1
|
Kumar V, Karam Q, Shajan AB, Al-Nuaimi S, Sattari Z, El-Dakour S. Transcriptome analysis of Sparidentex hasta larvae exposed to water-accommodated fraction of Kuwait crude oil. Sci Rep 2024; 14:3591. [PMID: 38351213 PMCID: PMC10864312 DOI: 10.1038/s41598-024-53408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Anthropogenic activities have been shown to significantly affect marine life. Water pollution and oil spills are particularly deleterious to the fish population, especially during their larval stage. In this study, Sobaity-sea bream Sparidentex hasta (Valenciennes, 1830) larvae were exposed to serial dilutions of water-accommodated fraction of Kuwait crude oil (KCO-WAF) for varying durations (3, 6, 24, 48, 72 or 96 h) in acute exposure regime. Gene expression was assessed using RNA sequencing and validated through RT-qPCR. The RNA sequencing data were aligned to the sequenced genome, and differentially expressed genes were identified in response to treatment with or without KCO-WAF at various exposure times. The highest number of differentially expressed genes was observed at the early time point of 6 h of post-exposure to KCO-WAF. The lowest number of differentially expressed genes were noticed at 96 h of treatment indicating early response of the larvae to KCO-WAF contaminant. The acquired information on the differentially expressed genes was then used for functional and pathway analysis. More than 90% of the differentially expressed genes had a significant BLAST match, with the two most common matching species being Acanthopagrus latus and Sparus aurata. Approximately 65% of the differentially expressed genes had Gene Ontology annotations, whereas > 35% of the genes had KEGG pathway annotations. The differentially expressed genes were found to be enriched for various signaling pathways (e.g., MAPK, cAMP, PI3K-Akt) and nervous system-related pathways (e.g., neurodegeneration, axon guidance, glutamatergic synapse, GABAergic synapse). Early exposure modulated the signaling pathways, while KCO-WAF exposure of larvae for a longer duration affected the neurodegenerative/nervous system-related pathways. RT-qPCR analysis confirmed the differential expression of genes at each time point. These findings provide insights into the underlying molecular mechanisms of the deleterious effects of acute exposure to oil pollution-on marine fish populations, particularly at the early larval stage of Sparidentex hasta.
Collapse
Affiliation(s)
- Vinod Kumar
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, Kuwait.
| | - Qusaie Karam
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, Kuwait
| | - Anisha B Shajan
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, Kuwait
| | - Sabeeka Al-Nuaimi
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, Kuwait
| | - Zainab Sattari
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, Kuwait
| | - Saleem El-Dakour
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109, Safat, Kuwait
| |
Collapse
|
2
|
Hsu HY, Chen HW, Han YS. Habitat Partitioning and its Possible Genetic Background Between Two Sympatrically Distributed Eel Species in Taiwan. Zool Stud 2019; 58:e27. [PMID: 31966328 PMCID: PMC6917558 DOI: 10.6620/zs.2019.58-27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022]
Abstract
The geographical distributions of the Japanese eel (Anguilla japonica) and Giant-mottled eel (A. marmorata) overlap in many regions in East Asia and therefore suffer from interspecific competition in the same rivers. After a long period of adaptation, the Japanese eel and Giant-mottled eel may exhibit habitat partitioning in the rivers to diminish the interspecific competition between them. In this study, we conducted a field investigation in the Fengshan River in Taiwan to survey the habitat distributions of the Japanese eel and Giant-mottled eel throughout a river. Moreover, we investigated whether their habitat distributions are related to their swimming and upstream migration. Thus, the mRNA expression levels of several candidate genes that may be associated with the swimming and upstream migration of eel were examined in the glass eels of the Japanese eel and Giant-mottled eel. Field investigation indicated that the Japanese eel mainly inhabited the lower and middle reaches of the Fengshan River, but the Giant- mottled eel was distributed over the middle to upper reaches. The mRNA expression levels of fMYH, dio2, gria3, and neurod1 were higher in the Giant-mottled eel than in the Japanese eel, implying that Giant- mottled eels might have better swimming bursts and more active upstream migration than Japanese eels. These results suggest that there is a habitat partition at which these two eel species coexist in a river, and their habitat distributions may be linked to their swimming bursts and upstream migration. Determining the habitat distributions of freshwater eels is important for developing applicable plans for eel conservation and resource management.
