1
|
Kamruzzaman M, Beyene MA, Siddiqui MN, Ballvora A, Léon J, Naz AA. Pinpointing genomic loci for drought-induced proline and hydrogen peroxide accumulation in bread wheat under field conditions. BMC PLANT BIOLOGY 2022; 22:584. [PMID: 36513990 PMCID: PMC9746221 DOI: 10.1186/s12870-022-03943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Proline (Pro) and hydrogen peroxide (H2O2) play a critical role in plants during drought adaptation. Genetic mapping for drought-induced Pro and H2O2 production under field conditions is very limited in crop plants since their phenotyping with large populations is labor-intensive. A genome-wide association study (GWAS) of a diversity panel comprised of 184 bread wheat cultivars grown in natural field (control) and rain-out shelter (drought) environments was performed to identify candidate loci and genes regulating Pro and H2O2 accumulation induced by drought. RESULTS The GWAS identified top significant marker-trait associations (MTAs) on 1A and 2A chromosomes, respectively for Pro and H2O2 in response to drought. Similarly, MTAs for stress tolerance index (STI) of Pro and H2O2 were identified on 5B and 1B chromosomes, respectively. Total 143 significant MTAs were identified including 36 and 71 were linked to drought and 2 and 34 were linked to STI for Pro and H2O2, respectively. Next, linkage disequilibrium analysis revealed minor alleles of significant single-markers and haplotypes were associated with higher Pro and H2O2 accumulation under drought. Several putative candidate genes for Pro and H2O2 content encode proteins with kinase, transporter or protein-binding activities. CONCLUSIONS The identified genetic factors associated with Pro and H2O2 biosynthesis underlying drought adaptation lay a fundamental basis for functional studies and future marker-assisted breeding programs.
Collapse
Affiliation(s)
- Mohammad Kamruzzaman
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh-2202, Bangladesh
| | - Mekides Abebe Beyene
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Md Nurealam Siddiqui
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
- Field Lab Campus Klein-Altendorf, University of Bonn, Bonn, Germany
| | - Ali Ahmad Naz
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany.
- Department of Plant Breeding, University of Applied Sciences, Osnabrueck, Osnabrueck, Germany.
| |
Collapse
|
2
|
El Gataa Z, Samir K, Tadesse W. Genetic Dissection of Drought Tolerance of Elite Bread Wheat ( Triticum aestivum L.) Genotypes Using Genome Wide Association Study in Morocco. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202705. [PMID: 36297729 PMCID: PMC9611990 DOI: 10.3390/plants11202705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/01/2023]
Abstract
Drought is one of the most important yield-limiting factors in Morocco. Identification and deployment of drought-tolerant wheat varieties are important to cope with the challenge of terminal moisture stress and increase wheat productivity. A panel composed of 200 elite spring bread wheat genotypes was phenotyped for yield and agronomic traits for 2 years (2020 and 2021) in Morocco under rainfed and irrigated environments. The panel was genotyped using 20K SNPs and, after filtration, a total of 15,735 SNP markers were used for a genome-wide association study (GWAS) using a mixed linear model (MLM) to identify marker-trait associations (MTA) and putative genes associated with grain yield and yield-related traits under rainfed and irrigated conditions. Significant differences were observed among the elite genotypes for grain yield and yield-related traits. Grain yield performance ranged from 0.97 to 6.16 t/ha under rainfed conditions at Sidi Al-Aidi station and from 3.31 to 9.38 t/h under irrigated conditions at Sidi Al-Aidi station, while Grain yield at Merchouch station ranged from 2.32 to 6.16 t/h under rainfed condition. A total of 159 MTAs (p < 0.001) and 46 genes were discovered, with 67 MTAs recorded under rainfed conditions and 37 MTAs recorded under irrigated conditions at the Sidi Al-Aidi station, while 55 MTAs were recorded under rainfed conditions at Merchouch station. The marker ‘BobWhite_c2988_493’ on chromosome 2B was significantly correlated with grain yield under rainfed conditions. Under irrigated conditions, the marker ‘AX-94653560’ on chromosome 2D was significantly correlated with grain yield at Sidi Al-Aidi station. The maker ‘RAC875_c17918_321’ located on chromosome 4A, associated with grain yield was linked with the gene TraesCS4A02G322700, which encodes for F-box domain-containing protein. The markers and candidate genes discovered in this study should be further validated for their potential use in marker-assisted selection to generate high-yielding wheat genotypes with drought tolerance.
