1
|
Chen Z, Wen S, Shen J, Wang J, Liu W, Jin X. Composition and diversity of the gut microbiota across different life stages of American cockroach ( Periplaneta americana). BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:787-793. [PMID: 38037350 DOI: 10.1017/s0007485323000469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Periplaneta americana, one of the most widely distributed insects all over the world, can survive and reproduce in harsh environment which may be closely related to the critical roles of intestinal microorganisms in its multiple physiological functions. However, the composition and structure of gut microbiota throughout different life stages and its effects on the strong resilient and environmental adaptability of P. americana remain unclear. In this study, the gut microbiota across life stages including ootheca (embryos), nymph and adult of P. americana were investigated by 16S rRNA high-throughput sequencing. Multivariate statistical analysis showed the richness and diversity of bacterial communities were significantly different among ootheca, nymph and adult stage of P. americana. Taxonomic analysis showed Blattabacterium was the dominant genus in bacterial community of ootheca while the nutrient absorption-related genera including Christensenellaceae and Ruminococcaceae showed high relative abundance in nymph samples. Moreover, functional prediction analysis showed the metabolic categories in ootheca might have more influence on the basic life activities of the host than improved production and viability, while it was more associated to the society activities, reproduction and development of host in nymph and adult. It was suggested that the gut microbiota in each life stage might meet the requirements for environmental adaptability and survival of P. americana via transforming the composition and structure with specific metabolic capabilities. Overall, these results provided a novel sight to better understand the strong vitality and adaptability throughout life stages of P. americana.
Collapse
Affiliation(s)
- Zhiyu Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
| | - Sihao Wen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
| | - Juan Shen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
| | - Wenbin Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
| |
Collapse
|
2
|
Cao LJ, Song W, Chen JC, Fan XL, Hoffmann AA, Wei SJ. Population genomic signatures of the oriental fruit moth related to the Pleistocene climates. Commun Biol 2022; 5:142. [PMID: 35177826 PMCID: PMC8854661 DOI: 10.1038/s42003-022-03097-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/31/2022] [Indexed: 12/31/2022] Open
Abstract
The Quaternary climatic oscillations are expected to have had strong impacts on the evolution of species. Although legacies of the Quaternary climates on population processes have been widely identified in diverse groups of species, adaptive genetic changes shaped during the Quaternary have been harder to decipher. Here, we assembled a chromosome-level genome of the oriental fruit moth and compared genomic variation among refugial and colonized populations of this species that diverged in the Pleistocene. High genomic diversity was maintained in refugial populations. Demographic analysis showed that the effective population size of refugial populations declined during the penultimate glacial maximum (PGM) but remained stable during the last glacial maximum (LGM), indicating a strong impact of the PGM rather than the LGM on this pest species. Genome scans identified one chromosomal inversion and a mutation of the circadian gene Clk on the neo-Z chromosome potentially related to the endemicity of a refugial population. In the colonized populations, genes in pathways of energy metabolism and wing development showed signatures of selection. These different genomic signatures of refugial and colonized populations point to multiple impacts of Quaternary climates on adaptation in an extant species.
Collapse
Affiliation(s)
- Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing, 100097, China
| | - Wei Song
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing, 100097, China
- Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University, Beijing, 100083, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing, 100097, China
| | - Xu-Lei Fan
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing, 100097, China
| | - Ary Anthony Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, 9 Shuguanghuayuan Middle Road, Haidian District, Beijing, 100097, China.