Collapse
Affiliation(s)
- Hsiang-Yi Hsu
- Institute of Fisheries Science, College of Life Science,
National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
| | - Hsiao-Wei Chen
- Institute of Fisheries Science, College of Life Science,
National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
| | - Yu-San Han
- Institute of Fisheries Science, College of Life Science,
National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
| |
Collapse
|
3
|
Bautista NM, Burggren WW. Parental stressor exposure simultaneously conveys both adaptive and maladaptive larval phenotypes through epigenetic inheritance in the zebrafish ( Danio rerio). ACTA ACUST UNITED AC 2019; 222:jeb.208918. [PMID: 31416900 DOI: 10.1242/jeb.208918] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/06/2019] [Indexed: 12/27/2022]
Abstract
Genomic modifications occur slowly across generations, whereas short-term epigenetic inheritance of adaptive phenotypes may be immediately beneficial to large numbers of individuals, acting as a bridge for survival when adverse environments occur. In the present study, crude oil was used as an example of an environmental stressor. Adult zebrafish (P0) were dietarily exposed for 3 weeks to no, low, medium or high concentrations of crude oil. The F1 offspring obtained from the P0 groups were then assessed for transgenerational epigenetic transfer of oil-induced phenotypes. The exposure did not alter body length, body and organ mass or condition factor in the P0 groups. However, the P0 fecundity of both sexes decreased in proportion to the amount of oil fed. The F1 larvae from each P0 were then exposed from 3 hpf to 5 dpf to oil in their ambient water. Remarkably, F1 larvae derived from oil-exposed parents, when reared in oiled water, showed a 30% enhanced survival compared with controls (P<0.001). Unexpectedly, from day 3 to 5 of exposure, F1 larvae from oil-exposed parents showed poorer survival in clean water (up to 55% decreased survival). Additionally, parental oil exposure induced bradycardia (presumably maladaptive) in F1 larvae in both clean and oiled water. We conclude that epigenetic transgenerational inheritance can lead to an immediate and simultaneous inheritance of both beneficial and maladaptive traits in a large proportion of the F1 larvae. The adaptive responses may help fish populations survive when facing transient environmental stressors.
Collapse
Affiliation(s)
- Naim M Bautista
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| | - Warren W Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| |
Collapse
|
4
|
Perrichon P, Stieglitz JD, Xu EG, Magnuson JT, Pasparakis C, Mager EM, Wang Y, Schlenk D, Benetti DD, Roberts AP, Grosell M, Burggren WW. Mahi-mahi (Coryphaena hippurus) life development: morphological, physiological, behavioral and molecular phenotypes. Dev Dyn 2019; 248:337-350. [PMID: 30884004 PMCID: PMC6593825 DOI: 10.1002/dvdy.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/05/2019] [Accepted: 03/06/2019] [Indexed: 01/16/2023] Open
Abstract
Background Mahi‐mahi (Coryphaena hippurus) is a commercially and ecologically important fish species that is widely distributed in tropical and subtropical waters. Biological attributes and reproductive capacities of mahi‐mahi make it a tractable model for experimental studies. In this study, life development of cultured mahi‐mahi from the zygote stage to adult has been described. Results A comprehensive developmental table has been created reporting development as primarily detailed observations of morphology. Additionally, physiological, behavioral, and molecular landmarks have been described to significantly contribute in the understanding of mahi life development. Conclusion Remarkably, despite the vast difference in adult size, many developmental landmarks of mahi map quite closely onto the development and growth of Zebrafish and other warm‐water, active Teleost fishes. Mahi‐mahi is a tractable model for experimental studies high‐performance pelagic predatory fish species. Biological attributes of mahi are reported in a comprehensive developmental table. Physiological, behavioral and molecular landmarks are described through the life development. Mahi has a rapid growth rate, but the developmental marks are similar to other teleost fishes.
