1
|
Olexiková L, Makarevich A, Dujíčková L, Kubovičová E, Chrenek P. Factors affecting cryotolerance of mammalian oocytes. Cryobiology 2024; 116:104946. [PMID: 39069220 DOI: 10.1016/j.cryobiol.2024.104946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/25/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Cryopreservation of oocytes is an important tool for preserving genetic resources and for farm animals breeding. Processes taking place during vitrification affect oocytes and result in their reduced developmental capacity and lower fertilisation rates of cryopreserved oocytes. Further improvement in cryopreservation techniques is still required. Several authors already summarized the actual state and perspectives of oocyte cryopreservation as well as potential approaches to improve their development after thawing. The aim of this review is to specify factors affecting cryotolerance of mammalian oocytes, especially bovine in vitro matured oocytes, and to identify the areas, where more efforts were made to improve the success of oocyte cryopreservation. These factors include oocyte lipid content, membrane composition, mRNA protection, cytoskeleton stabilization and application of such potential stimulators of cell cryotolerance as antioxidants, growth factors or antifreeze proteins.
Collapse
Affiliation(s)
- Lucia Olexiková
- National Agricultural and Food Centre (NPPC), Research Institute for Animal Production Nitra, Hlohovecka 2, 95141, Lužianky, Slovak Republic.
| | - Alexander Makarevich
- National Agricultural and Food Centre (NPPC), Research Institute for Animal Production Nitra, Hlohovecka 2, 95141, Lužianky, Slovak Republic
| | - Linda Dujíčková
- National Agricultural and Food Centre (NPPC), Research Institute for Animal Production Nitra, Hlohovecka 2, 95141, Lužianky, Slovak Republic
| | - Elena Kubovičová
- National Agricultural and Food Centre (NPPC), Research Institute for Animal Production Nitra, Hlohovecka 2, 95141, Lužianky, Slovak Republic
| | - Peter Chrenek
- National Agricultural and Food Centre (NPPC), Research Institute for Animal Production Nitra, Hlohovecka 2, 95141, Lužianky, Slovak Republic; Institute of Biotechnology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic
| |
Collapse
|
2
|
Bresnahan DR, Catandi GD, Peters SO, Maclellan LJ, Broeckling CD, Carnevale EM. Maturation and culture affect the metabolomic profile of oocytes and follicular cells in young and old mares. Front Cell Dev Biol 2024; 11:1280998. [PMID: 38283993 PMCID: PMC10811030 DOI: 10.3389/fcell.2023.1280998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction: Oocytes and follicular somatic cells within the ovarian follicle are altered during maturation and after exposure to culture in vitro. In the present study, we used a nontargeted metabolomics approach to assess changes in oocytes, cumulus cells, and granulosa cells from dominant, follicular-phase follicles in young and old mares. Methods: Samples were collected at three stages associated with oocyte maturation: (1) GV, germinal vesicle stage, prior to the induction of follicle/oocyte maturation in vivo; (2) MI, metaphase I, maturing, collected 24 h after induction of maturation in vivo; and (3) MIIC, metaphase II, mature with collection 24 h after induction of maturation in vivo plus 18 h of culture in vitro. Samples were analyzed using gas and liquid chromatography coupled to mass spectrometry only when all three stages of a specific cell type were obtained from the same mare. Results and Discussion: Significant differences in metabolite abundance were most often associated with MIIC, with some of the differences appearing to be linked to the final stage of maturation and others to exposure to culture medium. While differences occurred for many metabolite groups, some of the most notable were detected for energy and lipid metabolism and amino acid abundance. The study demonstrated that metabolomics has potential to aid in optimizing culture methods and evaluating cell culture additives to support differences in COCs associated with maternal factors.
