1
|
Alfaifi SY, Adeosun WA, Asiri AM, Rahman MM. Sensitive and Rapid Detection of Aspartic Acid with Co 3O 4-ZnO Nanorods Using Differential Pulse Voltammetry. BIOSENSORS 2023; 13:88. [PMID: 36671923 PMCID: PMC9855673 DOI: 10.3390/bios13010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/25/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Herein, the detection of aspartic acid by doped Co3O4-ZnO nanorod materials was proposed using differential pulse voltammetry. The nano-composite metal oxide was synthesized by the wet precipitation method in basic media. Aspartic acid is a non-essential amino acid naturally synthesized in the body with lot of health significance, including as a biomarker for several health deficiencies. The synthesized composite Co3O4-ZnO nanorod was well-investigated by using FESEM, XRD, XPS, FTIR, UV/vis., EIS, and CV. The synthesized composite exhibited a low limit of detection (0.03 µM, high sensitivity (0.0014 µA µM-1 cm-2) and wide linear range (0.05-50 µM) for aspartic acid. The substrate, the Co3O4-ZnO nanorod, enhanced the electro-catalytic oxidation of aspartic acid as a result of its catalytic and conductivity properties. The developed sensor based on Co3O4-ZnO has a repeatable, reproducible and stable current response for aspartic acid. Additionally, other electroactive compounds did not interfere with the sensor's current response. The suitability of the developed sensor for real sample analysis was also established. Therefore, this study proposed the potential use of Co3O4-ZnO nanorod material in healthcare management for the maintenance of human well-being.
Collapse
Affiliation(s)
- Sulaiman Y. Alfaifi
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Waheed Abiodun Adeosun
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Ribeiro HC, Sen P, Dickens A, Santa Cruz EC, Orešič M, Sussulini A. Metabolomic and proteomic profiling in bipolar disorder patients revealed potential molecular signatures related to hemostasis. Metabolomics 2022; 18:65. [PMID: 35922643 DOI: 10.1007/s11306-022-01924-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Bipolar disorder (BD) is a mood disorder characterized by the occurrence of depressive episodes alternating with episodes of elevated mood (known as mania). There is also an increased risk of other medical comorbidities. OBJECTIVES This work uses a systems biology approach to compare BD treated patients with healthy controls (HCs), integrating proteomics and metabolomics data using partial correlation analysis in order to observe the interactions between altered proteins and metabolites, as well as proposing a potential metabolic signature panel for the disease. METHODS Data integration between proteomics and metabolomics was performed using GC-MS data and label-free proteomics from the same individuals (N = 13; 5 BD, 8 HC) using generalized canonical correlation analysis and partial correlation analysis, and then building a correlation network between metabolites and proteins. Ridge-logistic regression models were developed to stratify between BD and HC groups using an extended metabolomics dataset (N = 28; 14 BD, 14 HC), applying a recursive feature elimination for the optimal selection of the metabolites. RESULTS Network analysis demonstrated links between proteins and metabolites, pointing to possible alterations in hemostasis of BD patients. Ridge-logistic regression model indicated a molecular signature comprising 9 metabolites, with an area under the receiver operating characteristic curve (AUROC) of 0.833 (95% CI 0.817-0.914). CONCLUSION From our results, we conclude that several metabolic processes are related to BD, which can be considered as a multi-system disorder. We also demonstrate the feasibility of partial correlation analysis for integration of proteomics and metabolomics data in a case-control study setting.
Collapse
Affiliation(s)
- Henrique Caracho Ribeiro
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas, PO Box 6154, Campinas, SP, 13083-970, Brazil
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Partho Sen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- School of Medical Sciences, Örebro University, 702 81, Örebro, Sweden
| | - Alex Dickens
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- Department of Chemistry, University of Turku, 20520, Turku, Finland
| | - Elisa Castañeda Santa Cruz
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas, PO Box 6154, Campinas, SP, 13083-970, Brazil
| | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- School of Medical Sciences, Örebro University, 702 81, Örebro, Sweden
| | - Alessandra Sussulini
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas, PO Box 6154, Campinas, SP, 13083-970, Brazil.
