1
|
Delesalle VA, King MA, Rozario TJ, Wolf ND, Stewart CJ, DeMato LF, Trafford KF, Adhikari S, Dinh VT, Caputo G, Hunter A, Licata M, Modell M, Bhalla S. Complete genomes of two cluster AK Arthrobacter phages isolated from soil samples in Newburgh, NY, United States. Microbiol Resour Announc 2024; 13:e0071624. [PMID: 39264183 PMCID: PMC11468179 DOI: 10.1128/mra.00716-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Two phages belonging to Arthrobacter phage cluster AK were isolated from soil samples collected in Newburgh, NY in 2021. Both are lytic with a genome organization typical of siphoviruses except for two genes encoding minor tail proteins with pyocin-knob domains found early in the genome, before the terminase gene.
Collapse
Affiliation(s)
| | - Mariah A.K. King
- Department of Biology,
Gettysburg College,
Gettysburg, Pennsylvania,
USA
| | - Tabitha J. Rozario
- Department of Biology,
Gettysburg College,
Gettysburg, Pennsylvania,
USA
| | - Noah D. Wolf
- Department of Biology,
Gettysburg College,
Gettysburg, Pennsylvania,
USA
| | - Connor J. Stewart
- Department of Biology,
Gettysburg College,
Gettysburg, Pennsylvania,
USA
| | - Luke F. DeMato
- Department of Biology,
Gettysburg College,
Gettysburg, Pennsylvania,
USA
| | - Kevin F. Trafford
- Department of Biology,
Gettysburg College,
Gettysburg, Pennsylvania,
USA
| | - Saiman Adhikari
- Department of Biology,
Gettysburg College,
Gettysburg, Pennsylvania,
USA
| | - Van T. Dinh
- Department of Biology,
Gettysburg College,
Gettysburg, Pennsylvania,
USA
| | - Gina Caputo
- Department of Biology,
Mount Saint Mary College,
Newburgh, New York, USA
| | - Ashley Hunter
- Department of Biology,
Mount Saint Mary College,
Newburgh, New York, USA
| | - Michelle Licata
- Department of Biology,
Mount Saint Mary College,
Newburgh, New York, USA
| | - Misun Modell
- Department of Biology,
Mount Saint Mary College,
Newburgh, New York, USA
| | - Suparna Bhalla
- Department of Biology,
Mount Saint Mary College,
Newburgh, New York, USA
| |
Collapse
|
2
|
Petrzik K. Peptidoglycan Endopeptidase from Novel Adaiavirus Bacteriophage Lyses Pseudomonas aeruginosa Strains as Well as Arthrobacter globiformis and A. pascens Bacteria. Microorganisms 2023; 11:1888. [PMID: 37630448 PMCID: PMC10458142 DOI: 10.3390/microorganisms11081888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
A novel virus lytic for Pseudomonas aeruginosa has been purified. Its viral particles have a siphoviral morphology with a head 60 nm in diameter and a noncontractile tail 184 nm long. The dsDNA genome consists of 16,449 bp, has cohesive 3' termini, and encodes 28 putative proteins in a single strain. The peptidoglycan endopeptidase encoded by ORF 16 was found to be the lytic enzyme of this virus. The recombinant, purified enzyme was active up to 55 °C in the pH range 6-9 against all tested isolates of P. aeruginosa, but, surprisingly, also against the distant Gram-positive micrococci Arthrobacter globiformis and A. pascens. Both this virus and its endolysin are further candidates for possible treatment against P. aeruginosa and probably also other bacteria.
Collapse
Affiliation(s)
- Karel Petrzik
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branisovska 1160/31, 370 05 Ceske Budejovice, Czech Republic
| |
Collapse
|
3
|
Complete Genome Sequence of Arthrobacter Phage ScienceWizSam. Microbiol Resour Announc 2022; 11:e0092722. [PMID: 36342275 PMCID: PMC9753647 DOI: 10.1128/mra.00927-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Phage ScienceWizSam was isolated from soil using Arthrobacter sp. strain ATCC 21022. The phage genome is 58,217 bp with 96 open reading frames (ORFs). All of the ORFs are transcribed rightwards. Based on gene content similarity, ScienceWizSam is assigned to phage subcluster AU1.
Collapse
|
4
|
A review of methods for the inference and experimental confirmation of microbial association networks in cheese. Int J Food Microbiol 2022; 368:109618. [DOI: 10.1016/j.ijfoodmicro.2022.109618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/21/2022] [Accepted: 03/06/2022] [Indexed: 12/15/2022]
|
5
|
Complete Genome Sequences of Arthrobacter Phages Eraser, Kaylissa, and Phives. Microbiol Resour Announc 2022; 11:e0017822. [PMID: 35389259 PMCID: PMC9119123 DOI: 10.1128/mra.00178-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophages Phives, Kaylissa, and Eraser are siphoviruses infecting Arthrobacter globiformis B-2880 that were isolated in fall 2019 in Long Island, New York, from soil samples collected in Old Westbury, New York. All three bacteriophages are assigned to phage cluster AZ based on gene content similarity. While many aspects of the genomes are similar across the three phages, the endolysin genes for the phages are different and are located in different locations within the genomes.