Collapse
Affiliation(s)
- D. R. Bresnahan
- Department of Animal Sciences, Berry College, Mount Berry, GA, United States
| | - G. D. Catandi
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - S. O. Peters
- Department of Animal Sciences, Berry College, Mount Berry, GA, United States
| | - L. J. Maclellan
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - C. D. Broeckling
- Proteomic and Metabolomics Core Facility, Colorado State University, Fort Collins, CO, United States
| | - E. M. Carnevale
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
3
|
Suqueli García MF, Gabbanelli N, Ríos GL, Buschiazzo J. Exogenous progesterone during in vitro fertilization improves developmental competence of partially cumulus-denuded bovine oocytes. Theriogenology 2023; 211:11-18. [PMID: 37556930 DOI: 10.1016/j.theriogenology.2023.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/24/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
The progesterone (P4) secreted by cumulus cells has gained attention for its role as a possible physiological inducer of sperm acrosome exocytosis. In mammals, it is generally accepted that fertilization rates of oocytes without cumulus are markedly low. This study assessed the integrity of capacitated bovine sperm acrosome when exposed to increasing concentrations of P4, and evaluated whether exogenous P4 during in vitro fertilization (IVF) increases the developmental competence of partially cumulus-denuded oocytes in serum-free conditions. After a 4-h capacitation induction, sperm were incubated with increasing concentrations of P4 (0, 0.1, 10 and 100 μM) and evaluated for viability, caspase activation and acrosome status at three different times (4, 5, and 22 h), including the capacitation induction period. Progesterone induced sperm acrosomal exocytosis without compromising sperm viability or activating sperm caspases. Sperm undergoing acrosome reaction exhibited three differential Concanavalin A patterns, corresponding to early, intermediate and late acrosomal exocytosis. The percentage of these patterns significantly increased over time, regardless of P4 concentration, except for those spermatozoa with late acrosomal exocytosis, which only showed an increase at 22 h of incubation. After incubation for 1 h with 100 μM P4, spermatozoa showing intermediate acrosomal exocytosis significantly increased. At 22 h of incubation, the pattern corresponding to early acrosomal exocytosis evidenced a dose-dependent increase. However, prematurely high levels of acrosome reaction induced by 100 μM P4 led to inefficient IVF outcomes (P < 0.05). Therefore, IVF trials with partially cumulus-denuded oocytes were carried out with lower P4 concentrations (0, 0.1, 1, 5, 10 μM). Cleavage rate significantly increased at 1 μM P4, which translated to increased total embryo production after 7 days of in vitro culture (P < 0.05). Significantly higher percentages of expanded blastocysts were observed at both 1 μM and 10 μM P4 as compared to the other experimental conditions. In conclusion, the different patterns of acrosomal exocytosis identified over time by incubation of live sperm with a fluorescent lectin revealed the existence of sperm subpopulations heterogeneous in their physiological states. Moreover, exogenous P4 at 1 μM during IVF improved the developmental competence of partially cumulus-denuded oocytes in serum-free conditions.
Collapse
Affiliation(s)
- María Florencia Suqueli García
- Laboratorio Biotecnología de la Reproducción, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta 226 km 73.5, 7620, Balcarce, Argentina.
| | - Nadia Gabbanelli
- Laboratorio Biotecnología de la Reproducción, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta 226 km 73.5, 7620, Balcarce, Argentina.
| | - Glenda Laura Ríos
- Laboratorio Biotecnología de la Reproducción, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta 226 km 73.5, 7620, Balcarce, Argentina.
| | - Jorgelina Buschiazzo
- Laboratorio Biotecnología de la Reproducción, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta 226 km 73.5, 7620, Balcarce, Argentina.
| |
Collapse
|
4
|
Xu X, Yang B, Zhang H, Feng X, Hao H, Du W, Zhu H, Khan A, Khan MZ, Zhang P, Zhao X. Effects of β-Nicotinamide Mononucleotide, Berberine, and Cordycepin on Lipid Droplet Content and Developmental Ability of Vitrified Bovine Oocytes. Antioxidants (Basel) 2023; 12:antiox12050991. [PMID: 37237857 DOI: 10.3390/antiox12050991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Oocyte vitrification is crucial for livestock reproduction, germplasm conservation, and human-assisted reproduction, but the overabundance of lipids is highly detrimental to oocyte development. It is necessary to reduce the lipid droplet content of oocytes before cryopreservation. This study analyzed the impact of β-nicotinamide mononucleotide (NMN), berberine (BER), or cordycepin (COR) on various aspects of bovine oocytes, including lipid droplet content and the expression levels of genes related to lipid synthesis in bovine oocytes, development ability, reactive oxygen species (ROS), apoptosis, and the expression levels of genes associated with endoplasmic reticulum (ER) stress, and mitochondrial function in vitrified bovine oocytes. The results of our study indicated that 1 μM NMN, 2.5 μM BER, and 1 μM COR were effective in reducing the lipid droplet content and suppressing the expression levels of genes involved in lipid synthesis in bovine oocytes. Our findings showed that the vitrified bovine oocytes treated with 1 μM of NMN had a significantly higher survival rate and better development ability compared to the other vitrified groups. Additionally, 1 μM NMN, 2.5 μM BER, and 1 μM COR decreased the levels of ROS and apoptosis, decreased the mRNA expression levels of genes involved in ER stress and mitochondrial fission but increased the mRNA expression levels of genes associated with mitochondrial fusion in the vitrified bovine oocytes. Our study results suggested that 1 μM NMN, 2.5 μM BER, and 1 μM COR effectively decreased the lipid droplet content and enhanced the development ability of vitrified bovine oocytes by lowering ROS levels, reducing ER stress, regulating mitochondrial function, and inhibiting apoptosis. Furthermore, the results showed that 1 μM NMN was more effective than 2.5 μM BER and 1 μM COR.