Collapse
Affiliation(s)
- Zakaria El Gataa
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10080, Morocco
- Faculty of Sciences Ben M’sick, University Hassan II of Casablanca, Casablanca 7955, Morocco
| | - Karima Samir
- Faculty of Sciences Ben M’sick, University Hassan II of Casablanca, Casablanca 7955, Morocco
| | - Wuletaw Tadesse
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10080, Morocco
| |
Collapse
|
3
|
Gupta OP, Singh AK, Singh A, Singh GP, Bansal KC, Datta SK. Wheat Biofortification: Utilizing Natural Genetic Diversity, Genome-Wide Association Mapping, Genomic Selection, and Genome Editing Technologies. Front Nutr 2022; 9:826131. [PMID: 35938135 PMCID: PMC9348810 DOI: 10.3389/fnut.2022.826131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/06/2022] [Indexed: 01/11/2023] Open
Abstract
Alleviating micronutrients associated problems in children below five years and women of childbearing age, remains a significant challenge, especially in resource-poor nations. One of the most important staple food crops, wheat attracts the highest global research priority for micronutrient (Fe, Zn, Se, and Ca) biofortification. Wild relatives and cultivated species of wheat possess significant natural genetic variability for these micronutrients, which has successfully been utilized for breeding micronutrient dense wheat varieties. This has enabled the release of 40 biofortified wheat cultivars for commercial cultivation in different countries, including India, Bangladesh, Pakistan, Bolivia, Mexico and Nepal. In this review, we have systematically analyzed the current understanding of availability and utilization of natural genetic variations for grain micronutrients among cultivated and wild relatives, QTLs/genes and different genomic regions regulating the accumulation of micronutrients, and the status of micronutrient biofortified wheat varieties released for commercial cultivation across the globe. In addition, we have also discussed the potential implications of emerging technologies such as genome editing to improve the micronutrient content and their bioavailability in wheat.
Collapse
Affiliation(s)
- Om Prakash Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | | | | | - Swapan K. Datta
- Department of Botany, University of Calcutta, Kolkata, India
| |
Collapse
|
4
|
Hao S, Lou H, Wang H, Shi J, Liu D, Baogerile, Tao J, Miao S, Pei Q, Yu L, Wu M, Gao M, Zhao N, Dong J, You M, Xin M. Genome-Wide Association Study Reveals the Genetic Basis of Five Quality Traits in Chinese Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:835306. [PMID: 35310636 PMCID: PMC8928432 DOI: 10.3389/fpls.2022.835306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/14/2022] [Indexed: 09/10/2023]
Abstract
Bread wheat is a highly adaptable food crop grown extensively around the world and its quality genetic improvement has received wide attention. In this study, the genetic loci associated with five quality traits including protein content (PC), gluten content (GC), baking value (BV), grain hardness (HA), and sedimentation value (SV) in a population of 253 Chinese wheat grown in Inner Mongolia were investigated through genome wide association mapping. A total of 103 QTL containing 556 SNPs were significantly related to the five quality traits based on the phenotypic data collected from three environments and BLUP data. Of these QTL, 32 QTL were continuously detected under at least two experiments. Some QTL such as qBV3D.2/qHA3D.2 on 3D, qPC5A.3/qGC5A on 5A, qBV5D/qHA5D on 5D, qBV6B.2/qHA6B.3 on 6B, and qBV6D/qHA6D.1 on 6D were associated with multiple traits. In addition, distribution of favorable alleles of the stable QTL in the association panel and their effects on five quality traits were validated. Analysis of existing transcriptome data revealed that 34 genes were specifically highly expressed in grains during reproductive growth stages. The functions of these genes will be characterized in future experiments. This study provides novel insights into the genetic basis of quality traits in wheat.