Collapse
Affiliation(s)
| | - John D Stieglitz
- Department of Marine Ecosystems and Society, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida
| | - Elvis Genbo Xu
- Department of Environmental Sciences, University of California Riverside, California
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California Riverside, California
| | - Christina Pasparakis
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida
| | - Edward M Mager
- Department of Biological Sciences, University of North Texas, Denton, Texas
| | - Yadong Wang
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, California
| | - Daniel D Benetti
- Department of Marine Ecosystems and Society, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida
| | - Aaron P Roberts
- Department of Biological Sciences, University of North Texas, Denton, Texas
| | - Martin Grosell
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida
| | - Warren W Burggren
- Department of Biological Sciences, University of North Texas, Denton, Texas
| |
Collapse
|
5
|
Fernandez-Valverde SL, Aguilera F, Ramos-Díaz RA. Inference of Developmental Gene Regulatory Networks Beyond Classical Model Systems: New Approaches in the Post-genomic Era. Integr Comp Biol 2019; 58:640-653. [PMID: 29917089 DOI: 10.1093/icb/icy061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The advent of high-throughput sequencing (HTS) technologies has revolutionized the way we understand the transformation of genetic information into morphological traits. Elucidating the network of interactions between genes that govern cell differentiation through development is one of the core challenges in genome research. These networks are known as developmental gene regulatory networks (dGRNs) and consist largely of the functional linkage between developmental control genes, cis-regulatory modules, and differentiation genes, which generate spatially and temporally refined patterns of gene expression. Over the last 20 years, great advances have been made in determining these gene interactions mainly in classical model systems, including human, mouse, sea urchin, fruit fly, and worm. This has brought about a radical transformation in the fields of developmental biology and evolutionary biology, allowing the generation of high-resolution gene regulatory maps to analyze cell differentiation during animal development. Such maps have enabled the identification of gene regulatory circuits and have led to the development of network inference methods that can recapitulate the differentiation of specific cell-types or developmental stages. In contrast, dGRN research in non-classical model systems has been limited to the identification of developmental control genes via the candidate gene approach and the characterization of their spatiotemporal expression patterns, as well as to the discovery of cis-regulatory modules via patterns of sequence conservation and/or predicted transcription-factor binding sites. However, thanks to the continuous advances in HTS technologies, this scenario is rapidly changing. Here, we give a historical overview on the architecture and elucidation of the dGRNs. Subsequently, we summarize the approaches available to unravel these regulatory networks, highlighting the vast range of possibilities of integrating multiple technical advances and theoretical approaches to expand our understanding on the global gene regulation during animal development in non-classical model systems. Such new knowledge will not only lead to greater insights into the evolution of molecular mechanisms underlying cell identity and animal body plans, but also into the evolution of morphological key innovations in animals.
Collapse
Affiliation(s)
- Selene L Fernandez-Valverde
- CONACYT, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - René Alexander Ramos-Díaz
- CONACYT, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| |
Collapse
|
6
|
Xu EG, Khursigara AJ, Li S, Esbaugh AJ, Dasgupta S, Volz DC, Schlenk D. mRNA-miRNA-Seq Reveals Neuro-Cardio Mechanisms of Crude Oil Toxicity in Red Drum ( Sciaenops ocellatus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3296-3305. [PMID: 30816040 DOI: 10.1021/acs.est.9b00150] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) present in crude oil can cause global gene dysregulation and developmental impairment in fish. However, the mechanisms that alter gene regulation are not well understood. In this study, larval red drum ( Sciaenops ocellatus) were exposed to water accommodated fractions of source oil (6.8, 13.7, and 35.9 μg/L total PAHs) and weathered slick oil (4.7, 8.1, and 18.0 μg/L total PAHs) from the Deepwater Horizon (DWH) oil spill. The global mRNA-microRNA functional networks associated with the toxicity of DWH oil were explored by next-generation sequencing and in-depth bioinformatics analyses. Both source and slick oil significantly altered the expression of miR-18a, miR-27b, and miR-203a across all exposure concentrations. Consistent with the observed concentration-dependent morphological changes, the target mRNAs of these microRNAs were predominantly involved in neuro-cardio system development processes and associated key signaling pathways such as axonal guidance signaling, cAMP-response-element-binding protein signaling in neurons, calcium signaling, and nuclear-factor-of-activated T cells signaling in cardiac hypertrophy. The results indicated that the developmental toxicity of crude oil may result from the abnormal expression of microRNAs and associated target genes, especially for the nervous system. Moreover, we provide a case study for systematic toxicity evaluation leveraging mRNA-microRNA-seq data using nonmodel species.
