1
|
Liang M, Gerwien J, Gutschalk A. A listening advantage for native speech is reflected by attention-related activity in auditory cortex. Commun Biol 2025; 8:180. [PMID: 39910341 PMCID: PMC11799217 DOI: 10.1038/s42003-025-07601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
The listening advantage for native speech is well known, but the neural basis of the effect remains unknown. Here we test the hypothesis that attentional enhancement in auditory cortex is stronger for native speech, using magnetoencephalography. Chinese and German speech stimuli were recorded by a bilingual speaker and combined into a two-stream, cocktail-party scene, with consistent and inconsistent language combinations. A group of native speakers of Chinese and a group of native speakers of German performed a detection task in the cued target stream. Results show that attention enhances negative-going activity in the temporal response function deconvoluted from the speech envelope. This activity is stronger when the target stream is in the native compared to the non-native language, and for inconsistent compared to consistent language stimuli. We interpret the findings to show that the stronger activity for native speech could be related to better top-down prediction of the native speech streams.
Collapse
Affiliation(s)
- Meng Liang
- Department of Neurology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Johannes Gerwien
- Institute of German as a Foreign Language Philology, University of Heidelberg, Plöck 55, 69117, Heidelberg, Germany
| | - Alexander Gutschalk
- Department of Neurology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Sano M, Hirosawa T, Yoshimura Y, Hasegawa C, An KM, Tanaka S, Yaoi K, Naitou N, Kikuchi M. Neural responses to syllable-induced P1m and social impairment in children with autism spectrum disorder and typically developing Peers. PLoS One 2024; 19:e0298020. [PMID: 38457397 PMCID: PMC10923473 DOI: 10.1371/journal.pone.0298020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/17/2024] [Indexed: 03/10/2024] Open
Abstract
In previous magnetoencephalography (MEG) studies, children with autism spectrum disorder (ASD) have been shown to respond differently to speech stimuli than typically developing (TD) children. Quantitative evaluation of this difference in responsiveness may support early diagnosis and intervention for ASD. The objective of this research is to investigate the relationship between syllable-induced P1m and social impairment in children with ASD and TD children. We analyzed 49 children with ASD aged 40-92 months and age-matched 26 TD children. We evaluated their social impairment by means of the Social Responsiveness Scale (SRS) and their intelligence ability using the Kaufman Assessment Battery for Children (K-ABC). Multiple regression analysis with SRS score as the dependent variable and syllable-induced P1m latency or intensity and intelligence ability as explanatory variables revealed that SRS score was associated with syllable-induced P1m latency in the left hemisphere only in the TD group and not in the ASD group. A second finding was that increased leftward-lateralization of intensity was correlated with higher SRS scores only in the ASD group. These results provide valuable insights but also highlight the intricate nature of neural mechanisms and their relationship with autistic traits.
Collapse
Affiliation(s)
- Masuhiko Sano
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tetsu Hirosawa
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Faculty of Education, Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Kyung-Min An
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Sanae Tanaka
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Ken Yaoi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Nobushige Naitou
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
3
|
Orekhova EV, Fadeev KA, Goiaeva DE, Obukhova TS, Ovsiannikova TM, Prokofyev AO, Stroganova TA. Different hemispheric lateralization for periodicity and formant structure of vowels in the auditory cortex and its changes between childhood and adulthood. Cortex 2024; 171:287-307. [PMID: 38061210 DOI: 10.1016/j.cortex.2023.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 02/12/2024]
Abstract
The spectral formant structure and periodicity pitch are the major features that determine the identity of vowels and the characteristics of the speaker. However, very little is known about how the processing of these features in the auditory cortex changes during development. To address this question, we independently manipulated the periodicity and formant structure of vowels while measuring auditory cortex responses using magnetoencephalography (MEG) in children aged 7-12 years and adults. We analyzed the sustained negative shift of source current associated with these vowel properties, which was present in the auditory cortex in both age groups despite differences in the transient components of the auditory response. In adults, the sustained activation associated with formant structure was lateralized to the left hemisphere early in the auditory processing stream requiring neither attention nor semantic mapping. This lateralization was not yet established in children, in whom the right hemisphere contribution to formant processing was strong and decreased during or after puberty. In contrast to the formant structure, periodicity was associated with a greater response in the right hemisphere in both children and adults. These findings suggest that left-lateralization for the automatic processing of vowel formant structure emerges relatively late in ontogenesis and pose a serious challenge to current theories of hemispheric specialization for speech processing.
Collapse
Affiliation(s)
- Elena V Orekhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation.
| | - Kirill A Fadeev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation.
| | - Dzerassa E Goiaeva
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation.
| | - Tatiana S Obukhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation.
| | - Tatiana M Ovsiannikova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation.
| | - Andrey O Prokofyev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation.
| | - Tatiana A Stroganova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation.