Collapse
Affiliation(s)
- Shuiyuan Hao
- College of Agronomy, China Agricultural University, Beijing, China
- Safety Production and Early Warning Control Laboratory of Green Agricultural Products in Hetao Region, Hetao College, Bayannur, China
| | - Hongyao Lou
- Institute of Hybrid Wheat, Beijng Academy of Agriculture Forestry Sciences, Beijing, China
| | - Haiwei Wang
- Department of Agriculture, Hetao College, Bayannur, China
| | - Jinghong Shi
- Department of Agriculture, Hetao College, Bayannur, China
| | - Dan Liu
- Department of Medicine, Hetao College, Bayannur, China
| | - Baogerile
- Department of Library, Hetao College, Bayannur, China
| | - Jianguang Tao
- Bayannur City Meteorological Bureau, Bayannur, China
| | - Sanming Miao
- Bureau of Agriculture and Animal Husbandry of Linhe District of Bayannur, Bayannur, China
| | - Qunce Pei
- Bureau of Agriculture and Animal Husbandry of Linhe District of Bayannur, Bayannur, China
| | - Liangliang Yu
- Bayannur City Meteorological Bureau, Bayannur, China
| | - Min Wu
- Bureau of Agriculture and Animal Husbandry of Urat Middle Banner of Bayannur, Bayannur, China
| | - Ming Gao
- Department of Agriculture, Hetao College, Bayannur, China
| | - Naihu Zhao
- Department of Agriculture, Hetao College, Bayannur, China
| | - Jinchao Dong
- Department of Agriculture, Hetao College, Bayannur, China
| | - Mingshan You
- College of Agronomy, China Agricultural University, Beijing, China
| | - Mingming Xin
- College of Agronomy, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
QTL mapping for quality traits using a high-density genetic map of wheat. PLoS One 2020; 15:e0230601. [PMID: 32208463 PMCID: PMC7092975 DOI: 10.1371/journal.pone.0230601] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/03/2020] [Indexed: 01/27/2023] Open
Abstract
Protein- and starch-related quality traits, which are quantitatively inherited and significantly influenced by the environment, are critical determinants of the end-use quality of wheat. We constructed a high-density genetic map containing 10,739 loci (5,399 unique loci) using a set of 184 recombinant inbred lines (RILs) derived from a cross of 'Tainong 18 × Linmai 6' (TL-RILs). In this study, a quantitative trait loci (QTLs) analysis was used to examine the genetic control of grain protein content, sedimentation value, farinograph parameters, falling number and the performance of the starch pasting properties using TL-RILs grown in a field for three years. A total of 106 QTLs for 13 quality traits were detected, distributed on the 21 chromosomes. Of these, 38 and 68 QTLs for protein- and starch-related traits, respectively, were detected in three environments and their average values (AV). Twenty-six relatively high-frequency QTLs (RHF-QTLs) that were detected in more than two environments. Twelve stable QTL clusters containing at least one RHF-QTL were detected and classified into three types: detected only for protein-related traits (type I), detected only for starch-related traits (type II), and detected for both protein- and starch-related traits (type III). A total of 339 markers flanked with 11 QTL clusters (all except C6), were found to be highly homologous with 282 high confidence (HC) and 57 low confidence (LC) candidate genes based on IWGSC RefSeq v 1.0. These stable QTLs and RHF-QTLs, especially those grouped into clusters, are credible and should be given priority for QTL fine-mapping and identification of candidate genes with which to explain the molecular mechanisms of quality development and inform marker-assisted breeding in the future.
Collapse
|
6
|
Pegot-Espagnet P, Guillaume O, Desprez B, Devaux B, Devaux P, Henry K, Henry N, Willems G, Goudemand E, Mangin B. Discovery of interesting new polymorphisms in a sugar beet (elite [Formula: see text] exotic) progeny by comparison with an elite panel. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:3063-3078. [PMID: 31485698 PMCID: PMC6791908 DOI: 10.1007/s00122-019-03406-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
KEY MESSAGE The comparison of QTL detection performed on an elite panel and an (elite [Formula: see text] exotic) progeny shows that introducing exotic germplasm into breeding programs can bring new interesting allelic diversity. Selection of stable varieties producing the highest amount of extractable sugar per hectare (ha), resistant to diseases, and respecting environmental criteria is undoubtedly the main target for sugar beet breeding. As sodium, potassium, and [Formula: see text]-amino nitrogen in sugar beets are the impurities that have the biggest negative impact on white sugar extraction, it is interesting to reduce their concentration in further varieties. However, domestication history and strong selection pressures have affected the genetic diversity needed to achieve this goal. In this study, quantitative trait locus (QTL) detection was performed on two populations, an (elite [Formula: see text] exotic) sugar beet progeny and an elite panel, to find potentially new interesting regions brought by the exotic accession. The three traits linked with impurities content were studied. Some QTLs were detected in both populations, the majority in the elite panel because of most statistical power. Some of the QTLs were colocated and had favorable effect in the progeny since the exotic allele was linked with a decrease in the impurity content. A few number of favorable QTLs were detected in the progeny, only. Consequently, introgressing exotic genetic material into sugar beet breeding programs can allow the incorporation of new interesting alleles.