Collapse
|
6
|
Albright MBN, Gallegos-Graves LV, Feeser KL, Montoya K, Emerson JB, Shakya M, Dunbar J. Experimental evidence for the impact of soil viruses on carbon cycling during surface plant litter decomposition. ISME COMMUNICATIONS 2022; 2:24. [PMID: 37938672 PMCID: PMC9723558 DOI: 10.1038/s43705-022-00109-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 06/01/2023]
Abstract
To date, the potential impact of viral communities on biogeochemical cycles in soil has largely been inferred from correlational evidence, such as virus-driven changes in microbial abundances, viral auxiliary metabolic genes, and links with soil physiochemical properties. To more directly test the impact of soil viruses on carbon cycling during plant litter decomposition, we added concentrated viral community suspensions to complex litter decomposer communities in 40-day microcosm experiments. Microbial communities from two New Mexico alpine soils, Pajarito (PJ) and Santa Fe (SF), were inoculated onto grass litter on sand, and three treatments were applied in triplicate to each set of microcosms: addition of buffer (no added virus), live virus (+virus), or killed-virus (+killed-virus) fractions extracted from the same soil. Significant differences in respiration were observed between the +virus and +killed-virus treatments in the PJ, but not the SF microcosms. Bacterial and fungal community composition differed significantly by treatment in both PJ and SF microcosms. Combining data across both soils, viral addition altered links between bacterial and fungal diversity, dissolved organic carbon and total nitrogen. Overall, we demonstrate that increasing viral pressure in complex microbial communities can impact terrestrial biogeochemical cycling but is context-dependent.
Collapse
Affiliation(s)
- Michaeline B N Albright
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, US.
- Allonnia LLC, Boston, MA, US.
| | | | - Kelli L Feeser
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, US
| | - Kyana Montoya
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, US
| | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, Davis, CA, US
| | - Migun Shakya
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, US
| | - John Dunbar
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, US
| |
Collapse
|
7
|
Kapinos A, Aghamalian P, Capehart E, Alag A, Angel H, Briseno E, Corado Perez B, Farag E, Foster H, Hakim A, Hernandez-Casas D, Huang C, Lam D, Mendez M, Min A, Nguyen N, Omholt AL, Ortiz E, Saldivar LS, Shannon JA, Smith R, Sridhar MV, Ta A, Theophilus MC, Ngo R, Torres C, Reddi K, Freise AC, Moberg Parker J. Novel Cluster AZ Arthrobacter phages Powerpuff, Lego, and YesChef exhibit close functional relationships with Microbacterium phages. PLoS One 2022; 17:e0262556. [PMID: 35025964 PMCID: PMC8758107 DOI: 10.1371/journal.pone.0262556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022] Open
Abstract
Bacteriophages exhibit a vast spectrum of relatedness and there is increasing evidence of close genomic relationships independent of host genus. The variability in phage similarity at the nucleotide, amino acid, and gene content levels confounds attempts at quantifying phage relatedness, especially as more novel phages are isolated. This study describes three highly similar novel Arthrobacter globiformis phages-Powerpuff, Lego, and YesChef-which were assigned to Cluster AZ using a nucleotide-based clustering parameter. Phages in Cluster AZ, Microbacterium Cluster EH, and the former Microbacterium singleton Zeta1847 exhibited low nucleotide similarity. However, their gene content similarity was in excess of the recently adopted Microbacterium clustering parameter, which ultimately resulted in the reassignment of Zeta1847 to Cluster EH. This finding further highlights the importance of using multiple metrics to capture phage relatedness. Additionally, Clusters AZ and EH phages encode a shared integrase indicative of a lysogenic life cycle. In the first experimental verification of a Cluster AZ phage's life cycle, we show that phage Powerpuff is a true temperate phage. It forms stable lysogens that exhibit immunity to superinfection by related phages, despite lacking identifiable repressors typically required for lysogenic maintenance and superinfection immunity. The ability of phage Powerpuff to undergo and maintain lysogeny suggests that other closely related phages may be temperate as well. Our findings provide additional evidence of significant shared phage genomic content spanning multiple actinobacterial host genera and demonstrate the continued need for verification and characterization of life cycles in newly isolated phages.
Collapse
Affiliation(s)
- Andrew Kapinos
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Pauline Aghamalian
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Erika Capehart
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Anya Alag
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Heather Angel
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Eddie Briseno
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Byron Corado Perez
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Emily Farag
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Hilory Foster
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Abbas Hakim
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Daisy Hernandez-Casas
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Calvin Huang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Derek Lam
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Maya Mendez
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Ashley Min
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Nikki Nguyen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Alexa L. Omholt
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Emily Ortiz
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Lizbeth Shelly Saldivar
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Jack Arthur Shannon
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Rachel Smith
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Mihika V. Sridhar
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - An Ta
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Malavika C. Theophilus
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Ryan Ngo
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Canela Torres
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Krisanavane Reddi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Amanda C. Freise
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| | - Jordan Moberg Parker
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States of America
| |
Collapse
|
8
|
Gauthier CH, Abad L, Venbakkam AK, Malnak J, Russell D, Hatfull G. OUP accepted manuscript. Nucleic Acids Res 2022; 50:e75. [PMID: 35451479 PMCID: PMC9303363 DOI: 10.1093/nar/gkac273] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/11/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022] Open
Abstract
Advances in genome sequencing have produced hundreds of thousands of bacterial genome sequences, many of which have integrated prophages derived from temperate bacteriophages. These prophages play key roles by influencing bacterial metabolism, pathogenicity, antibiotic resistance, and defense against viral attack. However, they vary considerably even among related bacterial strains, and they are challenging to identify computationally and to extract precisely for comparative genomic analyses. Here, we describe DEPhT, a multimodal tool for prophage discovery and extraction. It has three run modes that facilitate rapid screening of large numbers of bacterial genomes, precise extraction of prophage sequences, and prophage annotation. DEPhT uses genomic architectural features that discriminate between phage and bacterial sequences for efficient prophage discovery, and targeted homology searches for precise prophage extraction. DEPhT is designed for prophage discovery in Mycobacterium genomes but can be adapted broadly to other bacteria. We deploy DEPhT to demonstrate that prophages are prevalent in Mycobacterium strains but are absent not only from the few well-characterized Mycobacterium tuberculosis strains, but also are absent from all ∼30 000 sequenced M. tuberculosis strains.