Collapse
Affiliation(s)
- Elvis Genbo Xu
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
- Department of Chemical Engineering , McGill University , Montreal , Quebec H3A 0C5 , Canada
| | - Alexis J Khursigara
- Marine Science Institute , University of Texas at Austin , Austin , Texas 78373 , United States
| | - Shuying Li
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
- Institute of Pesticide and Environmental Toxicology , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Andrew J Esbaugh
- Marine Science Institute , University of Texas at Austin , Austin , Texas 78373 , United States
| | - Subham Dasgupta
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| | - David C Volz
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| | - Daniel Schlenk
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| |
Collapse
|
7
|
Xu EG, Magnuson JT, Diamante G, Mager E, Pasparakis C, Grosell M, Roberts AP, Schlenk D. Changes in microRNA-mRNA Signatures Agree with Morphological, Physiological, and Behavioral Changes in Larval Mahi-Mahi Treated with Deepwater Horizon Oil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13501-13510. [PMID: 30376307 DOI: 10.1021/acs.est.8b04169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we performed a systematic evaluation of global microRNA-mRNA interactions associated with the developmental toxicity of Deepwater Horizon oil using a combination of integrated mRNA and microRNA deep sequencing, expression profiling, gene ontology enrichment, and functional predictions by a series of advanced bioinformatic tools. After exposure to water accommodated fraction (WAF) of both weathered slick oil (0.5%, 1%, and 2%) and source oil (0.125%, 0.25%, and 0.5%) from the Deep Water Horizon oil spill, four dose-dependent miRNAs were identified, including three up-regulated (miR-23b, miR-34b, and miR-181b) and one down-regulated miRNAs (miR-203a) in mahi-mahi hatchings exposed from 6 h postfertilization (hpf) to 48 hpf. Consistent with morphological, physiological, and behavioral changes, the target genes of these miRNAs were largely involved in the development of the cardiovascular, visual, nervous system and associated toxicity pathways, suggesting that miRNAs play an essential role in regulating the responses to oil exposure. The results obtained from this study improve our understanding of the role of miRNAs and their target genes in relation to dose-dependent oil toxicity and provide the potential of using miRNAs as novel biomarkers in future oil studies.
Collapse
Affiliation(s)
- Elvis Genbo Xu
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| | - Jason T Magnuson
- Department of Biological Sciences & Advanced Environmental Research Institute , University of North Texas in Denton , Denton , Texas 76203 , United States
| | - Graciel Diamante
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| | - Edward Mager
- Department of Biological Sciences & Advanced Environmental Research Institute , University of North Texas in Denton , Denton , Texas 76203 , United States
| | - Christina Pasparakis
- Department of Marine Biology and Ecology, RSMAS , University of Miami , Miami , Florida 33149 , United States
| | - Martin Grosell
- Department of Marine Biology and Ecology, RSMAS , University of Miami , Miami , Florida 33149 , United States
| | - Aaron P Roberts
- Department of Biological Sciences & Advanced Environmental Research Institute , University of North Texas in Denton , Denton , Texas 76203 , United States
| | - Daniel Schlenk
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| |
Collapse
|
8
|
Richards DJ, Renaud L, Agarwal N, Starr Hazard E, Hyde J, Hardiman G. De Novo Hepatic Transcriptome Assembly and Systems Level Analysis of Three Species of Dietary Fish, Sardinops sagax, Scomber japonicus, and Pleuronichthys verticalis. Genes (Basel) 2018; 9:genes9110521. [PMID: 30366465 PMCID: PMC6266404 DOI: 10.3390/genes9110521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/17/2018] [Indexed: 12/31/2022] Open
Abstract
The monitoring of marine species as sentinels for ecosystem health has long been a valuable tool worldwide, providing insight into how both anthropogenic pollution and naturally occurring phenomena (i.e., harmful algal blooms) may lead to human and animal dietary concerns. The marine environments contain many contaminants of anthropogenic origin that have sufficient similarities to steroid and thyroid hormones, to potentially disrupt normal endocrine physiology in humans, fish, and other animals. An appropriate understanding of the effects of these endocrine disrupting chemicals (EDCs) on forage fish (e.g., sardine, anchovy, mackerel) can lead to significant insight into how these contaminants may affect local ecosystems in addition to their potential impacts on human health. With advancements in molecular tools (e.g., high-throughput sequencing, HTS), a genomics approach offers a robust toolkit to discover putative genetic biomarkers in fish exposed to these chemicals. However, the lack of available sequence information for non-model species has limited the development of these genomic toolkits. Using HTS and de novo assembly technology, the present study aimed to establish, for the first time for Sardinops sagax (Pacific sardine), Scomber japonicas (Pacific chub mackerel) and Pleuronichthys verticalis (hornyhead turbot), a de novo global transcriptome database of the liver, the primary organ involved in detoxification. The assembled transcriptomes provide a foundation for further downstream validation, comparative genomic analysis and biomarker development for future applications in ecotoxicogenomic studies, as well as environmental evaluation (e.g., climate change) and public health safety (e.g., dietary screening).
