1
|
Co-modulation of T cells and B cells enhances the inhibition of inflammation in experimental hypersensitivity pneumonitis. Respir Res 2022; 23:275. [PMID: 36209215 PMCID: PMC9547367 DOI: 10.1186/s12931-022-02200-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background Hypersensitivity pneumonitis (HP) is an interstitial lung disease characterized by antigen-triggered neutrophilic exacerbations. Although CD4+ T cells are sufficient for HP pathogenesis, this never translated into efficient T cell-specific therapies. Increasing evidence shows that B cells also play decisive roles in HP. Here, we aimed to further define the respective contributions of B and T cells in subacute experimental HP.
Methods Mice were subjected to a protocol of subacute exposure to the archaeon Methanosphaera stadmanae to induce experimental HP. Using models of adoptive transfers of B cells and T cells in Rag1-deficient mice and of B cell-specific S1P1 deletion, we assessed the importance of B cells in the development of HP by evaluating inflammation in bronchoalveolar lavage fluid. We also aimed to determine if injected antibodies targeting B and/or T cells could alleviate HP exacerbations using a therapeutic course of intervention. Results Even though B cells are not sufficient to induce HP, they strongly potentiate CD4+ T cell-induced HP‑associated neutrophilic inflammation in the airways. However, the reduction of 85% of lung B cells in mice with a CD19-driven S1P1 deletion does not dampen HP inflammation, suggesting that lung B cells are not necessary in large numbers to sustain local inflammation. Finally, we found that injecting antibodies targeting B cells after experimental HP was induced does not dampen neutrophilic exacerbation. Yet, injection of antibodies directed against B cells and T cells yielded a potent 76% inhibition of neutrophilic accumulation in the lungs. This inhibition occurred despite partial, sometimes mild, depletion of B cells and T cells subsets. Conclusions Although B cells are required for maximal inflammation in subacute experimental HP, partial reduction of B cells fails to reduce HP-associated inflammation by itself. However, co-modulation of T cells and B cells yields enhanced inhibition of HP exacerbation caused by an antigenic rechallenge. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02200-9.
Collapse
|
2
|
Barnes H, Troy L, Lee CT, Sperling A, Strek M, Glaspole I. Hypersensitivity pneumonitis: Current concepts in pathogenesis, diagnosis, and treatment. Allergy 2022; 77:442-453. [PMID: 34293188 DOI: 10.1111/all.15017] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/21/2021] [Indexed: 12/29/2022]
Abstract
Hypersensitivity pneumonitis is an immune-mediated interstitial lung disease caused by an aberrant response to an inhaled exposure, which results in mostly T cell-mediated inflammation, granuloma formation, and fibrosis in some cases. HP is diagnosed by exposure identification, HRCT findings of ground-glass opacities, centrilobular nodules, and mosaic attenuation, with traction bronchiectasis and honeycombing in fibrotic cases. Additional testing including serum IgG testing for the presence of antigen exposure, bronchoalveolar lavage lymphocytosis, and lung biopsy demonstrating granulomas, inflammation, and fibrosis, increases the diagnostic confidence. Treatment for HP includes avoidance of the implicated exposure, immunosuppression, and anti-fibrotic therapy in select cases. This narrative review presents the recent literature in the understanding of the immunopathological mechanisms, diagnosis, and treatment of HP.