Collapse
Affiliation(s)
| | | | - Ananya K Venbakkam
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Julia Malnak
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Graham F Hatfull
- To whom correspondence should be addressed. Tel: +1 412 624 6975;
| |
Collapse
|
9
|
Genomic diversity of bacteriophages infecting Rhodobacter capsulatus and their relatedness to its gene transfer agent RcGTA. PLoS One 2021; 16:e0255262. [PMID: 34793465 PMCID: PMC8601537 DOI: 10.1371/journal.pone.0255262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/29/2021] [Indexed: 01/21/2023] Open
Abstract
The diversity of bacteriophages is likely unparalleled in the biome due to the immense variety of hosts and the multitude of viruses that infect them. Recent efforts have led to description at the genomic level of numerous bacteriophages that infect the Actinobacteria, but relatively little is known about those infecting other prokaryotic phyla, such as the purple non-sulfur photosynthetic α-proteobacterium Rhodobacter capsulatus. This species is a common inhabitant of freshwater ecosystems and has been an important model system for the study of photosynthesis. Additionally, it is notable for its utilization of a unique form of horizontal gene transfer via a bacteriophage-like element known as the gene transfer agent (RcGTA). Only three bacteriophages of R. capsulatus had been sequenced prior to this report. Isolation and characterization at the genomic level of 26 new bacteriophages infecting this host advances the understanding of bacteriophage diversity and the origins of RcGTA. These newly discovered isolates can be grouped along with three that were previously sequenced to form six clusters with four remaining as single representatives. These bacteriophages share genes with RcGTA that seem to be related to host recognition. One isolate was found to cause lysis of a marine bacterium when exposed to high-titer lysate. Although some clusters are more highly represented in the sequenced genomes, it is evident that many more bacteriophage types that infect R. capsulatus are likely to be found in the future.
Collapse
|
10
|
Ulker M, Siddiqui FA, Gerton TJ, Anastasi RE, Conroy DJ, Edwards EG, Laizure IE, Reynolds JD, Duggan K, Johnson KC, MacLea KS. Closed Genome Sequence of Yavru, a Novel Arthrobacter globiformis Phage. Microbiol Resour Announc 2021; 10:e0098621. [PMID: 34761957 PMCID: PMC8582311 DOI: 10.1128/mra.00986-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022] Open
Abstract
We characterized the complete genome sequence of actinobacteriophage Yavru (Siphoviridae), a cluster FE bacteriophage infecting Arthrobacter globiformis NRRL B-2979; it was 89.5% identical to cluster FE phage Whytu, with a capsid width of 50 nm and a tail length of 90 nm. The genome was 15,193 bp in length, with 23 predicted protein-coding genes.
Collapse
Affiliation(s)
- Meliha Ulker
- Biotechnology Program, University of New Hampshire, Manchester, New Hampshire, USA
| | - Fardeen A. Siddiqui
- Biotechnology Program, University of New Hampshire, Manchester, New Hampshire, USA
| | - Thomas J. Gerton
- Biotechnology Program, University of New Hampshire, Manchester, New Hampshire, USA
| | - Rachel E. Anastasi
- Biotechnology Program, University of New Hampshire, Manchester, New Hampshire, USA
| | - Dylan J. Conroy
- Biotechnology Program, University of New Hampshire, Manchester, New Hampshire, USA
| | - Ethan G. Edwards
- Biotechnology Program, University of New Hampshire, Manchester, New Hampshire, USA
| | - Isabelle E. Laizure
- Biotechnology Program, University of New Hampshire, Manchester, New Hampshire, USA
| | - Joshua D. Reynolds
- Biotechnology Program, University of New Hampshire, Manchester, New Hampshire, USA
| | - Kelsie Duggan
- Graduate Program in Biotechnology: Industrial and Biomedical Sciences, University of New Hampshire, Manchester, New Hampshire, USA
| | - Kristen C. Johnson
- Biotechnology Program, University of New Hampshire, Manchester, New Hampshire, USA
- Graduate Program in Biotechnology: Industrial and Biomedical Sciences, University of New Hampshire, Manchester, New Hampshire, USA
- Biology Program, University of New Hampshire, Manchester, New Hampshire, USA
- Department of Life Sciences, University of New Hampshire, Manchester, New Hampshire, USA
| | - Kyle S. MacLea
- Biotechnology Program, University of New Hampshire, Manchester, New Hampshire, USA
- Graduate Program in Biotechnology: Industrial and Biomedical Sciences, University of New Hampshire, Manchester, New Hampshire, USA
- Biology Program, University of New Hampshire, Manchester, New Hampshire, USA
- Department of Life Sciences, University of New Hampshire, Manchester, New Hampshire, USA
| |
Collapse
|
11
|
Brown D, Isenhart S, Kleven A, Gillison A, Martínez LA, García Costas A. Genome Sequence of Bacteriophage Adumb2043, Isolated from Arthrobacter globiformis in Southern Colorado. Microbiol Resour Announc 2021; 10:e0077621. [PMID: 34647808 PMCID: PMC8515885 DOI: 10.1128/mra.00776-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
We report the discovery and genome sequence of phage Adumb2043, a siphovirus infecting Arthrobacter globiformis, B2979-SEA. Adumb2043 was isolated from soil collected in Colorado Springs, Colorado. The genome has a length of 43,100 bp and contains 68 predicted protein-coding genes and no tRNA genes. Adumb2043 is related to actinobacteriophages Elezi and London.