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica (INCTBio), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
3
|
Abdulbagi M, Wang L, Siddig O, Di B, Li B. D-Amino Acids and D-Amino Acid-Containing Peptides: Potential Disease Biomarkers and Therapeutic Targets? Biomolecules 2021; 11:1716. [PMID: 34827714 PMCID: PMC8615943 DOI: 10.3390/biom11111716] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
In nature, amino acids are found in two forms, L and D enantiomers, except for glycine which does not have a chiral center. The change of one form to the other will lead to a change in the primary structure of proteins and hence may affect the function and biological activity of proteins. Indeed, several D-amino acid-containing peptides (DAACPs) were isolated from patients with cataracts, Alzheimer's and other diseases. Additionally, significant levels of free D-amino acids were found in several diseases, reflecting the disease conditions. Studying the molecular mechanisms of the DAACPs formation and the alteration in D-amino acids metabolism will certainly assist in understanding these diseases and finding new biomarkers and drug targets. In this review, the presence of DAACPs and free D-amino acids and their links with disease development and progress are summarized. Similarly, we highlight some recent advances in analytical techniques that led to improvement in the discovery and analysis of DAACPs and D-amino acids.
Collapse
Affiliation(s)
- Mohamed Abdulbagi
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
| | - Liya Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
| | - Orwa Siddig
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
| | - Bin Di
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
- Center Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| | - Bo Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
- Center Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Identification and Relative Quantification of hFSH Glycoforms in Women's Sera via MS-PRM-Based Approach. Pharmaceutics 2021; 13:pharmaceutics13060798. [PMID: 34071747 PMCID: PMC8226871 DOI: 10.3390/pharmaceutics13060798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
Follicle-stimulating hormone (FSH) is a glycohormone synthesized by adenohypophysis, and it stimulates ovulation in women and spermatogenesis in men by binding to its receptor (FSHR). FSHR is involved in several mechanisms to transduce intracellular signals in response to the FSH stimulus. Exogenous FSH is currently used in the clinic for ovarian hyperstimulation during in vitro fertilization in women, and for treatment of infertility caused by gonadotropin deficiency in men. The glycosylation of FSH strongly affects the binding affinity to its receptor, hence significantly influencing the biological activity of the hormone. Therefore, the accurate measurement and characterization of serum hFSH glycoforms will contribute to elucidating the complex mechanism of action by which different glycoforms elicit distinct biological activity. Nowadays ELISA is the official method with which to monitor serum hFSH, but the test is unable to distinguish between the different FSH glycovariants and is therefore unsuitable to study the biological activity of this hormone. This study presents a preliminary alternative strategy for identifying and quantifying serum hFSH glycoforms based on immunopurification assay and mass spectrometry (MS), and parallel reaction monitoring (PRM) analysis. In this study, we provide an MS–PRM data acquisition method for hFSH glycopeptides identification with high specificity and their quantification by extracting the chromatographic traces of selected fragments of glycopeptides. Once set up for all its features, the proposed method could be transferred to the clinic to improve fertility treatments and follow-ups in men and women.
Collapse
|
5
|
Pinto G, Aurilia M, Illiano A, Fontanarosa C, Sannia G, Trifuoggi M, Lettera V, Sperandeo R, Pucci P, Amoresano A. From untargeted metabolomics to the multiple reaction monitoring-based quantification of polyphenols in chocolates from different geographical areas. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4651. [PMID: 32893948 DOI: 10.1002/jms.4651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 05/03/2023]
Abstract
Plants, including cocoa bean, are the main source of metabolites with multiple biological functions. Polyphenol extracts are widely used as a nutraceutical supplement for their well-known health-promoting role. In this paper, a preliminary untargeted metabolic screening was carried out by matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)/TOF on a pool of chocolate samples made by cocoa beans of different geographical areas. Then, a targeted approach was developed for polyphenol quantification by an optimized Liquid chromatography (LC)-tandem mass spectrometry (MS/MS) method multiple reaction monitoring (MRM) ion mode. Detection limit of polyphenol standard ranged between 1 and 25 pg/μl with variation coefficient lower than 15%. External calibration curves were used for quantification of polyphenols in 18 samples. Fifty polyphenols were detected in a single LC-MRM/MS run and quantified by monitoring almost 90 transitions in a 5-minute run. The polyphenols content of different cocoa beans from several countries was finally compared by principal component analysis (PCA) statistical analysis suggesting that the chocolate made by Ecuador cocoa beans showed the highest level of polyphenols.