Collapse
Affiliation(s)
- Dylan J Richards
- Bioengineering Department, Clemson University, Charleston, SC 29425, USA.
| | - Ludivine Renaud
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Nisha Agarwal
- Biomedical Informatics Research Center, San Diego State University, San Diego, CA 92182, USA.
| | - E Starr Hazard
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina, Charleston, SC 29425, USA.
- Academic Affairs Faculty & Computational Biology Resource Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - John Hyde
- NOAA Fisheries, Southwest Fisheries Science Center, La Jolla, CA 92037, USA.
| | - Gary Hardiman
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina, Charleston, SC 29425, USA.
- Biomedical Informatics Research Center, San Diego State University, San Diego, CA 92182, USA.
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
- Laboratory for Marine Systems Biology, Hollings Marine Laboratory, Charleston, SC 29412, USA.
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Stranmillis Road, Belfast BT9 5AG, UK.
| |
Collapse
|
9
|
Xu EG, Khursigara AJ, Magnuson J, Hazard ES, Hardiman G, Esbaugh AJ, Roberts AP, Schlenk D. Larval Red Drum (Sciaenops ocellatus) Sublethal Exposure to Weathered Deepwater Horizon Crude Oil: Developmental and Transcriptomic Consequences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10162-10172. [PMID: 28768411 DOI: 10.1021/acs.est.7b02037] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The Deepwater Horizon (DWH) incident resulted in extensive oiling of the pelagic zone and shoreline habitats of many commercially important fish species. Exposure to the water-accommodated fraction (WAF) of oil from the spill causes developmental toxicity through cardiac defects in pelagic fish species. However, few studies have evaluated the effects of the oil on near-shore estuarine fish species such as red drum (Sciaenops ocellatus). Following exposure to a certified weathered slick oil (4.74 μg/L ∑PAH50) from the DWH event, significant sublethal impacts were observed ranging from impaired nervous system development [average 17 and 22% reductions in brain and eye area at 48 h postfertilization (hpf), respectively] to abnormal cardiac morphology (100% incidence at 24, 48, and 72 hpf) in red drum larvae. Consistent with the phenotypic responses, significantly differentially expressed transcripts, enriched gene ontology, and altered functions and canonical pathways predicted adverse outcomes in nervous and cardiovascular systems, with more pronounced changes at later larval stages. Our study demonstrated that the WAF of weathered slick oil of DWH caused morphological abnormalities predicted by a suite of advanced bioinformatic tools in early developing red drum and also provided the basis for a better understanding of molecular mechanisms of crude oil toxicity in fish.
Collapse
Affiliation(s)
- Elvis Genbo Xu
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| | - Alex J Khursigara
- Marine Science Institute, University of Texas at Austin , Port Aransas, Texas 78373, United States
| | - Jason Magnuson
- Department of Biological Sciences & Advanced Environmental Research Institute, University of North Texas , Denton, Texas 76203, United States
| | - E Starr Hazard
- Center for Genomic Medicine, Medical University of South Carolina , Charleston, South Carolina 29403, United States
- Computational Biology Resource Center, Medical University of South Carolina , Charleston, South Carolina 29403, United States
| | - Gary Hardiman
- Computational Biology Resource Center, Medical University of South Carolina , Charleston, South Carolina 29403, United States
- Departments of Medicine and Public Health Sciences, Medical University of South Carolina , Charleston, South Carolina 29403, United States
| | - Andrew J Esbaugh
- Marine Science Institute, University of Texas at Austin , Port Aransas, Texas 78373, United States
| | - Aaron P Roberts
- Department of Biological Sciences & Advanced Environmental Research Institute, University of North Texas , Denton, Texas 76203, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| |
Collapse
|