Collapse
Affiliation(s)
- Darien Brown
- Department of Biology, Colorado State University-Pueblo, Pueblo, Colorado, USA
| | - Shannon Isenhart
- Department of Biology, Colorado State University-Pueblo, Pueblo, Colorado, USA
| | - Auremie Kleven
- Department of Biology, Colorado State University-Pueblo, Pueblo, Colorado, USA
| | - Adam Gillison
- Department of Biology, Colorado State University-Pueblo, Pueblo, Colorado, USA
| | - Lee Anne Martínez
- Department of Biology, Colorado State University-Pueblo, Pueblo, Colorado, USA
| | - Amaya García Costas
- Department of Biology, Colorado State University-Pueblo, Pueblo, Colorado, USA
| |
Collapse
|
12
|
Mavrich TN, Gauthier C, Abad L, Bowman CA, Cresawn SG, Hatfull GF. pdm_utils: a SEA-PHAGES MySQL phage database management toolkit. Bioinformatics 2021; 37:2464-2466. [PMID: 33226064 DOI: 10.1093/bioinformatics/btaa983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/27/2020] [Accepted: 11/10/2020] [Indexed: 01/21/2023] Open
Abstract
SUMMARY Bacteriophages (phages) are incredibly abundant and genetically diverse. The volume of phage genomics data is rapidly increasing, driven in part by the SEA-PHAGES program, which isolates, sequences and manually annotates hundreds of phage genomes each year. With an ever-expanding genomics dataset, there are many opportunities for generating new biological insights through comparative genomic and bioinformatic analyses. As a result, there is a growing need to be able to store, update, explore and analyze phage genomics data. The package pdm_utils provides a collection of tools for MySQL phage database management designed to meet specific needs in the SEA-PHAGES program and phage genomics generally. AVAILABILITY AND IMPLEMENTATION https://pypi.org/project/pdm-utils/.
Collapse
Affiliation(s)
- Travis N Mavrich
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Christian Gauthier
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lawrence Abad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Charles A Bowman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Steven G Cresawn
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
13
|
Abstract
Actinobacteriophages are viruses that infect bacterial hosts in the phylum Actinobacteria. More than 17,000 actinobacteriophages have been described and over 3,000 complete genome sequences reported, resulting from large-scale, high-impact, integrated research-education initiatives such as the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Sciences (SEA-PHAGES) program. Their genomic diversity is enormous; actinobacteriophages comprise many architecturally mosaic genomes with distinct DNA sequences. Their genome diversity is driven by the highly dynamic interactions between phages and their hosts, and prophages can confer a variety of systems that defend against attack by genetically distinct phages; phages can neutralize these defense systems by coding for counter-defense proteins. These phages not only provide insights into diverse and dynamic phage populations but also have provided numerous tools for mycobacterial genetics. A case study using a three-phage cocktail to treat a patient with a drug-resistant Mycobacterium abscessus suggests that phages may have considerable potential for the therapeutic treatment of mycobacterial infections.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA;
| |
Collapse
|
14
|
Santos-Medellin C, Zinke LA, Ter Horst AM, Gelardi DL, Parikh SJ, Emerson JB. Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities. THE ISME JOURNAL 2021; 15:1956-1970. [PMID: 33612831 PMCID: PMC8245658 DOI: 10.1038/s41396-021-00897-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/19/2020] [Accepted: 01/15/2021] [Indexed: 01/31/2023]
Abstract
Viruses are abundant yet understudied members of soil environments that influence terrestrial biogeochemical cycles. Here, we characterized the dsDNA viral diversity in biochar-amended agricultural soils at the preplanting and harvesting stages of a tomato growing season via paired total metagenomes and viral size fraction metagenomes (viromes). Size fractionation prior to DNA extraction reduced sources of nonviral DNA in viromes, enabling the recovery of a vaster richness of viral populations (vOTUs), greater viral taxonomic diversity, broader range of predicted hosts, and better access to the rare virosphere, relative to total metagenomes, which tended to recover only the most persistent and abundant vOTUs. Of 2961 detected vOTUs, 2684 were recovered exclusively from viromes, while only three were recovered from total metagenomes alone. Both viral and microbial communities differed significantly over time, suggesting a coupled response to rhizosphere recruitment processes and/or nitrogen amendments. Viral communities alone were also structured along an 18 m spatial gradient. Overall, our results highlight the utility of soil viromics and reveal similarities between viral and microbial community dynamics throughout the tomato growing season yet suggest a partial decoupling of the processes driving their spatial distributions, potentially due to differences in dispersal, decay rates, and/or sensitivities to soil heterogeneity.
Collapse
Affiliation(s)
| | - Laura A Zinke
- Department of Plant Pathology, University of California, Davis, CA, USA
| | | | - Danielle L Gelardi
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA
| | - Sanjai J Parikh
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA
| | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, CA, USA.
- Genome Center, University of California, Davis, CA, USA.
| |
Collapse
|
15
|
Demo S, Kapinos A, Bernardino A, Guardino K, Hobbs B, Hoh K, Lee E, Vuong I, Reddi K, Freise AC, Moberg Parker J. BlueFeather, the singleton that wasn't: Shared gene content analysis supports expansion of Arthrobacter phage Cluster FE. PLoS One 2021; 16:e0248418. [PMID: 33711060 PMCID: PMC7954295 DOI: 10.1371/journal.pone.0248418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/26/2021] [Indexed: 12/02/2022] Open
Abstract
Bacteriophages (phages) exhibit high genetic diversity, and the mosaic nature of the shared genetic pool makes quantifying phage relatedness a shifting target. Early parameters for clustering of related Mycobacteria and Arthrobacter phage genomes relied on nucleotide identity thresholds but, more recently, clustering of Gordonia and Microbacterium phages has been performed according to shared gene content. Singleton phages lack the nucleotide identity and/or shared gene content required for clustering newly sequenced genomes with known phages. Whole genome metrics of novel Arthrobacter phage BlueFeather, originally designated a putative singleton, showed low nucleotide identity but high amino acid and gene content similarity with Arthrobacter phages originally assigned to Clusters FE and FI. Gene content similarity revealed that BlueFeather shared genes with these phages in excess of the parameter for clustering Gordonia and Microbacterium phages. Single gene analyses revealed evidence of horizontal gene transfer between BlueFeather and phages in unique clusters that infect a variety of bacterial hosts. Our findings highlight the advantage of using shared gene content to study seemingly genetically isolated phages and have resulted in the reclustering of BlueFeather, a putative singleton, as well as former Cluster FI phages, into a newly expanded Cluster FE.