Collapse
Affiliation(s)
- Xi Xu
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Baigao Yang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Hang Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Xiaoyi Feng
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Haisheng Hao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Weihua Du
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Huabin Zhu
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Adnan Khan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Muhammad Zahoor Khan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Peipei Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Xueming Zhao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No.2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| |
Collapse
|
5
|
Distribution of tetraspanins in bovine ovarian tissue and fresh/vitrified oocytes. Histochem Cell Biol 2023; 159:163-183. [PMID: 36242635 PMCID: PMC9922244 DOI: 10.1007/s00418-022-02155-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/04/2022]
Abstract
Tetraspanin proteins are mostly known as organizers of molecular complexes on cell membranes, widely expressed on the surface of most nucleated cells. Although tetraspanins participate in many physiological processes of mammals, including reproduction, their relevance to the processes of folliculogenesis and oogenesis has not yet been fully elucidated. We bring new information regarding the distribution of tetraspanins CD9, CD81, CD151, CD82, and CD63 at different stages of follicular development in cattle. The found distribution of tetraspanin CD9, CD63, and integrin alpha V in similar areas of ovarian tissue outlined their possible cooperation. We also describe yet-unknown distribution patterns of CD151, CD82, and CD63 on immature and mature bovine oocytes. The unique localization of tetraspanins CD63 and CD82 in the zona pellucida of bovine oocytes suggested their involvement in transzonal projections. Furthermore, we present an unchanged distribution pattern of the studied tetraspanins in vitrified mature bovine oocytes. The immunofluorescent analysis was supplemented by in silico data addressing tetraspanins expression in the ovarian cells and oocytes across several species. The obtained results suggest that in the study of the oocyte development and potentially the fertilization process of cattle, the role of tetraspanins and integrins should also be taken into account.
Collapse
|
6
|
Xu X, Hao T, Komba E, Yang B, Hao H, Du W, Zhu H, Zhang H, Zhao X. Improvement of Fertilization Capacity and Developmental Ability of Vitrified Bovine Oocytes by JUNO mRNA Microinjection and Cholesterol-Loaded Methyl-β-Cyclodextrin Treatment. Int J Mol Sci 2022; 24:ijms24010590. [PMID: 36614032 PMCID: PMC9820539 DOI: 10.3390/ijms24010590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/31/2022] Open
Abstract
Vitrification of oocytes is crucial for embryo biotechnologies, germplasm cryopreservation of endangered and excellent female animals, and the fertility of humans. However, vitrification significantly impairs the fertilization ability of oocytes, which significantly limits its widely used application. JUNO protein, a receptor for Izumo1, is involved in sperm-oocyte fusion and is an indispensable protein for mammalian fertilization, and its abundance is susceptible to vitrification. However, it is still unclear how vitrification reduces the fertilization capacity of bovine oocytes by affecting JUNO protein. This study was designed to investigate the effect of vitrification on the abundance and post-translational modifications of JUNO protein in bovine oocytes. Our results showed that vitrification did not alter the amino acid sequence of JUNO protein in bovine oocytes. Furthermore, the liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis results showed that vitrification significantly reduced the number and changed the location of disulfide bonds, and increased the number of both phosphorylation and glycosylation sites of JUNO protein in bovine oocytes. Finally, the fertilization capacity and development ability of vitrified oocytes treated with 200 pg JUNO mRNA microinjection and cholesterol-loaded methyl-β-cyclodextrin (CLC/MβCD) were similar to those of fresh oocytes. In conclusion, our results showed that vitrification of bovine oocytes did not alter the protein sequence of JUNO, but induced post-translational modifications and changed protein abundance. Moreover, the fertilization and development ability of vitrified bovine oocytes were improved by the combination treatment of JUNO mRNA microinjection and CLC/MβCD.
