-developed scotopic vision with a highly rod-dominated multibank retina comprising 5-17 rod banks and enhanced summation of rods onto the ganglion cell layer. Although the ecological demands of the two subfamilies were similar throughout their lives, their visual systems differed after settlement, with Myripristinae showing more pronounced adaptation for scotopic vision than Holocentrinae. Thus, it is likely that both ecology and phylogeny contribute to the development of the holocentrid visual system.
Collapse
Affiliation(s)
- Lily G. Fogg
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David Lecchini
- PSL Research University, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence “CORAIL”, Paris 75006, France
| | - Camille Gache
- PSL Research University, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence “CORAIL”, Paris 75006, France
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
4
|
Fogg LG, Cortesi F, Lecchini D, Gache C, Marshall NJ, de Busserolles F. Development of dim-light vision in the nocturnal reef fish family Holocentridae. I: Retinal gene expression. J Exp Biol 2022; 225:jeb244513. [PMID: 35929500 PMCID: PMC9482368 DOI: 10.1242/jeb.244513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/24/2022] [Indexed: 11/20/2022]
Abstract
Developmental changes to the visual systems of animals are often associated with ecological shifts. Reef fishes experience a change in habitat between larval life in the shallow open ocean to juvenile and adult life on the reef. Some species also change their lifestyle over this period and become nocturnal. While these ecological transitions are well documented, little is known about the ontogeny of nocturnal reef fish vision. Here, we used transcriptomics to investigate visual development in 12 representative species from both subfamilies, Holocentrinae (squirrelfishes) and Myripristinae (soldierfishes), in the nocturnal coral reef fish family, Holocentridae. Results revealed that the visual systems of holocentrids are initially well adapted to photopic conditions with pre-settlement larvae having high levels of cone opsin gene expression and a broad cone opsin gene repertoire (8 genes). At reef settlement, holocentrids started to invest more in their scotopic visual system, and compared with adults, showed upregulation of genes involved in cell differentiation/proliferation. By adulthood, holocentrids had well developed scotopic vision with high levels of rod opsin gene expression, reduced cone opsin gene expression and repertoire (1-4 genes) and upregulated phototransduction genes. Finally, although the two subfamilies shared similar ecologies across development, their visual systems diverged after settlement, with Myripristinae investing more in scotopic vision than Holocentrinae. Hence, both ecology and phylogeny are likely to determine the development of the holocentrid visual system.
Collapse
Affiliation(s)
- Lily G. Fogg
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David Lecchini
- PSL Research University, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence “CORAIL”, Paris 75006, France
| | - Camille Gache
- PSL Research University, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence “CORAIL”, Paris 75006, France
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
5
|
O'Connor JJ, Fobert EK, Besson M, Jacob H, Lecchini D. Live fast, die young: Behavioural and physiological impacts of light pollution on a marine fish during larval recruitment. MARINE POLLUTION BULLETIN 2019; 146:908-914. [PMID: 31426235 DOI: 10.1016/j.marpolbul.2019.05.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 06/10/2023]
Abstract
Artificial light at night (ALAN) is a recently acknowledged form of anthropogenic pollution of growing concern to the biology and ecology of exposed organisms. Though ALAN can have detrimental effects on physiology and behaviour, we have little understanding of how marine organisms in coastal areas may be impacted. Here, we investigated the effects of ALAN exposure on coral reef fish larvae during the critical recruitment stage, encompassing settlement, metamorphosis, and post-settlement survival. We found that larvae avoided illuminated settlement habitats, however those living under ALAN conditions for 10 days post-settlement experienced changes in swimming behaviour and higher susceptibility to nocturnal predation. Although ALAN-exposed fish grew faster and heavier than control fish, they also experienced significantly higher mortality rates by the end of the experimental period. This is the first study on the ecological impacts of ALAN during the early life history of marine fish.