Collapse
Affiliation(s)
- Stephanie Demo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Andrew Kapinos
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Aaron Bernardino
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Kristina Guardino
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Blake Hobbs
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Kimberly Hoh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Edward Lee
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Iphen Vuong
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Krisanavane Reddi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Amanda C. Freise
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Jordan Moberg Parker
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
16
|
Analysis of a Novel Bacteriophage vB_AchrS_AchV4 Highlights the Diversity of Achromobacter Viruses. Viruses 2021; 13:v13030374. [PMID: 33673419 PMCID: PMC7996906 DOI: 10.3390/v13030374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Achromobacter spp. are ubiquitous in nature and are increasingly being recognized as emerging nosocomial pathogens. Nevertheless, to date, only 30 complete genome sequences of Achromobacter phages are available in GenBank, and nearly all of those phages were isolated on Achromobacter xylosoxidans. Here, we report the isolation and characterization of bacteriophage vB_AchrS_AchV4. To the best of our knowledge, vB_AchrS_AchV4 is the first virus isolated from Achromobacter spanius. Both vB_AchrS_AchV4 and its host, Achromobacter spanius RL_4, were isolated in Lithuania. VB_AchrS_AchV4 is a siphovirus, since it has an isometric head (64 ± 3.2 nm in diameter) and a non-contractile flexible tail (232 ± 5.4). The genome of vB_AchrS_AchV4 is a linear dsDNA molecule of 59,489 bp with a G+C content of 62.8%. It contains no tRNA genes, yet it includes 82 protein-coding genes, of which 27 have no homologues in phages. Using bioinformatics approaches, 36 vB_AchrS_AchV4 genes were given a putative function. A further four were annotated based on the results of LC-MS/MS. Comparative analyses revealed that vB_AchrS_AchV4 is a singleton siphovirus with no close relatives among known tailed phages. In summary, this work not only describes a novel and unique phage, but also advances our knowledge of genetic diversity and evolution of Achromobacter bacteriophages.
Collapse
|
17
|
González-Dominici LI, Saati-Santamaría Z, García-Fraile P. Genome Analysis and Genomic Comparison of the Novel Species Arthrobacter ipsi Reveal Its Potential Protective Role in Its Bark Beetle Host. MICROBIAL ECOLOGY 2021; 81:471-482. [PMID: 32901388 DOI: 10.1007/s00248-020-01593-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
The pine engraver beetle, Ips acuminatus Gyll, is a bark beetle that causes important damages in Scots pine (Pinus sylvestris) forests and plantations. As almost all higher organisms, Ips acuminatus harbours a microbiome, although the role of most members of its microbiome is not well understood. As part of a work in which we analysed the bacterial diversity associated to Ips acuminatus, we isolated the strain Arthrobacter sp. IA7. In order to study its potential role within the bark beetle holobiont, we sequenced and explored its genome and performed a pan-genome analysis of the genus Arthrobacter, showing specific genes of strain IA7 that might be related with its particular role in its niche. Based on these investigations, we suggest several potential roles of the bacterium within the beetle. Analysis of genes related to secondary metabolism indicated potential antifungal capability, confirmed by the inhibition of several entomopathogenic fungal strains (Metarhizium anisopliae CCF0966, Lecanicillium muscarium CCF6041, L. muscarium CCF3297, Isaria fumosorosea CCF4401, I. farinosa CCF4808, Beauveria bassiana CCF4422 and B. brongniartii CCF1547). Phylogenetic analyses of the 16S rRNA gene, six concatenated housekeeping genes (tuf-secY-rpoB-recA-fusA-atpD) and genome sequences indicated that strain IA7 is closely related to A. globiformis NBRC 12137T but forms a new species within the genus Arthrobacter; this was confirmed by digital DNA-DNA hybridization (37.10%) and average nucleotide identity (ANIb) (88.9%). Based on phenotypic and genotypic features, we propose strain IA7T as the novel species Arthrobacter ipsi sp. nov. (type strain IA7T = CECT 30100T = LMG 31782T) and suggest its protective role for its host.
Collapse
Affiliation(s)
- Lihuén Iraí González-Dominici
- Microbiology and Genetics Department, University of Salamanca, Salamanca, Spain
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, Salamanca, Spain
| | - Zaki Saati-Santamaría
- Microbiology and Genetics Department, University of Salamanca, Salamanca, Spain
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, Salamanca, Spain
| | - Paula García-Fraile
- Microbiology and Genetics Department, University of Salamanca, Salamanca, Spain.
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, Salamanca, Spain.