Collapse
|
7
|
Arias A, Quiroz A, Santander N, Morselli E, Busso D. Implications of High-Density Cholesterol Metabolism for Oocyte Biology and Female Fertility. Front Cell Dev Biol 2022; 10:941539. [PMID: 36187480 PMCID: PMC9518216 DOI: 10.3389/fcell.2022.941539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
Cholesterol is an essential component of animal cells. Different regulatory mechanisms converge to maintain adequate levels of this lipid because both its deficiency and excess are unfavorable. Low cell cholesterol content promotes its synthesis and uptake from circulating lipoproteins. In contrast, its excess induces the efflux to high-density lipoproteins (HDL) and their transport to the liver for excretion, a process known as reverse cholesterol transport. Different studies suggest that an abnormal HDL metabolism hinders female fertility. HDL are the only lipoproteins detected in substantial amounts in follicular fluid (FF), and their size and composition correlate with embryo quality. Oocytes obtain cholesterol from cumulus cells via gap junctions because they cannot synthesize cholesterol de novo and lack HDL receptors. Recent evidence has supported the possibility that FF HDL play a major role in taking up excess unesterified cholesterol (UC) from the oocyte. Indeed, genetically modified mouse models with disruptions in reverse cholesterol transport, some of which show excessive circulating UC levels, exhibit female infertility. Cholesterol accumulation can affect the egg´s viability, as reported in other cell types, and activate the plasma membrane structure and activity of membrane proteins. Indeed, in mice deficient for the HDL receptor Scavenger Class B Type I (SR-B1), excess circulating HDL cholesterol and UC accumulation in oocytes impairs meiosis arrest and hinders the developmental capacity of the egg. In other cells, the addition of cholesterol activates calcium channels and dysregulates cell death/survival signaling pathways, suggesting that these mechanisms may link altered HDL cholesterol metabolism and infertility. Although cholesterol, and lipids in general, are usually not evaluated in infertile patients, one study reported high circulating UC levels in women showing longer time to pregnancy as an outcome of fertility. Based on the evidence described above, we propose the existence of a well-regulated and largely unexplored system of cholesterol homeostasis controlling traffic between FF HDL and oocytes, with significant implications for female fertility.
Collapse
Affiliation(s)
- Andreina Arias
- Laboratory of Nutrition, Metabolism and Reproduction, Research and Innovation Center, Program of Reproductive Biology, Universidad de Los Andes, Santiago, Chile
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alonso Quiroz
- Laboratory of Nutrition, Metabolism and Reproduction, Research and Innovation Center, Program of Reproductive Biology, Universidad de Los Andes, Santiago, Chile
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Santander
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Dolores Busso
- Laboratory of Nutrition, Metabolism and Reproduction, Research and Innovation Center, Program of Reproductive Biology, Universidad de Los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- *Correspondence: Dolores Busso,
| |
Collapse
|
8
|
Uzbekova S, Bertevello PS, Dalbies-Tran R, Elis S, Labas V, Monget P, Teixeira-Gomes AP. Metabolic exchanges between the oocyte and its environment: focus on lipids. Reprod Fertil Dev 2021; 34:1-26. [PMID: 35231385 DOI: 10.1071/rd21249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Finely regulated fatty acid (FA) metabolism within ovarian follicles is crucial to follicular development and influences the quality of the enclosed oocyte, which relies on the surrounding intra-follicular environment for its growth and maturation. A growing number of studies have examined the association between the lipid composition of follicular compartments and oocyte quality. In this review, we focus on lipids, their possible exchanges between compartments within the ovarian follicle and their involvement in different pathways during oocyte final growth and maturation. Lipidomics provides a detailed snapshot of the global lipid profiles and identified lipids, clearly discriminating the cells or fluid from follicles at distinct physiological stages. Follicular fluid appears as a main mediator of lipid exchanges between follicular somatic cells and the oocyte, through vesicle-mediated and non-vesicular transport of esterified and free FA. A variety of expression data allowed the identification of common and cell-type-specific actors of lipid metabolism in theca cells, granulosa cells, cumulus cells and oocytes, including key regulators of FA uptake, FA transport, lipid transformation, lipoprotein synthesis and protein palmitoylation. They act in harmony to accompany follicular development, and maintain intra-follicular homeostasis to allow the oocyte to accumulate energy and membrane lipids for subsequent meiotic divisions and first embryo cleavages.