Collapse
Affiliation(s)
- Gabriella Pinto
- Dipartimento di Scienze Chimiche, Università di Napoli 'Federico II', Via Cinthia, 26, Naples, 80126, Italy
| | - Michela Aurilia
- Dipartimento di Scienze Chimiche, Università di Napoli 'Federico II', Via Cinthia, 26, Naples, 80126, Italy
| | - Anna Illiano
- Dipartimento di Scienze Chimiche, Università di Napoli 'Federico II', Via Cinthia, 26, Naples, 80126, Italy
- CEINGE Advanced Biotechnology, Università di Napoli 'Federico II', Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Carolina Fontanarosa
- Dipartimento di Scienze Chimiche, Università di Napoli 'Federico II', Via Cinthia, 26, Naples, 80126, Italy
| | - Giovanni Sannia
- Dipartimento di Scienze Chimiche, Università di Napoli 'Federico II', Via Cinthia, 26, Naples, 80126, Italy
| | - Marco Trifuoggi
- Dipartimento di Scienze Chimiche, Università di Napoli 'Federico II', Via Cinthia, 26, Naples, 80126, Italy
| | - Vincenzo Lettera
- Dipartimento di Scienze Chimiche, Università di Napoli 'Federico II', Via Cinthia, 26, Naples, 80126, Italy
| | - Raffaele Sperandeo
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via Nazario Sauro, 85, Potenza, 85100, Italy
| | - Piero Pucci
- Dipartimento di Scienze Chimiche, Università di Napoli 'Federico II', Via Cinthia, 26, Naples, 80126, Italy
- CEINGE Advanced Biotechnology, Università di Napoli 'Federico II', Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Angela Amoresano
- Dipartimento di Scienze Chimiche, Università di Napoli 'Federico II', Via Cinthia, 26, Naples, 80126, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario Viale delle, Medaglie d'Oro, 305, Roma, 00136, Italy
| |
Collapse
|
6
|
Violi JP, Bishop DP, Padula MP, Steele JR, Rodgers KJ. Considerations for amino acid analysis by liquid chromatography-tandem mass spectrometry: A tutorial review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Shibata K, Imanishi D, Abe K, Suzuki M, Takahashi S, Kera Y. d-Aspartate N-methyltransferase catalyzes biosynthesis of N-methyl-d-aspartate (NMDA), a well-known selective agonist of the NMDA receptor, in mice. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140527. [PMID: 32853768 DOI: 10.1016/j.bbapap.2020.140527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/15/2020] [Accepted: 08/03/2020] [Indexed: 11/25/2022]
Abstract
N-Methyl-d-aspartate (NMDA), which is a selective agonist for the NMDA receptor, has recently been shown to be present in various biological tissues. In mammals, the activity of d-aspartate N-methyltransferase (DDNMT), which produces NMDA from d-aspartate, has been detected only in homogenates prepared from rat tissues. Moreover, the enzymatic properties of DDNMT have been poorly studied and its molecular entity has not yet been identified. In this report, we show for the first time that the activity of DDNMT is present in mouse tissues and succeed in obtaining a partially purified enzyme preparation from a mouse tissue homogenate with a purification fold of 1900 or more, and have characterized the enzymatic activity of this preparation. The results indicate that DDNMT, which is highly specific for d-aspartate and is S-adenosyl-l-methionine-dependent, is a novel enzyme that clearly differs from the known methylamine-glutamate N-methyltransferase (EC 2.1.1.21) and glycine N-methyltransferase (EC 2.1.1.20).