Collapse
Affiliation(s)
- J J O'Connor
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Institute for Pacific Coral Reefs, IRCP, 98729, Moorea, French Polynesia.
| | - E K Fobert
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - M Besson
- PSL Research University: EPHE-UPVD-CNRS, USR3278 CRIOBE, BP 1013, 98729 Papetoai, Moorea, French Polynesia; Observatoire Océanologique de Banyuls-sur-Mer, UMR7232, Université Pierre et Marie Curie Paris, 1 avenue du Fontaulé, 66650 Banyuls-sur-Mer, France
| | - H Jacob
- PSL Research University: EPHE-UPVD-CNRS, USR3278 CRIOBE, BP 1013, 98729 Papetoai, Moorea, French Polynesia; International Atomic Energy Agency, Environment Laboratories, 4a, Quai Antoine 1er, Principality of Monaco, Monaco
| | - D Lecchini
- Institute for Pacific Coral Reefs, IRCP, 98729, Moorea, French Polynesia; PSL Research University: EPHE-UPVD-CNRS, USR3278 CRIOBE, BP 1013, 98729 Papetoai, Moorea, French Polynesia; Laboratoire d'Excellence "CORAIL", Moorea, French Polynesia
| |
Collapse
|
6
|
Tettamanti V, de Busserolles F, Lecchini D, Marshall NJ, Cortesi F. Visual system development of the spotted unicornfish, Naso brevirostris (Acanthuridae). J Exp Biol 2019; 222:jeb.209916. [DOI: 10.1242/jeb.209916] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022]
Abstract
Ontogenetic changes of the visual system are often correlated to shifts in habitat and feeding behaviour of animals. Coral reef fishes begin their lives in the pelagic zone and then migrate to the reef. This habitat transition frequently involves a change in diet and light environment as well as major morphological modifications. The spotted unicornfish, Naso brevirostris, is known to shift diet from zooplankton to algae and back to mainly zooplankton when transitioning from larval to juvenile and then to adult stages. Concurrently, N. brevirostris also moves from an open pelagic to a coral-associated habitat before migrating up in the water column when reaching adulthood. Using retinal mapping techniques, we discovered that the distribution and density of ganglion and photoreceptor cells in N. brevirostris mostly changes during the transition from the larval to the juvenile stage, with only minor modifications thereafter. Similarly, visual gene (opsin) expression based on RNA sequencing, although qualitatively similar between stages (all fishes mainly expressed the same three cone opsins; SWS2B, RH2B, RH2A), also showed the biggest quantitative difference when transitioning from larvae to juveniles. The juvenile stage in particular seems mismatched with its reef-associated ecology, which may be due to this stage only lasting a fraction of the lifespan of these fishes. Hence, the visual ontogeny found in N. brevirostris is very different from the progressive changes found in other reef fishes calling for a thorough analysis of visual system development of the reef fish community.
Collapse
Affiliation(s)
- Valerio Tettamanti
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
- Swiss Federal Institute of Technology Zurich, 8092 Zurich, Switzerland
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
| | - David Lecchini
- PSL Research University: EPHE-UPVD-CNRS, USR3278 CRIOBE, BP 1013, 98729 Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence “CORAIL”, Paris, France
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
| |
Collapse
|
7
|
Bertucci F, Jacob H, Mignucci A, Gache C, Roux N, Besson M, Berthe C, Metian M, Lecchini D. Decreased retention of olfactory predator recognition in juvenile surgeon fish exposed to pesticide. CHEMOSPHERE 2018; 208:469-475. [PMID: 29886335 DOI: 10.1016/j.chemosphere.2018.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
Dory, the animated surgeonfish created by the Pixar Animation studios, famously suffered from short-term memory loss leading to many adventures. In reality, many fishes have excellent cognitive abilities and are able to learn and retain important information such as the identity of predators. However, if and how cognition can be affected by anthropogenically altered oceanic conditions is poorly understood. Here, we examine the effect of a widely used pesticide, chlorpyrifos, on the retention of acquired predator recognition in post-larval stage of the surgeonfish Acanthurus triostegus. Through associative learning, post-larvae of A. triostegus were first observed to forage significantly less in the presence of conspecific alarm cues and alarm cues associated to a predator's odor. The retention of this anti-predator behavior was estimated to last between 2 and 5 days in the absence of pesticide. However, environmentally-relevant concentrations of chlorpyrifos (1 μg.L-1) induced the loss of this acquired predator recognition. This reduced ability to recognize learned predators is discussed as it may lead to more vulnerable fish communities in coastal areas subjected to organophosphate pesticide pollution.