Collapse
Affiliation(s)
- Hayley Barnes
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Hospital, Melbourne, VIC, Australia
| | - Lauren Troy
- Royal Prince Alfred Hospital, Sydney, NSW, Australia.,University of Sydney, Sydney, NSW, Australia
| | - Cathryn T Lee
- Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Anne Sperling
- Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Mary Strek
- Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Ian Glaspole
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Brassard J, Gill ME, Bernatchez E, Desjardins V, Roy J, Joubert P, Marsolais D, Blanchet MR. Countering the advert effects of lung cancer on the anticancer potential of dendritic cell populations reinstates sensitivity to anti-PD-1 therapy. PLoS One 2021; 16:e0260636. [PMID: 34847189 PMCID: PMC8631683 DOI: 10.1371/journal.pone.0260636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/13/2021] [Indexed: 11/18/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths. While the recent use of immune checkpoint inhibitors significantly improves patient outcomes, responsiveness remains restricted to a small proportion of patients. Conventional dendritic cells (DCs) play a major role in anticancer immunity. In mice, two subpopulations of DCs are found in the lung: DC2s (CD11b+Sirpα+) and DC1s (CD103+XCR1+), the latest specializing in the promotion of anticancer immune responses. However, the impact of lung cancer on DC populations and the consequent influence on the anticancer immune response remain poorly understood. To address this, DC populations were studied in murine models of Lewis Lung Carcinoma (LLC) and melanoma-induced lung metastasis (B16F10). We report that direct exposure to live or dead cancer cells impacts the capacity of DCs to differentiate into CD103+ DC1s, leading to profound alterations in CD103+ DC1 proportions in the lung. In addition, we observed the accumulation of CD103loCD11b+ DCs, which express DC2 markers IRF4 and Sirpα, high levels of T-cell inhibitory molecules PD-L1/2 and the regulatory molecule CD200. Finally, DC1s were injected in combination with an immune checkpoint inhibitor (anti-PD-1) in the B16F10 model of resistance to the anti-PD-1 immune checkpoint therapy; the co-injection restored sensitivity to immunotherapy. Thus, we demonstrate that lung tumor development leads to the accumulation of CD103loCD11b+ DCs with a regulatory potential combined with a reduced proportion of highly-specialized antitumor CD103+ DC1s, which could promote cancer growth. Additionally, promoting an anticancer DC signature could be an interesting therapeutic avenue to increase the efficacy of existing immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Julyanne Brassard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Meredith Elizabeth Gill
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Emilie Bernatchez
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Véronique Desjardins
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Joanny Roy
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - David Marsolais
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Marie-Renée Blanchet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
4
|
Zeng Y, Zhang Y, Huang X, Song L, Polsky K, Wu Y, Kheradmand F, Guo Y, Green LK, Corry DB, Knight JM. Novel acute hypersensitivity pneumonitis model induced by airway mycosis and high dose lipopolysaccharide. Respir Res 2021; 22:263. [PMID: 34629055 PMCID: PMC8503997 DOI: 10.1186/s12931-021-01850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Inhalation of fungal spores is a strong risk factor for severe asthma and experimentally leads to development of airway mycosis and asthma-like disease in mice. However, in addition to fungal spores, humans are simultaneously exposed to other inflammatory agents such as lipopolysaccharide (LPS), with uncertain relevance to disease expression. To determine how high dose inhalation of LPS influences the expression of allergic airway disease induced by the allergenic mold Aspergillus niger (A. niger). METHODS C57BL/6J mice were intranasally challenged with the viable spores of A. niger with and without 1 μg of LPS over two weeks. Changes in airway hyperreactivity, airway and lung inflammatory cell recruitment, antigen-specific immunoglobulins, and histopathology were determined. RESULTS In comparison to mice challenged only with A. niger, addition of LPS (1 μg) to A. niger abrogated airway hyperresponsiveness and strongly attenuated airway eosinophilia, PAS+ goblet cells and TH2 responses while enhancing TH1 and TH17 cell recruitment to lung. Addition of LPS resulted in more severe, diffuse lung inflammation with scattered, loosely-formed parenchymal granulomas, but failed to alter fungus-induced IgE and IgG antibodies. CONCLUSIONS In contrast to the strongly allergic lung phenotype induced by fungal spores alone, addition of a relatively high dose of LPS abrogates asthma-like features, replacing them with a phenotype more consistent with acute hypersensitivity pneumonitis (HP). These findings extend the already established link between airway mycosis and asthma to HP and describe a robust model for further dissecting the pathophysiology of HP.