Collapse
Affiliation(s)
- Kimihiko Shibata
- Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka, Niigata 940-2188, Japan; Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, 30 Nagao, Kamiarakawa, Taira, Iwaki, Fukushima, 970-8034, Japan.
| | - Daiki Imanishi
- Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka, Niigata 940-2188, Japan; Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, 30 Nagao, Kamiarakawa, Taira, Iwaki, Fukushima, 970-8034, Japan
| | - Katsumasa Abe
- Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka, Niigata 940-2188, Japan
| | - Masataka Suzuki
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, 30 Nagao, Kamiarakawa, Taira, Iwaki, Fukushima, 970-8034, Japan
| | - Shouji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka, Niigata 940-2188, Japan
| | - Yoshio Kera
- Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
8
|
Multiple-Reaction Monitoring Tandem Mass Method for Determination of Phenolics and Water-Soluble Vitamins in Eccoilopus formosanus. Molecules 2020; 25:molecules25163632. [PMID: 32785047 PMCID: PMC7464304 DOI: 10.3390/molecules25163632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022] Open
Abstract
This study established a validated method for the quantitative and qualitative determination of eight signature compounds in Eccoilopus formosanus. We used multiple-reaction monitoring scanning for quantification, and switched the electrospray ion source polarity between positive and negative modes in a single chromatographic run. The precursor-to-product ion transitions were m/z 355/163, m/z 181/163, m/z 265/122, m/z 269/117, m/z 170/152, m/z 377.2/180.7, m/z 169/124.8 and m/z 193/134 for chlorogenic acid, caffeic acid, thiamine, apigenin, pyridoxamin, riboflavin, gallic acid and ferulic acid, respectively. The developed method was also validated for accuracy, precision and limit of quantification. In this method, eight compounds were quantified with correlation coefficients of greater than 0.995. A high recovery (81.5-94.1%) and good reproducibility was obtained for five phenolics and three vitamins with the relative standard deviation, ranging from 1.2 to 3.5%. This method may be applied to the determination of both phenolics and water-soluble vitamins in cereal grain. The results may suggest that the extract of E. formosanus could be a good source of bioactive phytochemicals.
Collapse
|
9
|
Pinto G, Illiano A, Carpentieri A, Spinelli M, Melchiorre C, Fontanarosa C, di Serio M, Amoresano A. Quantification of Polyphenols and Metals in Chinese Tea Infusions by Mass Spectrometry. Foods 2020; 9:foods9060835. [PMID: 32630507 PMCID: PMC7353651 DOI: 10.3390/foods9060835] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022] Open
Abstract
Chemical compounds within tea (Camellia sinensis) are characterized by an extensive heterogeneity; some of them are crucial for their protective and defensive role in plants, and are closely connected to the benefits that the consumption of tea can provide. This paper is mainly focused on the characterization of polyphenols (secondary metabolites generally involved in defense against ultraviolet radiation and aggression by pathogens) and metals, extracted from nine Chinese tea samples, by integrating different mass spectrometry methodologies, LC-MS/MS in multiple reaction monitoring (MRM) and inductively coupled plasma mass spectrometry (ICP-MS). Our approach allowed to identify and compare forty polyphenols differently distributed in tea infusions at various fermentation levels. The exploration of polyphenols with nutraceutical potential in tea infusions can widely benefit especially tea-oriented populations. The worldwide consumption of tea requires at the same time a careful monitoring of metals released during the infusion of tea leaves. Metal analysis can provide the identification of many healthy minerals such as potassium, sodium, calcium, magnesium, differently affected by the fermentation of leaves. Our results allowed us: (i) to draw up a polyphenols profile of tea leaves subjected to different fermentation processes; (ii) to identify and quantify metals released from tea leaves during infusion. In this way, we obtained a molecular fingerprint useful for both nutraceutical applications and food control/typization, as well as for frauds detection and counterfeiting.
Collapse
Affiliation(s)
- Gabriella Pinto
- Department Chemical Sciences, University of Naples Federico II, Monte S. Angelo-Cinthia, 80126 Naples, Italy; (G.P.); (A.C.); (M.S.); (C.M.); (C.F.); (M.d.S.); (A.A.)
| | - Anna Illiano
- Department Chemical Sciences, University of Naples Federico II, Monte S. Angelo-Cinthia, 80126 Naples, Italy; (G.P.); (A.C.); (M.S.); (C.M.); (C.F.); (M.d.S.); (A.A.)