Collapse
Affiliation(s)
- Svetlana Uzbekova
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and LK Ernst Federal Science Centre for Animal Husbandry, Podolsk, Russia
| | | | | | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Valerie Labas
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and INRAE, Université de Tours, CHRU Tours, Plate-Forme PIXANIM, F-37380 Nouzilly, France
| | - Philippe Monget
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and INRAE, Université de Tours, CHRU Tours, Plate-Forme PIXANIM, F-37380 Nouzilly, France
| |
Collapse
|
9
|
Fu X, Liu X, Li J, Zhang M, Jiang J, Chen Q, Li M, Gao S, Ma J. An Eight Year Experience of Autologous Oocyte Vitrification for Infertile Patients Owing to Unavailability of Sperm on Oocyte Retrieval Day. Front Med (Lausanne) 2021; 8:663287. [PMID: 34765611 PMCID: PMC8575774 DOI: 10.3389/fmed.2021.663287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The objective of this study was to provide a descriptive analysis of the clinical outcomes achieved in oocyte vitrification in cases where sperm was unavailable on oocyte retrieval day, and to identify predictors of oocyte survival. Methods: This retrospective cohort study used data from a university-affiliated reproductive medical center. There were 321 cycles in which some of, or all oocytes were vitrified owing to the unavailability of sperm between March 2009 and October 2017. A descriptive analysis of the clinical outcomes including both fresh embryo transfers and cryopreserved embryo transfers was provided. The ability of an individual parameter to forecast oocyte survival per thawing cycle was assessed by binary logistic regression analysis. The cumulative probability of live birth (CPLB) was estimated by using the Kaplan-Meier method according to the total number of oocytes thawed in consecutive procedures. Results: The average survival rate was 83.13%. High-quality embryo rate and blastocyst rate decreased significantly decreased significantly in vitrification oocyte group compared to fresh control oocytes. The comparison of sibling oocytes in part-oocyte-vitrified cycles shows fewer high-quality embryos developed in the vitrified group. The live birth rate per warmed-oocyte was 4.3%. Reasons for lack of sperm availability on oocyte retrieval day and serum cholesterol levels were found to be associated with oocyte survival rate in the present study. Kaplan-Meier analysis showed no significant difference in CPLB between patients ≤35 vs. >35 years. Conclusions: Oocyte vitrification is an indispensable and effective alternative when sperm are not available on oocyte retrieval day. The present study provided evidence that oocytes from infertile couples were more likely to suffer oocyte/embryo vitrification injury. Clinicians need to take this into account when advising patients in similar situations. Further studies will be necessary to clarify the correlation between serum metabolism parameters and human oocyte survival after vitrification.