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
- Associated R&D Unit, USAL-CSIC (IRNASA), Salamanca, Spain.
| |
Collapse
|
18
|
de Melo AG, Rousseau GM, Tremblay DM, Labrie SJ, Moineau S. DNA tandem repeats contribute to the genetic diversity of Brevibacterium aurantiacum phages. Environ Microbiol 2020; 22:3413-3428. [PMID: 32510858 DOI: 10.1111/1462-2920.15113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/23/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022]
Abstract
This report presents the characterization of the first virulent phages infecting Brevibacterium aurantiacum, a bacterial species used during the manufacture of surface-ripened cheeses. These phages were also responsible for flavour and colour defects in surface-ripened cheeses. Sixteen phages (out of 62 isolates) were selected for genome sequencing and comparative analyses. These cos-type phages with a long non-contractile tail currently belong to the Siphoviridae family (Caudovirales order). Their genome sizes vary from 35,637 to 36,825 bp and, similar to their host, have a high GC content (~61%). Genes encoding for an immunity repressor, an excisionase and a truncated integrase were found, suggesting that these virulent phages may be derived from a prophage. Their genomic organization is highly conserved, with most of the diversity coming from the presence of long (198 bp) DNA tandem repeats (TRs) within an open reading frame coding for a protein of unknown function. We categorized these phages into seven genomic groups according to their number of TR, which ranged from two to eight. Moreover, we showed that TRs are widespread in phage genomes, found in more than 85% of the genomes available in public databases.
Collapse
Affiliation(s)
- Alessandra G de Melo
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Québec City, Canada.,Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Québec City, Canada
| | - Geneviève M Rousseau
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Québec City, Canada.,Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de Médecine Dentaire, Université Laval, Québec, Québec City, Canada
| | - Denise M Tremblay
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Québec City, Canada.,Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de Médecine Dentaire, Université Laval, Québec, Québec City, Canada
| | | | - Sylvain Moineau
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Québec City, Canada.,Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Québec City, Canada.,Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de Médecine Dentaire, Université Laval, Québec, Québec City, Canada
| |
Collapse
|
19
|
Jacobs-Sera D, Abad LA, Alvey RM, Anders KR, Aull HG, Bhalla SS, Blumer LS, Bollivar DW, Bonilla JA, Butela KA, Coomans RJ, Cresawn SG, D'Elia T, Diaz A, Divens AM, Edgington NP, Frederick GD, Gainey MD, Garlena RA, Grant KW, Gurney SMR, Hendrickson HL, Hughes LE, Kenna MA, Klyczek KK, Kotturi H, Mavrich TN, McKinney AL, Merkhofer EC, Moberg Parker J, Molloy SD, Monti DL, Pape-Zambito DA, Pollenz RS, Pope WH, Reyna NS, Rinehart CA, Russell DA, Shaffer CD, Sivanathan V, Stoner TH, Stukey J, Sunnen CN, Tolsma SS, Tsourkas PK, Wallen JR, Ware VC, Warner MH, Washington JM, Westover KM, Whitefleet-Smith JL, Wiersma-Koch HI, Williams DC, Zack KM, Hatfull GF. Genomic diversity of bacteriophages infecting Microbacterium spp. PLoS One 2020; 15:e0234636. [PMID: 32555720 PMCID: PMC7302621 DOI: 10.1371/journal.pone.0234636] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/29/2020] [Indexed: 11/19/2022] Open
Abstract
The bacteriophage population is vast, dynamic, old, and genetically diverse. The genomics of phages that infect bacterial hosts in the phylum Actinobacteria show them to not only be diverse but also pervasively mosaic, and replete with genes of unknown function. To further explore this broad group of bacteriophages, we describe here the isolation and genomic characterization of 116 phages that infect Microbacterium spp. Most of the phages are lytic, and can be grouped into twelve clusters according to their overall relatedness; seven of the phages are singletons with no close relatives. Genome sizes vary from 17.3 kbp to 97.7 kbp, and their G+C% content ranges from 51.4% to 71.4%, compared to ~67% for their Microbacterium hosts. The phages were isolated on five different Microbacterium species, but typically do not efficiently infect strains beyond the one on which they were isolated. These Microbacterium phages contain many novel features, including very large viral genes (13.5 kbp) and unusual fusions of structural proteins, including a fusion of VIP2 toxin and a MuF-like protein into a single gene. These phages and their genetic components such as integration systems, recombineering tools, and phage-mediated delivery systems, will be useful resources for advancing Microbacterium genetics.
Collapse
Affiliation(s)
- Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lawrence A. Abad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Richard M. Alvey
- Department of Biology, Illinois Wesleyan University, Bloomington, Illinois, United States of America
| | - Kirk R. Anders
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
| | - Haley G. Aull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Suparna S. Bhalla
- Department of Natural Sciences, Mount Saint Mary College, Newburgh, New York, United States of America
| | - Lawrence S. Blumer
- Department of Biology, Morehouse College, Atlanta, Georgia, United States of America
| | - David W. Bollivar
- Department of Biology, Illinois Wesleyan University, Bloomington, Illinois, United States of America
| | - J. Alfred Bonilla
- Department of Biology, University of Wisconsin-River Falls, River Falls, Wisconsin, United States of America
| | - Kristen A. Butela
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Roy J. Coomans
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina, United States of America
| | - Steven G. Cresawn
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - Tom D'Elia
- Department of Biological Sciences, Indian River State College, Fort Pierce, Florida, United States of America
| | - Arturo Diaz
- Department of Biology, La Sierra University, Riverside, California, United States of America
| | - Ashley M. Divens
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nicholas P. Edgington
- Department of Biology, Southern Connecticut State University, New Haven, Connecticut, United States of America
| | - Gregory D. Frederick
- Department of Biology and Kinesiology, LeTourneau University, Longview, Texas, United States of America
| | - Maria D. Gainey
- Department of Chemistry & Physics, Western Carolina University, Cullowhee, North Carolina, United States of America
| | - Rebecca A. Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kenneth W. Grant
- Department of Pathology, Wake Forest Baptist Health, Winston-Salem, North Carolina, United States of America
| | - Susan M. R. Gurney
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | | | - Lee E. Hughes