Collapse
Affiliation(s)
- Frédéric Bertucci
- PSL University Paris, EPHE-UPVD-CNRS, USR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia; Laboratoire de Morphologie Fonctionnelle et Evolutive, Université de Liège, Campus Sart Tilman, Bât. B6c, Allée de la Chimie 3, 4000 Liège, Belgium.
| | - Hugo Jacob
- PSL University Paris, EPHE-UPVD-CNRS, USR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia; International Atomic Energy Agency, Environment Laboratories, 4a, Quai Antoine 1er, Principality of Monaco, Monaco
| | - Alexandre Mignucci
- PSL University Paris, EPHE-UPVD-CNRS, USR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia
| | - Camille Gache
- PSL University Paris, EPHE-UPVD-CNRS, USR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia
| | - Natacha Roux
- PSL University Paris, EPHE-UPVD-CNRS, USR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia; Observatoire Océanologique de Banyuls-sur-Mer, UMR7232, Université Pierre et Marie Curie Paris, 1 avenue du Fontaulé, 66650 Banyuls-sur-Mer, France
| | - Marc Besson
- PSL University Paris, EPHE-UPVD-CNRS, USR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia; Observatoire Océanologique de Banyuls-sur-Mer, UMR7232, Université Pierre et Marie Curie Paris, 1 avenue du Fontaulé, 66650 Banyuls-sur-Mer, France
| | - Cécile Berthe
- PSL University Paris, EPHE-UPVD-CNRS, USR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia
| | - Marc Metian
- International Atomic Energy Agency, Environment Laboratories, 4a, Quai Antoine 1er, Principality of Monaco, Monaco
| | - David Lecchini
- PSL University Paris, EPHE-UPVD-CNRS, USR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia; Laboratoire d'Excellence "CORAIL", Moorea, French Polynesia
| |
Collapse
|
8
|
Holzer G, Besson M, Lambert A, François L, Barth P, Gillet B, Hughes S, Piganeau G, Leulier F, Viriot L, Lecchini D, Laudet V. Fish larval recruitment to reefs is a thyroid hormone-mediated metamorphosis sensitive to the pesticide chlorpyrifos. eLife 2017; 6. [PMID: 29083300 PMCID: PMC5662287 DOI: 10.7554/elife.27595] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/02/2017] [Indexed: 01/01/2023] Open
Abstract
Larval recruitment, the transition of pelagic larvae into reef-associated juveniles, is a critical step for the resilience of marine fish populations but its molecular control is unknown. Here, we investigate whether thyroid-hormones (TH) and their receptors (TR) coordinate the larval recruitment of the coral-reef-fish Acanthurus triostegus. We demonstrate an increase of TH-levels and TR-expressions in pelagic-larvae, followed by a decrease in recruiting juveniles. We generalize these observations in four other coral reef-fish species. Treatments with TH or TR-antagonist, as well as relocation to the open-ocean, disturb A. triostegus larvae transformation and grazing activity. Likewise, chlorpyrifos, a pesticide often encountered in coral-reefs, impairs A. triostegus TH-levels, transformation, and grazing activity, hence diminishing this herbivore’s ability to control the spread of reef-algae. Larval recruitment therefore corresponds to a TH-controlled metamorphosis, sensitive to endocrine disruption. This provides a framework to understand how larval recruitment, critical to reef-ecosystems maintenance, is altered by anthropogenic stressors. Many animals go through a larval phase before developing into an adult. This transformation is called metamorphosis, and it is regulated by hormones of the thyroid gland in vertebrates. For example, most fish found on coral reefs actually spend the first part of their life as free-swimming larvae out in the ocean. The larvae usually look very different from the juveniles and adults. When these fish become juveniles, the larvae undergo a range of physical and behavioral changes to prepare for their life on the reef. Yet, until now it was not known what hormones control metamorphosis in these fish. To address this question, Holzer, Besson et al. studied the convict surgeonfish Acanthurus triostegus. This herbivorous coral-reef fish lives in the Indo-Pacific Ocean, and the results showed that thyroid hormones do indeed regulate the metamorphosis of its larvae. This includes changing how the larvae behave and how their adult features develop. Further, Holzer, Besson et al. found that this was also true for four other coral-reef fish, including the lagoon triggerfish and the raccoon butterflyfish. In A. triostegus, thyroid hormones controlled the changes that enabled the juveniles to efficiently graze on algae growing on the reef such as an elongated gut. When the fish larvae were then exposed to a pesticide called chlorpyrifos, a well-known reef pollutant, their hormone production was disturbed. This in turn affected their grazing behavior and also their metamorphosis. These fish had shortened, underdeveloped guts and could not graze on algae as effectively. Herbivorous fish such as A. triostegus play a major role in supporting coral reef ecosystems by reducing algal cover and therefore promoting coral recruitment. These new findings show that pollutants from human activities could disturb the metamorphosis of coral-reef fish and, as a consequence, their ability to maintain the reefs. A next step will be to test what other factors can disrupt the hormones in coral-reef fish and thus pose a threat for fish populations and the coral-reef ecosystem.