Collapse
Affiliation(s)
- Yuying Zeng
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yun Zhang
- Department of Medicine, Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Xinyan Huang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lizhen Song
- Department of Medicine, Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Katherine Polsky
- Department of Medicine, Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yifan Wu
- Department of Medicine, Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Farrah Kheradmand
- Department of Medicine, Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston, TX, 77030, USA
| | - Yubiao Guo
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Linda K Green
- Department of Pathology and Immunology, Michael E. DeBakey VA Center, 2002 Holcombe Boulevard, Houston, TX, 77030, USA
| | - David B Corry
- Department of Medicine, Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Pathology & Immunology, Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston, TX, 77030, USA.
| | - John M Knight
- Department of Pathology & Immunology, Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Brassard J, Roy J, Lemay AM, Beaulieu MJ, Bernatchez E, Veillette M, Duchaine C, Blanchet MR. Exposure to the Gram-Negative Bacteria Pseudomonas aeruginosa Influences the Lung Dendritic Cell Population Signature by Interfering With CD103 Expression. Front Cell Infect Microbiol 2021; 11:617481. [PMID: 34295830 PMCID: PMC8291145 DOI: 10.3389/fcimb.2021.617481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/15/2021] [Indexed: 11/25/2022] Open
Abstract
Lung dendritic cells (DCs) are divided into two major populations, which include CD103+XCR1+ cDC1s and CD11b+Sirpα+ cDC2s. The maintenance of their relative proportions is dynamic and lung inflammation, such as caused by exposure to lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, can have a significant impact on the local cDC signature. Alterations in the lung cDC signature could modify the capacity of the immune system to respond to various pathogens. We consequently aimed to assess the impact of the Gram-negative bacteria Pseudomonas aeruginosa on lung cDC1 and cDC2 populations, and to identify the mechanisms leading to alterations in cDC populations. We observed that exposure to P. aeruginosa decreased the proportions of CD103+XCR1+ cDC1s, while increasing that of CD11b+ DCs. We identified two potential mechanisms involved in this modulation of lung cDC populations. First, we observed an increase in bone marrow pre-DC IRF4 expression suggesting a higher propensity of pre-DCs to differentiate towards the cDC2 lineage. This observation was combined with a reduced capacity of lung XCR1+ DC1s to express CD103. In vitro, we demonstrated that GM-CSF-induced CD103 expression on cDCs depends on GM-CSF receptor internalization and RUNX1 activity. Furthermore, we observed that cDCs stimulation with LPS or P. aeruginosa reduced the proportions of intracellular GM-CSF receptor and decreased RUNX1 mRNA expression. Altogether, these results suggest that alterations in GM-CSF receptor intracellular localization and RUNX1 signaling could be involved in the reduced CD103 expression on cDC1 in response to P. aeruginosa. To verify whether the capacity of cDCs to express CD103 following P. aeruginosa exposure impacts the immune response, WT and Cd103-/- mice were exposed to P. aeruginosa. Lack of CD103 expression led to an increase in the number of neutrophils in the airways, suggesting that lack of CD103 expression on cDC1s could favor the innate immune response to this bacterium.
Collapse
Affiliation(s)
- Julyanne Brassard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, QC, Canada
| | - Joanny Roy
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, QC, Canada
| | - Anne-Marie Lemay
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, QC, Canada
| | - Marie-Josée Beaulieu
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, QC, Canada
| | - Emilie Bernatchez
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, QC, Canada
| | - Marc Veillette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, QC, Canada
| | - Caroline Duchaine
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, QC, Canada
| | - Marie-Renée Blanchet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, QC, Canada
| |
Collapse
|
6
|
Brassard J, Marsolais D, Blanchet MR. Mutant Mice and Animal Models of Airway Allergic Disease. Methods Mol Biol 2021; 2241:59-74. [PMID: 33486728 DOI: 10.1007/978-1-0716-1095-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Eosinophilia is a hallmark of allergic airway inflammation, and eosinophils represent an integral effector leukocyte through their release of various granule-stored cytokines and proteins. Numerous mouse models have been developed to mimic clinical disease and they have been instrumental in furthering our understanding of the role of eosinophils in disease. Most of these models consist of intranasal (i.n.) administration of antigenic proteases including papain and house dust mite (HDM) or the neo-antigen ovalbumin, with a resulting Th2-biased immune response and airway eosinophilia. These models have been particularly informative when combined with the numerous transgenic mice available that modulate eosinophil frequency or the mechanisms involved in their migration. Here, we describe the current models of allergic airway inflammation and outline some of the transgenic mice available to study eosinophil disease.