Collapse
Affiliation(s)
- Xiao Fu
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Center for Reproductive Medicine, Shandong University, Jinan, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Xiaojie Liu
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Center for Reproductive Medicine, Shandong University, Jinan, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Jing Li
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Center for Reproductive Medicine, Shandong University, Jinan, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Meng Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Center for Reproductive Medicine, Shandong University, Jinan, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Jingjing Jiang
- Center for Reproductive Medicine, Shandong University, Jinan, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Qianqian Chen
- Center for Reproductive Medicine, Shandong University, Jinan, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Mei Li
- Center for Reproductive Medicine, Shandong University, Jinan, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Shanshan Gao
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Center for Reproductive Medicine, Shandong University, Jinan, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Jinlong Ma
- Center for Reproductive Medicine, Shandong University, Jinan, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| |
Collapse
|
10
|
Tessier SN, Bookstaver LD, Angpraseuth C, Stannard CJ, Marques B, Ho UK, Muzikansky A, Aldikacti B, Reátegui E, Rabe DC, Toner M, Stott SL. Isolation of intact extracellular vesicles from cryopreserved samples. PLoS One 2021; 16:e0251290. [PMID: 33983964 PMCID: PMC8118530 DOI: 10.1371/journal.pone.0251290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/23/2021] [Indexed: 01/23/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as promising candidates in biomarker discovery and diagnostics. Protected by the lipid bilayer, the molecular content of EVs in diverse biofluids are protected from RNases and proteases in the surrounding environment that may rapidly degrade targets of interests. Nonetheless, cryopreservation of EV-containing samples to -80°C may expose the lipid bilayer to physical and biological stressors which may result in cryoinjury and contribute to changes in EV yield, function, or molecular cargo. In the present work, we systematically evaluate the effect of cryopreservation at -80°C for a relatively short duration of storage (up to 12 days) on plasma- and media-derived EV particle count and/or RNA yield/quality, as compared to paired fresh controls. On average, we found that the plasma-derived EV concentration of stored samples decreased to 23% of fresh samples. Further, this significant decrease in EV particle count was matched with a corresponding significant decrease in RNA yield whereby plasma-derived stored samples contained only 47-52% of the total RNA from fresh samples, depending on the extraction method used. Similarly, media-derived EVs showed a statistically significant decrease in RNA yield whereby stored samples were 58% of the total RNA from fresh samples. In contrast, we did not obtain clear evidence of decreased RNA quality through analysis of RNA traces. These results suggest that samples stored for up to 12 days can indeed produce high-quality RNA; however, we note that when directly comparing fresh versus cryopreserved samples without cryoprotective agents there are significant losses in total RNA. Finally, we demonstrate that the addition of the commonly used cryoprotectant agent, DMSO, alongside greater control of the rate of cooling/warming, can rescue EVs from damaging ice formation and improve RNA yield.
Collapse
Affiliation(s)
- Shannon N. Tessier
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| | - Lauren D. Bookstaver
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Cindy Angpraseuth
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Cleo J. Stannard
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Beatriz Marques
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Uyen K. Ho
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Alona Muzikansky
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, United States of America
| | - Berent Aldikacti
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Eduardo Reátegui
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Daniel C. Rabe
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Mehmet Toner
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| | - Shannon L. Stott
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Hao T, Zhang P, Hao H, Du W, Pang Y, Zhao S, Zou H, Zhu H, Yu W, Li S, Zhao X. The combination treatment of cholesterol-loaded methyl-β-cyclodextrin and methyl-β-cyclodextrin significantly improves the fertilization capacity of vitrified bovine oocytes by protecting fertilization protein JUNO. Reprod Domest Anim 2021; 56:519-530. [PMID: 33405303 DOI: 10.1111/rda.13890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 12/25/2022]
Abstract
Many experiments show that vitrification significantly reduces the fertilization capacity of mammalian oocytes, restricting the application of vitrified oocytes. It has been proven that the JUNO protein plays a vital role in mammalian oocytes fertilization. However, little information is available about the effects of vitrification on the JUNO protein and the procedure to protect it in bovine oocytes. Here, the present study was designed to investigate the effect of vitrification on the JUNO protein level in bovine oocytes. In this study, MII oocytes were treated with cholesterol-loaded methyl-β-cyclodextrin (CLC; 0, 10, 15, 20 mM) for 45 min before vitrification and methyl-β-cyclodextrin (MβCD; 0, 2.25, 4.25, 6.25 mM) for 45 min after thawing (38-39°C). Then, the expression level and function of JUNO protein, cholesterol level in the membrane, the externalization of phosphatidylserine, sperm binding capacity and the developmental ability of vitrified bovine oocytes were examined. Our results showed that vitrification significantly decreased the JUNO protein level, cholesterol level, sperm binding capacity, development ability, and increased the promoter methylation level of the JUNO gene and apoptosis level of bovine oocytes. Furthermore, 15 mM CLC + 4.25 mM MβCD treatment significantly improved the cholesterol level and increased sperm binding and development ability of vitrified bovine oocytes. In conclusion, the combination treatment of cholesterol-loaded methyl-β-cyclodextrin and methyl-β-cyclodextrin significantly improves the fertilization capacity of vitrified bovine oocytes by protecting fertilization protein JUNO.