Collapse
Affiliation(s)
- Prune Pegot-Espagnet
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
- Florimond Desprez Veuve & Fils SAS, BP41, 3, Rue Florimond Desprez, 59242, Capelle-en-Pévèle, France
| | | | - Bruno Desprez
- Florimond Desprez Veuve & Fils SAS, BP41, 3, Rue Florimond Desprez, 59242, Capelle-en-Pévèle, France
| | - Brigitte Devaux
- Florimond Desprez Veuve & Fils SAS, BP41, 3, Rue Florimond Desprez, 59242, Capelle-en-Pévèle, France
| | - Pierre Devaux
- Florimond Desprez Veuve & Fils SAS, BP41, 3, Rue Florimond Desprez, 59242, Capelle-en-Pévèle, France
| | - Karine Henry
- Florimond Desprez Veuve & Fils SAS, BP41, 3, Rue Florimond Desprez, 59242, Capelle-en-Pévèle, France
| | - Nicolas Henry
- Florimond Desprez Veuve & Fils SAS, BP41, 3, Rue Florimond Desprez, 59242, Capelle-en-Pévèle, France
| | - Glenda Willems
- SESVanderHave, Industriepark Soldatenplein Zone 2/Nr 15, 3300, Tienen, Belgium
| | - Ellen Goudemand
- Florimond Desprez Veuve & Fils SAS, BP41, 3, Rue Florimond Desprez, 59242, Capelle-en-Pévèle, France
| | - Brigitte Mangin
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France.
| |
Collapse
|
7
|
Rebetzke GJ, Jimenez-Berni J, Fischer RA, Deery DM, Smith DJ. Review: High-throughput phenotyping to enhance the use of crop genetic resources. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 282:40-48. [PMID: 31003610 DOI: 10.1016/j.plantsci.2018.06.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/04/2018] [Accepted: 06/19/2018] [Indexed: 05/18/2023]
Abstract
Improved genetic, genomic and statistical technologies have increased the capacity to enrich breeding populations for key alleles underpinning adaptation and continued genetic gain. In turn, directed genomic selection together with increased heritability will reduce genetic variance to narrow the genetic base in many crop breeding programs. Diverse genetic resources (GR), including wild and weedy relatives, landraces and reconstituted synthetics, have potential to contribute novel alleles for key traits. Targeted trait identification may also identify genetic diversity in addressing new challenges including the need for modified root architecture, greater nutrient-use efficiency, and adaptation to warmer air and soil temperatures forecast with climate change. Yet while core collections and other GR sources have historically been invaluable for major gene control of disease and subsoil constraints, the mining of genetically (and phenotypically) complex traits in GR remains a significant challenge owing to reduced fertility, limited seed quantities and poor adaptation through linkage drag with undesirable alleles. High-throughput field phenomics (HTFP) offers the opportunity to capture phenotypically complex variation underpinning adaptation in traditional phenotypic selection or statistics-based breeding programs. Targeted HTFP will permit the reliable phenotyping of greater numbers of GR-derived breeding lines using smaller plot sizes and at earlier stages of population development to reduce the duration of breeding cycles and the loss of potentially important alleles with linkage drag. Two key opportunities are highlighted for use of HTFP in selection among GR-derived wheat breeding lines for greater biomass and stomatal conductance through canopy temperature.
Collapse
Affiliation(s)
- G J Rebetzke
- CSIRO Agriculture and Food, PO Box 1700, Canberra, ACT, 2601, Australia.
| | - J Jimenez-Berni
- High Resolution Plant Phenomics Centre, CSIRO Agriculture and Food, PO Box 1700, Canberra, ACT, 2601, Australia
| | - R A Fischer
- CSIRO Agriculture and Food, PO Box 1700, Canberra, ACT, 2601, Australia
| | - D M Deery
- CSIRO Agriculture and Food, PO Box 1700, Canberra, ACT, 2601, Australia
| | - D J Smith
- CSIRO Agriculture and Food, Private Mail Bag, Yanco NSW 2073 Australia
| |
Collapse
|
8
|
OPTIMIZATION OF PRODUCTION PROCESS OF PEELED GRAINS OF WHEAT OF DIFFERENT SOLIDITY. EUREKA: LIFE SCIENCES 2018. [DOI: 10.21303/2504-5695.2018.00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wheat is a leading agricultural plant with one of most gross grain harvest in the world. It is a valuable raw material for producing the wide assortment of food products. That is why little studied peculiarities of it need specification, and processing technologies – improvement.
The aim of the conducted studies was in specifying of processing regimes of solid and soft wheat grains into peeled ones that allowed to choose rational regimes of water-thermal processing for attaining their maximal output, boiling coefficient and decrease of a preparation duration.
It was proved, that the effect of heat and moisture mostly influences the output of grains and duration of their boiling, despite the solidity. The boiling coefficient depends on the solidity type more.
The optimal mode as to thermal processing at production of peeled grains of soft wheat is is steaming during 10 min with hydration during 10–12 min.
It is rational to steam solid wheat during 10 min with further hydration during 12–13 min at processing.
Collapse
|