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Margaret A. Kenna
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Karen K. Klyczek
- Department of Biology, University of Wisconsin-River Falls, River Falls, Wisconsin, United States of America
| | - Hari Kotturi
- Department of Biology, University of Central Oklahoma, Edmond, Oklahoma, United States of America
| | - Travis N. Mavrich
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Angela L. McKinney
- Department of Biology, Nebraska Wesleyan University, Lincoln, Nebraska, United States of America
| | - Evan C. Merkhofer
- Department of Natural Sciences, Mount Saint Mary College, Newburgh, New York, United States of America
| | - Jordan Moberg Parker
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, California, United States of America
| | - Sally D. Molloy
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| | - Denise L. Monti
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Dana A. Pape-Zambito
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Richard S. Pollenz
- Department Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Welkin H. Pope
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nathan S. Reyna
- Department of Biology, Ouachita Baptist University, Arkadelphia, Arkansas, United States of America
| | - Claire A. Rinehart
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Daniel A. Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Christopher D. Shaffer
- Department of Biology, University of Washington in St. Louis, St. Louis, Missouri, United States of America
| | - Viknesh Sivanathan
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Ty H. Stoner
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joseph Stukey
- Biology Department, Hope College, Holland, Michigan, United States of America
| | - C. Nicole Sunnen
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| | - Sara S. Tolsma
- Biology Department, Northwestern College, Orange City, Iowa, United States of America
| | - Philippos K. Tsourkas
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, United States of America
| | - Jamie R. Wallen
- Department of Chemistry & Physics, Western Carolina University, Cullowhee, North Carolina, United States of America
| | - Vassie C. Ware
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Marcie H. Warner
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | - Kristi M. Westover
- Department of Biology, Winthrop University, Rock Hill, South Carolina, United States of America
| | - JoAnn L. Whitefleet-Smith
- Department of Biology & Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Helen I. Wiersma-Koch
- Department of Biological Sciences, Indian River State College, Fort Pierce, Florida, United States of America
| | - Daniel C. Williams
- Department of Biology, Coastal Carolina University, Conway, South Carolina, United States of America
| | - Kira M. Zack
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
20
|
Oliveira H, Sampaio M, Melo LDR, Dias O, Pope WH, Hatfull GF, Azeredo J. Staphylococci phages display vast genomic diversity and evolutionary relationships. BMC Genomics 2019; 20:357. [PMID: 31072320 PMCID: PMC6507118 DOI: 10.1186/s12864-019-5647-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/27/2019] [Indexed: 11/25/2022] Open
Abstract
Background Bacteriophages are the most abundant and diverse entities in the biosphere, and this diversity is driven by constant predator–prey evolutionary dynamics and horizontal gene transfer. Phage genome sequences are under-sampled and therefore present an untapped and uncharacterized source of genetic diversity, typically characterized by highly mosaic genomes and no universal genes. To better understand the diversity and relationships among phages infecting human pathogens, we have analysed the complete genome sequences of 205 phages of Staphylococcus sp. Results These are predicted to encode 20,579 proteins, which can be sorted into 2139 phamilies (phams) of related sequences; 745 of these are orphams and possess only a single gene. Based on shared gene content, these phages were grouped into four clusters (A, B, C and D), 27 subclusters (A1-A2, B1-B17, C1-C6 and D1-D2) and one singleton. However, the genomes have mosaic architectures and individual genes with common ancestors are positioned in distinct genomic contexts in different clusters. The staphylococcal Cluster B siphoviridae are predicted to be temperate, and the integration cassettes are often closely-linked to genes implicated in bacterial virulence determinants. There are four unusual endolysin organization strategies found in Staphylococcus phage genomes, with endolysins predicted to be encoded as single genes, two genes spliced, two genes adjacent and as a single gene with inter-lytic-domain secondary translational start site. Comparison of the endolysins reveals multi-domain modularity, with conservation of the SH3 cell wall binding domain. Conclusions This study provides a high-resolution view of staphylococcal viral genetic diversity, and insights into their gene flux patterns within and across different phage groups (cluster and subclusters) providing insights into their evolution. Electronic supplementary material The online version of this article (10.1186/s12864-019-5647-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hugo Oliveira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
| | - Marta Sampaio
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Luís D R Melo
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Oscar Dias
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Welkin H Pope
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
21
|
Abstract
Mycobacteriophages are viruses that infect mycobacterial hosts. A large number of mycobacteriophages have been isolated and genomically characterized, providing insights into viral diversity and evolution, as well as fueling development of tools for mycobacterial genetics. Mycobacteriophages have intimate relationships with their hosts and provide insights into the genetics and physiology of the mycobacteria and tools for potential clinical applications such as drug development, diagnosis, vaccines, and potentially therapy.
Collapse
|
22
|
Genome Sequences of Three
Microbacterium
Phages Isolated from Flowers. Microbiol Resour Announc 2019; 8:MRA01468-18. [PMID: 30637400 PMCID: PMC6318371 DOI: 10.1128/mra.01468-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/16/2018] [Indexed: 11/24/2022] Open
Abstract
Bacteriophages Balsa, Golden, and Lucky3 are cluster EA phages isolated from flowers and infect Microbacterium foliorum NRRL B-24224. The genomes of Golden and Lucky3 (subcluster EA1) are closely related, whereas Balsa (subcluster EA4) is a more distant relative. Bacteriophages Balsa, Golden, and Lucky3 are cluster EA phages isolated from flowers and infect Microbacterium foliorum NRRL B-24224. The genomes of Golden and Lucky3 (subcluster EA1) are closely related, whereas Balsa (subcluster EA4) is a more distant relative.