Collapse
Affiliation(s)
- Tong Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Peipei Zhang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Haisheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Weihua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yunwei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Shanjiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Huiying Zou
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Weili Yu
- Shijiazhuang Tianquan Elite Dairy Lt.D., Shijiazhuang, China.,Hebei Provincial Dairy Cow Breeding Engineering Technology Research Center, Shijiazhuang, China.,Hebei Cattle Industry Technology Research Institute, Shijiazhuang, China
| | - Shujing Li
- Shijiazhuang Tianquan Elite Dairy Lt.D., Shijiazhuang, China.,Hebei Provincial Dairy Cow Breeding Engineering Technology Research Center, Shijiazhuang, China.,Hebei Cattle Industry Technology Research Institute, Shijiazhuang, China
| | - Xueming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
12
|
Alfoteisy B, Singh J, Anzar M. Natural honey acts as a nonpermeating cryoprotectant for promoting bovine oocyte vitrification. PLoS One 2020; 15:e0238573. [PMID: 32877463 PMCID: PMC7467261 DOI: 10.1371/journal.pone.0238573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/19/2020] [Indexed: 11/18/2022] Open
Abstract
Sugars are commonly supplemented into vitrification solution to dehydrate cells in order to reduce the formation of fatal intracellular ice crystals. Natural honey is a mixture of 25 sugars (mainly fructose and glucose) that have different biological and pharmacological benefits. The present study was designed to determine if honey can be used as a nonpermeating cryoprotectant in vitrification of bovine oocytes. In the first experiment, denuded-MII oocytes were exposed to 0.25, 0.5, 1.0, 1.5 or 2.0 M of honey or sucrose. Natural honey and sucrose caused similar ooplasm dehydration. A significant relationship existed between time and ooplasm volume change (P < 0.05), during dehydration and rehydration phases, in both honey and sucrose solutions. In the second experiment, the immature cumulus-oocyte complexes (COCs) were vitrified in an EG/DMSO-based vitrification solution containing honey (0.5, 1 or 1.5 M) or sucrose (0.5 M) as a gold standard. The vitrified-warmed COCs were matured in vitro and evaluated for nuclear maturation. The maturation (MII) rate was greater in nonvitrified control (81%) than vitrified groups (54%, P < 0.05). In the third experiment, COCs were either remained nonvitrified (control) or vitrified in 1.0 M honey or 0.5 M sucrose, followed by IVM, IVF and IVC (for 9 days). Cleavage rate was greater in control (74%) than in vitrified groups (47%, P < 0.05), without significant difference between sugars. Blastocyst rate was 34, 13 and 3% in control, honey and sucrose groups respectively (P < 0.05). In conclusion, natural honey acted as a nonpermeating cryoprotectant in vitrification solution and improved the embryonic development in vitrified bovine COCs.
Collapse
Affiliation(s)
- Bilal Alfoteisy
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jaswant Singh
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Center, Canadian Animal Genetic Resource Program, Saskatoon, SK, Canada
| | - Muhammad Anzar
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Center, Canadian Animal Genetic Resource Program, Saskatoon, SK, Canada
- * E-mail: ,
| |
Collapse
|
13
|
Mogas T. Update on the vitrification of bovine oocytes and invitro-produced embryos. Reprod Fertil Dev 2019; 31:105-117. [PMID: 32188546 DOI: 10.1071/rd18345] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The combined use of reproductive technologies, such as transvaginal ovum-pick up and invitro embryo production followed by direct transfer of cryopreserved embryos, has great potential for enhancing genetic selection and optimising cross-breeding schemes in beef and dairy cattle production systems. This, along with an effective cryopreservation procedure for cow oocytes, will enable the long-term conservation of female genetic traits and the advance of embryo biotechnology in this species. However, the low fertilisation rates and developmental competence of cryopreserved oocytes still need to be improved. Over the past two decades, many research efforts tried to overcome individual features of the bovine oocyte that make it notoriously difficult to cryopreserve. In addition, pregnancy rates associated with invitro-produced (IVP) embryos remain lower than those obtained using invivo counterparts. This, together with a lack of a standard methodology for IVP embryo cryopreservation that provides easier and more practical logistics for the transfer of IVP embryos on farms, has hindered international genetic trade and the management of embryo banks. This review updates developments in oocyte and IVP embryo vitrification strategies targeting high production efficiency and better outcomes.
Collapse
Affiliation(s)
- Teresa Mogas
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain. Email
| |
Collapse
|