| |
Collapse
|
4
|
Kohl C, Parviainen T, Jones SR. Neural Mechanisms Underlying Human Auditory Evoked Responses Revealed By Human Neocortical Neurosolver. Brain Topogr 2021; 35:19-35. [PMID: 33876329 PMCID: PMC8813713 DOI: 10.1007/s10548-021-00838-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
Auditory evoked fields (AEFs) are commonly studied, yet their underlying neural mechanisms remain poorly understood. Here, we used the biophysical modelling software Human Neocortical Neurosolver (HNN) whose foundation is a canonical neocortical circuit model to interpret the cell and network mechanisms contributing to macroscale AEFs elicited by a simple tone, measured with magnetoencephalography. We found that AEFs can be reproduced by activating the neocortical circuit through a layer specific sequence of feedforward and feedback excitatory synaptic drives, similar to prior simulation of somatosensory evoked responses, supporting the notion that basic structures and activation patterns are preserved across sensory regions. We also applied the modeling framework to develop and test predictions on neural mechanisms underlying AEF differences in the left and right hemispheres, as well as in hemispheres contralateral and ipsilateral to the presentation of the auditory stimulus. We found that increasing the strength of the excitatory synaptic cortical feedback inputs to supragranular layers simulates the commonly observed right hemisphere dominance, while decreasing the input latencies and simultaneously increasing the number of cells contributing to the signal accounted for the contralateral dominance. These results provide a direct link between human data and prior animal studies and lay the foundation for future translational research examining the mechanisms underlying alteration in this fundamental biomarker of auditory processing in healthy cognition and neuropathology.
Collapse
Affiliation(s)
- Carmen Kohl
- Department of Neuroscience, Carney Institute for Brain Sciences, Brown University, Providence, USA.
| | - Tiina Parviainen
- Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
- Meg Core Aalto Neuroimaging, Aalto University, AALTO, P.O. Box 15100, 00076, Espoo, Finland
| | - Stephanie R Jones
- Department of Neuroscience, Carney Institute for Brain Sciences, Brown University, Providence, USA
- Center for Neurorestoration and Neurotechnology, Providence VAMC, Providence, USA
| |
Collapse
|
5
|
Andermann M, Günther M, Patterson RD, Rupp A. Early cortical processing of pitch height and the role of adaptation and musicality. Neuroimage 2020; 225:117501. [PMID: 33169697 DOI: 10.1016/j.neuroimage.2020.117501] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Pitch is an important perceptual feature; however, it is poorly understood how its cortical correlates are shaped by absolute vs relative fundamental frequency (f0), and by neural adaptation. In this study, we assessed transient and sustained auditory evoked fields (AEFs) at the onset, progression, and offset of short pitch height sequences, taking into account the listener's musicality. We show that neuromagnetic activity reflects absolute f0 at pitch onset and offset, and relative f0 at transitions within pitch sequences; further, sequences with fixed f0 lead to larger response suppression than sequences with variable f0 contour, and to enhanced offset activity. Musical listeners exhibit stronger f0-related AEFs and larger differences between their responses to fixed vs variable sequences, both within sequences and at pitch offset. The results resemble prominent psychoacoustic phenomena in the perception of pitch contours; moreover, they suggest a strong influence of adaptive mechanisms on cortical pitch processing which, in turn, might be modulated by a listener's musical expertise.
Collapse
Affiliation(s)
- Martin Andermann
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Melanie Günther
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Roy D Patterson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - André Rupp
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Steinmetzger K, Shen Z, Riedel H, Rupp A. Auditory cortex activity measured using functional near-infrared spectroscopy (fNIRS) appears to be susceptible to masking by cortical blood stealing. Hear Res 2020; 396:108069. [DOI: 10.1016/j.heares.2020.108069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 01/21/2023]
|
7
|
Andermann M, Patterson RD, Rupp A. Transient and sustained processing of musical consonance in auditory cortex and the effect of musicality. J Neurophysiol 2020; 123:1320-1331. [DOI: 10.1152/jn.00876.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In recent years, electroencephalography and magnetoencephalography (MEG) have both been used to investigate the response in human auditory cortex to musical sounds that are perceived as consonant or dissonant. These studies have typically focused on the transient components of the physiological activity at sound onset, specifically, the N1 wave of the auditory evoked potential and the auditory evoked field, respectively. Unfortunately, the morphology of the N1 wave is confounded by the prominent neural response to energy onset at stimulus onset. It is also the case that the perception of pitch is not limited to sound onset; the perception lasts as long as the note producing it. This suggests that consonance studies should also consider the sustained activity that appears after the transient components die away. The current MEG study shows how energy-balanced sounds can focus the response waves on the consonance-dissonance distinction rather than energy changes and how source modeling techniques can be used to measure the sustained field associated with extended consonant and dissonant sounds. The study shows that musical dyads evoke distinct transient and sustained neuromagnetic responses in auditory cortex. The form of the response depends on both whether the dyads are consonant or dissonant and whether the listeners are musical or nonmusical. The results also show that auditory cortex requires more time for the early transient processing of dissonant dyads than it does for consonant dyads and that the continuous representation of temporal regularity in auditory cortex might be modulated by processes beyond auditory cortex. NEW & NOTEWORTHY We report a magnetoencephalography (MEG) study on transient and sustained cortical consonance processing. Stimuli were long-duration, energy-balanced, musical dyads that were either consonant or dissonant. Spatiotemporal source analysis revealed specific transient and sustained neuromagnetic activity in response to the dyads; in particular, the morphology of the responses was shaped by the dyad’s consonance and the listener’s musicality. Our results also suggest that the sustained representation of stimulus regularity might be modulated by processes beyond auditory cortex.
Collapse
Affiliation(s)
- Martin Andermann
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Roy D. Patterson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - André Rupp
- Section of Biomagnetism, Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|