Collapse
|
23
|
Characterization and induction of prophages in human gut-associated Bifidobacterium hosts. Sci Rep 2018; 8:12772. [PMID: 30143740 PMCID: PMC6109161 DOI: 10.1038/s41598-018-31181-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/09/2018] [Indexed: 01/20/2023] Open
Abstract
In the current report, we describe the identification of three genetically distinct groups of prophages integrated into three different chromosomal sites of human gut-associated Bifidobacterium breve and Bifidobacterium longum strains. These bifidobacterial prophages are distantly related to temperate actinobacteriophages of several hosts. Some prophages, integrated within the dnaJ2 gene, are competent for induction, excision, replication, assembly and lysis, suggesting that they are fully functional and can generate infectious particles, even though permissive hosts have not yet been identified. Interestingly, several of these phages harbor a putative phase variation shufflon (the Rin system) that generates variation of the tail-associated receptor binding protein (RBP). Unlike the analogous coliphage-associated shufflon Min, or simpler Cin and Gin inversion systems, Rin is predicted to use a tyrosine recombinase to promote inversion, the first reported phage-encoded tyrosine-family DNA invertase. The identification of bifidobacterial prophages with RBP diversification systems that are competent for assembly and lysis, yet fail to propagate lytically under laboratory conditions, suggests dynamic evolution of bifidobacteria and their phages in the human gut.
Collapse
|
24
|
Genome Sequences of Ilzat and Eleri, Two Phages Isolated Using Microbacterium foliorum NRRL B-24224. GENOME ANNOUNCEMENTS 2018; 6:6/15/e00144-18. [PMID: 29650566 PMCID: PMC5897797 DOI: 10.1128/genomea.00144-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Bacteriophages Ilzat and Eleri are newly isolated
Siphoviridae
infecting
Microbacterium foliorum
NRRL B-24224. The phage genomes are similar in length, G+C content, and architecture and share 62.9% nucleotide sequence identity.
Collapse
|
25
|
Abstract
We report here the complete genome sequences of 44 phages infecting Arthrobacter sp. strain ATCC 21022. These phages have double-stranded DNA genomes with sizes ranging from 15,680 to 70,707 bp and G+C contents from 45.1% to 68.5%. All three tail types (belonging to the families Siphoviridae, Myoviridae, and Podoviridae) are represented.
Collapse
|
26
|
Genome Sequences of 12 Cluster AN Arthrobacter Phages. GENOME ANNOUNCEMENTS 2017; 5:5/45/e01092-17. [PMID: 29122859 PMCID: PMC5679792 DOI: 10.1128/genomea.01092-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Twelve siphoviral phages isolated using Arthrobacter sp. strain ATCC 21022 were sequenced. The phages all have relatively small genomes, ranging from 15,319 to 15,556 bp. All 12 phages are closely related to previously described cluster AN Arthrobacter phages.
Collapse
|
27
|
Genome Sequences of Three Cluster AU
Arthrobacter
Phages, Caterpillar, Nightmare, and Teacup. GENOME ANNOUNCEMENTS 2017; 5:5/45/e01121-17. [PMID: 29122860 PMCID: PMC5679793 DOI: 10.1128/genomea.01121-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Caterpillar, Nightmare, and Teacup are cluster AU siphoviral phages isolated from enriched soil on
Arthrobacter
sp. strain ATCC 21022. These genomes are 58 kbp long with an average G+C content of 50%. Sequence analysis predicts 86 to 92 protein-coding genes, including a large number of small proteins with predicted transmembrane domains.
Collapse
|
28
|
Complete Genome Sequences of
Arthrobacter
Phages Beans, Franzy, Jordan, Piccoletto, Shade, and Timinator. GENOME ANNOUNCEMENTS 2017; 5:5/44/e01094-17. [PMID: 29097454 PMCID: PMC5668530 DOI: 10.1128/genomea.01094-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the genome sequences of six newly isolated bacteriophages infecting Arthrobacter sp. ATCC 21022. All six have myoviral morphologies and have double-stranded DNA genomes with circularly permuted ends. The six phages are closely related with average nucleotide identities of 73.4 to 93.0% across genomes lengths of 49,797 to 51,347 bp.
Collapse
|
29
|
Abstract
The global bacteriophage population is large, dynamic, old, and highly diverse genetically. Many phages are tailed and contain double-stranded DNA, but these remain poorly characterized genomically. A collection of over 1,000 phages infecting Mycobacterium smegmatis reveals the diversity of phages of a common bacterial host, but their relationships to phages of phylogenetically proximal hosts are not known. Comparative sequence analysis of 79 phages isolated on Gordonia shows these also to be diverse and that the phages can be grouped into 14 clusters of related genomes, with an additional 14 phages that are “singletons” with no closely related genomes. One group of six phages is closely related to Cluster A mycobacteriophages, but the other Gordonia phages are distant relatives and share only 10% of their genes with the mycobacteriophages. The Gordonia phage genomes vary in genome length (17.1 to 103.4 kb), percentage of GC content (47 to 68.8%), and genome architecture and contain a variety of features not seen in other phage genomes. Like the mycobacteriophages, the highly mosaic Gordonia phages demonstrate a spectrum of genetic relationships. We show this is a general property of bacteriophages and suggest that any barriers to genetic exchange are soft and readily violable. Despite the numerical dominance of bacteriophages in the biosphere, there is a dearth of complete genomic sequences. Current genomic information reveals that phages are highly diverse genomically and have mosaic architectures formed by extensive horizontal genetic exchange. Comparative analysis of 79 phages of Gordonia shows them to not only be highly diverse, but to present a spectrum of relatedness. Most are distantly related to phages of the phylogenetically proximal host Mycobacterium smegmatis, although one group of Gordonia phages is more closely related to mycobacteriophages than to the other Gordonia phages. Phage genome sequence space remains largely unexplored, but further isolation and genomic comparison of phages targeted at related groups of hosts promise to reveal pathways of bacteriophage evolution.
Collapse
|