- Correspondence:
| | - Andrea Carpentieri
- Department Chemical Sciences, University of Naples Federico II, Monte S. Angelo-Cinthia, 80126 Naples, Italy; (G.P.); (A.C.); (M.S.); (C.M.); (C.F.); (M.d.S.); (A.A.)
| | - Michele Spinelli
- Department Chemical Sciences, University of Naples Federico II, Monte S. Angelo-Cinthia, 80126 Naples, Italy; (G.P.); (A.C.); (M.S.); (C.M.); (C.F.); (M.d.S.); (A.A.)
| | - Chiara Melchiorre
- Department Chemical Sciences, University of Naples Federico II, Monte S. Angelo-Cinthia, 80126 Naples, Italy; (G.P.); (A.C.); (M.S.); (C.M.); (C.F.); (M.d.S.); (A.A.)
| | - Carolina Fontanarosa
- Department Chemical Sciences, University of Naples Federico II, Monte S. Angelo-Cinthia, 80126 Naples, Italy; (G.P.); (A.C.); (M.S.); (C.M.); (C.F.); (M.d.S.); (A.A.)
| | - Martino di Serio
- Department Chemical Sciences, University of Naples Federico II, Monte S. Angelo-Cinthia, 80126 Naples, Italy; (G.P.); (A.C.); (M.S.); (C.M.); (C.F.); (M.d.S.); (A.A.)
| | - Angela Amoresano
- Department Chemical Sciences, University of Naples Federico II, Monte S. Angelo-Cinthia, 80126 Naples, Italy; (G.P.); (A.C.); (M.S.); (C.M.); (C.F.); (M.d.S.); (A.A.)
- Istituto Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario Viale delle Medaglie d’Oro, 305, 00136 Roma RM, Italy
| |
Collapse
|
10
|
Shibata K, Hagiya S, Okawara R, Abe K, Takahashi S, Kera Y. Liquid chromatography-electrospray ionization-tandem mass spectrometric assay for d-aspartate N-methyltransferase activity in ark shells. Biosci Biotechnol Biochem 2019; 84:500-506. [PMID: 31694479 DOI: 10.1080/09168451.2019.1689094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method for the separation and quantification of the enantiomers of N-methylaspartate and N-methylglutamate, after derivatization with Nα-(5-fluoro-2,4-dinitrophenyl)-L-leucinamide was established. The time required for the LC-ESI-MS/MS analysis was within 20 min and the detection limit was approximately 10 fmol per injection, demonstrating that this method can be used for the rapid determination of D-aspartate N-methyltransferase activity in the ark shell clam Scapharca broughtonii.Abbreviations: NMDA: N-methyl-D-aspartate; NMLA: N-methyl-L-aspartate; NMDG: N-methyl-D-glutamate; NMLG: N-methyl-L-glutamate; NMA: N-methylaspartate; NMG: N-methylglutamate; HPLC: high-performance liquid chromatography; SAM: S-adenosyl-L-methionine; OPA: o-phthalaldehyde; LC-ESI-MS/MS: liquid chromatography-electrospray ionization-tandem mass spectrometry; FDLA: Nα-(5-fluoro-2,4-dinitrophenyl)-L-leucinamide; FDAA: Nα-(5-fluoro-2,4-dinitrophenyl)-L-alaninamide; ESI: electrospray ionization; LC-ESI-MS: liquid chromatography-electrospray ionization-mass spectrometry; MS/MS: tandem mass spectrometry.