| |
Collapse
|
3
|
Soares MPM, Pinheiro DG, de Paula Freitas FC, Simões ZLP, Bitondi MMG. Transcriptome dynamics during metamorphosis of imaginal discs into wings and thoracic dorsum in Apis mellifera castes. BMC Genomics 2021; 22:756. [PMID: 34674639 PMCID: PMC8532292 DOI: 10.1186/s12864-021-08040-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Much of the complex anatomy of a holometabolous insect is built from disc-shaped epithelial structures found inside the larva, i.e., the imaginal discs, which undergo a rapid differentiation during metamorphosis. Imaginal discs-derived structures, like wings, are built through the action of genes under precise regulation. RESULTS We analyzed 30 honeybee transcriptomes in the search for the gene expression needed for wings and thoracic dorsum construction from the larval wing discs primordia. Analyses were carried out before, during, and after the metamorphic molt and using worker and queen castes. Our RNA-seq libraries revealed 13,202 genes, representing 86.2% of the honeybee annotated genes. Gene Ontology analysis revealed functional terms that were caste-specific or shared by workers and queens. Genes expressed in wing discs and descendant structures showed differential expression profiles dynamics in premetamorphic, metamorphic and postmetamorphic developmental phases, and also between castes. At the metamorphic molt, when ecdysteroids peak, the wing buds of workers showed maximal gene upregulation comparatively to queens, thus underscoring differences in gene expression between castes at the height of the larval-pupal transition. Analysis of small RNA libraries of wing buds allowed us to build miRNA-mRNA interaction networks to predict the regulation of genes expressed during wing discs development. CONCLUSION Together, these data reveal gene expression dynamics leading to wings and thoracic dorsum formation from the wing discs, besides highlighting caste-specific differences during wing discs metamorphosis.
Collapse
Affiliation(s)
- Michelle Prioli Miranda Soares
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Daniel Guariz Pinheiro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP, Brazil
| | | | - Zilá Luz Paulino Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Márcia Maria Gentile Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Yu Y, Liu X, Ma X, Zhang Z, Wang T, Sun F, Hou C, Li M. A palmitoyltransferase Approximated gene Bm-app regulates wing development in Bombyx mori. INSECT SCIENCE 2020; 27:2-13. [PMID: 29943911 PMCID: PMC7379679 DOI: 10.1111/1744-7917.12629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/21/2018] [Accepted: 05/27/2018] [Indexed: 05/08/2023]
Abstract
The silkworm Bombyx mori is an important lepidopteran model insect in which many kinds of natural mutants have been identified. However, molecular mechanisms of most of these mutants remain to be explored. Here we report the identification of a gene Bm-app is responsible for the silkworm minute wing (mw) mutation which exhibits exceedingly small wings during pupal and adult stages. Compared with the wild type silkworm, relative messenger RNA expression of Bm-app is significantly decreased in the u11 mutant strain which shows mw phenotype. A 10 bp insertion in the putative promoter region of the Bm-app gene in mw mutant strain was identified and the dual luciferase assay revealed that this insertion decreased Bm-app promoter activity. Furthermore, clustered regularly interspaced short palindromic repeats/RNA-guided Cas9 nucleases-mediated depletion of the Bm-app induced similar wing defects which appeared in the mw mutant, demonstrating that Bm-app controls wing development in B. mori. Bm-app encodes a palmitoyltransferase and is responsible for the palmitoylation of selected cytoplasmic proteins, indicating that it is required for cell mitosis and growth during wing development. We also discuss the possibility that Bm-app regulates wing development through the Hippo signaling pathway in B. mori.
Collapse
Affiliation(s)
- Ye Yu
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangJiangsuChina
| | - Xiao‐Jing Liu
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangJiangsuChina
| | - Xiao Ma
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangJiangsuChina
| | - Zhong‐Jie Zhang
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangJiangsuChina
| | - Tai‐Chu Wang
- Sericultural Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Fan Sun
- Sericultural Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Cheng‐Xiang Hou
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangJiangsuChina
- Sericultural Research InstituteChinese Academy of Agricultural SciencesZhenjiangJiangsuChina
| | - Mu‐Wang Li
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangJiangsuChina
- Sericultural Research InstituteChinese Academy of Agricultural SciencesZhenjiangJiangsuChina
| |
Collapse
|
5
|
Silkworm storage protein Bm30K-19G1 has a certain antifungal effects on Beauveria bassiana. J Invertebr Pathol 2019; 163:34-42. [DOI: 10.1016/j.jip.2019.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 01/22/2023]
|