Collapse
Affiliation(s)
- Guillaume Holzer
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Marc Besson
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, Lyon, France.,CRIOBE USR3278 EPHE-UPVD-CNRS, PSL Research University, Moorea, French Polynesia.,Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232, Université Pierre et Marie Curie Paris, Paris, France
| | - Anne Lambert
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Loïc François
- CRIOBE USR3278 EPHE-UPVD-CNRS, PSL Research University, Moorea, French Polynesia
| | - Paul Barth
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Gwenaël Piganeau
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232, Université Pierre et Marie Curie Paris, Paris, France
| | - Francois Leulier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Laurent Viriot
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - David Lecchini
- CRIOBE USR3278 EPHE-UPVD-CNRS, PSL Research University, Moorea, French Polynesia.,Laboratoire d'Excellence CORAIL, Moorea, French Polynesia
| | - Vincent Laudet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
9
|
Besson M, Gache C, Bertucci F, Brooker RM, Roux N, Jacob H, Berthe C, Sovrano VA, Dixson DL, Lecchini D. Exposure to agricultural pesticide impairs visual lateralization in a larval coral reef fish. Sci Rep 2017; 7:9165. [PMID: 28831109 PMCID: PMC5567261 DOI: 10.1038/s41598-017-09381-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/26/2017] [Indexed: 12/31/2022] Open
Abstract
Lateralization, i.e. the preferential use of one side of the body, may convey fitness benefits for organisms within rapidly-changing environments, by optimizing separate and parallel processing of different information between the two brain hemispheres. In coral reef-fishes, the movement of larvae from planktonic to reef environments (recruitment) represents a major life-history transition. This transition requires larvae to rapidly identify and respond to sensory cues to select a suitable habitat that facilitates survival and growth. This 'recruitment' is critical for population persistence and resilience. In aquarium experiments, larval Acanthurus triostegus preferentially used their right-eye to investigate a variety of visual stimuli. Despite this, when held in in situ cages with predators, those larvae that previously favored their left-eye exhibited higher survival. These results support the "brain's right-hemisphere" theory, which predicts that the right-eye (i.e. left-hemisphere) is used to categorize stimuli while the left-eye (i.e. right-hemisphere) is used to inspect novel items and initiate rapid behavioral-responses. While these experiments confirm that being highly lateralized is ecologically advantageous, exposure to chlorpyrifos, a pesticide often inadvertently added to coral-reef waters, impaired visual-lateralization. This suggests that chemical pollutants could impair the brain function of larval fishes during a critical life-history transition, potentially impacting recruitment success.
Collapse
Affiliation(s)
- Marc Besson
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia.
- Université Pierre et Marie Curie, UMR CNRS 7232 OOB, 1 Avenue Pierre Fabre, 66650, Banyuls-sur-Mer, France.
| | - Camille Gache
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence "CORAIL", BP 1013, 98729, Papetoai, Moorea, French Polynesia
| | - Frédéric Bertucci
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia
- Laboratoire de Morphologie Fonctionnelle et Evolutive, AFFISH Research Center, Institut de Chimie B6c, Université de Liège, Liège, Belgium
| | - Rohan M Brooker
- School of Marine Science and policy, University of Delaware, 111 Robinson Hall, Newark, DE, 19716, USA
| | - Natacha Roux
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia
- Université Pierre et Marie Curie, UMR CNRS 7232 OOB, 1 Avenue Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | - Hugo Jacob
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia
- International Atomic Energy Agency, Environment Laboratories (IAEA-EL), Principality of Monaco, 98000, Monaco
| | - Cécile Berthe
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence "CORAIL", BP 1013, 98729, Papetoai, Moorea, French Polynesia
| | - Valeria Anna Sovrano
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, 38068, Rovereto (TN), Italy
| | - Danielle L Dixson
- School of Marine Science and policy, University of Delaware, 111 Robinson Hall, Newark, DE, 19716, USA
| | - David Lecchini
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, BP 1013, 98729, Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence "CORAIL", BP 1013, 98729, Papetoai, Moorea, French Polynesia
| |
Collapse
|