Collapse
Affiliation(s)
- Kimihiko Shibata
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, Iwaki, Fukushima, Japan.,Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Saho Hagiya
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, Iwaki, Fukushima, Japan
| | - Rena Okawara
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Fukushima College, Iwaki, Fukushima, Japan
| | - Katsumasa Abe
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Shouji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Yoshio Kera
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| |
Collapse
|
11
|
Goudarzvand M, Panahi Y, Yazdani R, Miladi H, Tahmasebi S, Sherafat A, Afraei S, Abouhamzeh K, Jamee M, Al-Hussieni KJMR, Mohammadi H, Mohebbi A, Hossein-Khannazer N, Zaki-Dizaji M, Di Fiore MM, D'Aniello A, Azizi G. The Effects of D-aspartate on Neurosteroids, Neurosteroid Receptors, and Inflammatory Mediators in Experimental Autoimmune Encephalomyelitis. Endocr Metab Immune Disord Drug Targets 2019; 19:316-325. [PMID: 30289086 DOI: 10.2174/1871530318666181005093459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Experimental autoimmune encephalomyelitis (EAE) is a widely used model for multiple sclerosis. The present study has been designed to compare the efficiencies of oral and intraperitoneal (IP) administration of D-aspartate (D-Asp) on the onset and severity of EAE, the production of neurosteroids, and the expression of neurosteroid receptors and inflammatory mediators in the brain of EAE mice. METHODS In this study, EAE was induced in C57BL/6 mice treated with D-Asp orally (D-Asp-Oral) or by IP injection (D-Asp-IP). On the 20th day, brains (cerebrums) and cerebellums of mice were evaluated by histological analyses. The brains of mice were analyzed for: 1) Neurosteroid (Progesterone, Testosterone, 17β-estradiol) concentrations; 2) gene expressions of cytokines and neurosteroid receptors by reverse transcription polymerase chain reaction, and 3) quantitative determination of D-Asp using liquid chromatography-tandem mass spectrometry. Further, some inflammatory cytokines and matrix metalloproteinase-2 (MMP-2) were identified in the mouse serum using enzyme-linked immunosorbent assay kits. RESULTS Our findings demonstrated that after D-Asp was administered, it was taken up and accumulated within the brain. Further, IP injection of D-Asp had more beneficial effects on EAE severity than oral gavage. The concentration of the testosterone and 17β-estradiol in D-Asp-IP group was significantly higher than that of the control group. There were no significant differences in the gene expression of cytokine and neurosteroid receptors between control, D-Asp-IP, and D-Asp-Oral groups. However, IP treatment with D-Asp significantly reduced C-C motif chemokine ligand 2 and MMP-2 serum levels compared to control mice. CONCLUSION IP injection of D-Asp had more beneficial effects on EAE severity, neurosteroid induction and reduction of inflammatory mediators than oral gavage.
Collapse
Affiliation(s)
- Mahdi Goudarzvand
- Department of Physiology and Pharmacology, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Yaser Panahi
- North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Yazdani
- Research Centre for Immunodeficiencies, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosein Miladi
- Department of Pathology, Imam Khomeini Hospital affiliated to Social Security Organization, Arak, Iran
| | - Saeed Tahmasebi
- Department of Biology, Arak Branch, Islamic Azad University, Arak, Iran
| | - Amin Sherafat
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, United States
| | - Sanaz Afraei
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Abouhamzeh
- Research Centre for Immunodeficiencies, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Alborz, Iran
| | | | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohebbi
- Growth and Development Research Centre, Paediatrics Centre of Excellence, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Zaki-Dizaji
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Maddalena Di Fiore
- Universita della Campania "L. Vanvitelli" Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Via Vivaldi 43, 81100, Caserta, Italy
| | - Antimo D'Aniello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", via Vivaldi 43, 81100, Caserta, Italy
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
12
|
Jansson ET. Strategies for analysis of isomeric peptides. J Sep Sci 2017; 41:385-397. [PMID: 28922569 DOI: 10.1002/jssc.201700852] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 01/09/2023]
Abstract
This review presents an overview and recent progress of strategies for detecting isomerism in peptides, with focus on d/l epimerization and the various isomers that the presence of an aspartic acid residue may yield in a protein or peptide. While mass spectrometry has become a majorly used method of choice within proteomics, isomerism is inherently difficult to analyze because it is a modification that does not yield any change in mass of the analyte. Here, several techniques used for analysis of peptide isomerism are discussed, including enzymatic assays, liquid chromatography, and capillary electrophoresis. Recent progress in method development using mass spectrometry is also discussed, including labeling strategies, fragmentation techniques, and ion-mobility spectrometry.
Collapse
Affiliation(s)
- Erik T Jansson
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|