Collapse
Affiliation(s)
- Julyanne Brassard
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada
| | - David Marsolais
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada
| | - Marie-Renee Blanchet
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada.
| |
Collapse
|
7
|
Inoue Y, Okamoto T, Honda T, Nukui Y, Akashi T, Takemura T, Tozuka M, Miyazaki Y. Disruption in the balance between apolipoprotein A-I and mast cell chymase in chronic hypersensitivity pneumonitis. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:659-671. [PMID: 33016012 PMCID: PMC7654418 DOI: 10.1002/iid3.355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Background Apolipoprotein A‐I (apoA‐I) has an antifibrotic effect in idiopathic pulmonary fibrosis. Although pulmonary fibrosis is associated with poor prognosis of patients with hypersensitivity pneumonitis (HP), little is known regarding the role of apoA‐I in the pathogenesis of HP. Methods Two‐dimensional electrophoresis, immunoblotting, and enzyme‐linked immunosorbent assays were performed for the identification and quantification of apoA‐I in bronchoalveolar lavage fluid (BALF) from patients with acute and chronic HP. To investigate the degradation of apoA‐I, apoA‐I was incubated with BALF. Moreover, the role of apoA‐I in TGF‐β1‐induced epithelial–mesenchymal transition of A549 cells was examined. Results The concentration of apoA‐I in the BALF was significantly lower in chronic HP (n = 56) compared with acute HP (n = 31). The expression level of apoA‐I was also low in the lung tissues of chronic HP. ApoA‐I was degraded by BALF from HP patients. The number of chymase‐positive mast cells in the alveolar parenchyma was inversely correlated with apoA‐I levels in the BALF of chronic HP patients. In vitro experiment using A549 cells, untreated apoA‐I inhibited TGF‐β1‐induced epithelial–mesenchymal transition, although this trend was not observed in the chymase‐treated apoA‐I. Conclusions A decrease of apoA‐I was associated with the pathogenesis of chronic HP in terms of pulmonary fibrosis and mast cell chymase attenuated the protective effect of apoA‐I against pulmonary fibrosis. Furthermore, apoA‐I could be a crucial molecule associated with lung fibrogenesis of HP.
Collapse
Affiliation(s)
- Yukihisa Inoue
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tsukasa Okamoto
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayuki Honda
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihisa Nukui
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takumi Akashi
- Department of Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tamiko Takemura
- Department of Pathology, Japan Red Cross Centre, Tokyo, Japan
| | - Minoru Tozuka
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
8
|
Brassard J, Maheux C, Langlois A, Bernatchez E, Marsolais D, Flamand N, Blanchet MR. Lipopolysaccharide impacts murine CD103 + DC differentiation, altering the lung DC population balance. Eur J Immunol 2019; 49:638-652. [PMID: 30707446 DOI: 10.1002/eji.201847910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/13/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
Conventional DCs are a heterogeneous population that bridge the innate and adaptive immune systems. The lung DC population comprises CD103+ XCR1+ DC1s and CD11b+ DC2s; their various combined functions cover the whole spectrum of immune responses needed to maintain homeostasis. Here, we report that in vivo exposure to LPS leads to profound alterations in the proportions of CD103+ XCR1+ DCs in the lung. Using ex vivo LPS and TNF stimulations of murine lung and spleen-isolated DCs, we show that this is partly due to a direct downregulation of the GM-CSF-induced DC CD103 expression. Furthermore, we demonstrate that LPS-induced systemic inflammation alters the transcriptional signature of DC precursors toward a lower capacity to differentiate into XCR1+ DCs. Also, we report that TNF prevents the capacity of pre-DCs to express CD103 upon maturation. Overall, our results indicate that exposure to LPS directly impacts the capacity of pre-DCs to differentiate into XCR1+ DCs, in addition to lowering their capacity to express CD103. This leads to decreased proportions of CD103+ XCR1+ DCs in the lung, favoring CD11b+ DCs, which likely plays a role in the break in homeostasis following LPS exposure, and in determining the nature of the immune response to LPS.
Collapse
Affiliation(s)
- Julyanne Brassard
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Catherine Maheux
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Anick Langlois
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Emilie Bernatchez
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - David Marsolais
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Nicolas Flamand
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Marie-Renee Blanchet
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| |
Collapse
|