1
|
Benali T, Bakrim S, Ghchime R, Benkhaira N, El Omari N, Balahbib A, Taha D, Zengin G, Hasan MM, Bibi S, Bouyahya A. Pharmacological insights into the multifaceted biological properties of quinic acid. Biotechnol Genet Eng Rev 2024; 40:3408-3437. [PMID: 36123811 DOI: 10.1080/02648725.2022.2122303] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/20/2022] [Indexed: 11/02/2022]
Abstract
Quinic acid is a cyclohexanecarboxylic acid contained in the extracts of several parts of medicinal plants including Haematocarpus validus, Hypericum empetrifolium, Achillea pseudoaleppica, Rumex nepalensis, Phagnalon saxatile subsp. saxatile, Coffea arabica, Ziziphus lotus L, and Artemisia annua L … etc. Currently, in vitro and in vivo pharmacological studies showed that quinic acid exhibits various biological activities, such as antioxidant, antidiabetic, anticancer activity, antimicrobial, antiviral, aging, protective, anti-nociceptive and analgesic effects. Indeed, QA possesses an important antibacterial effect which could be explained by the fact that this molecule modules the functions of ribosomes and the synthesis of aminoacyl-tRNAs, modifications the levels of glycerophospholipids and fatty acids and disruption of the oxidative phosphorylation pathway thereby causing interference with membrane fluidity. The antidiabetic activity of AQ is achieved by stimulation of insulin secretion via the mobilization of Ca2+ from intracellular reserves and the increase in the NAD(P)H/NAD(P)+ ratio. Its anticancer effect is through the promotion of apoptosis, inhibition of activator protein 1 (AP-1) and signaling pathways involving protein kinase C (PKC) and certain mitogen-activated protein kinases (MAPKs), resulting in the downregulation of matrix metallopeptidase 9 (MMP-9) expression. Therefore, this review describes the main research work carried out on the biological properties of AQ and the mechanism of action underlying some of these effects, as well as the investigations of the main pharmacokinetic studies.
Collapse
Affiliation(s)
- Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Saad Bakrim
- Molecular Engineering, Valorization, and Environment Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr 19 University, Agadir, Morocco
| | - Rokaia Ghchime
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Nisrine Benkhaira
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology and Genome, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Doaue Taha
- Department 16 of Chemistry, Faculty of Sciences, Molecular Modeling, Materials, Nanomaterials, Water and Environment Laboratory institution, Mohammed V University in Rabat, Rabat, Morocco
| | - Gökhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center 11 of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
2
|
Cao D, Zhou L, Hu R. Exosomes derived from BMSCs alleviates high glucose-induced diabetic retinopathy via carrying miR-483-5p. J Biochem Mol Toxicol 2024; 38:e23616. [PMID: 38069837 DOI: 10.1002/jbt.23616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 07/26/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Diabetic retinopathy (DR) is a progressive disease which can cause health problem. It has been reported that bone marrow mesenchymal stem cells (BMSCs)-secreted exosomes could regulate the progression of DR via carrying microRNAs. Meanwhile, miR-483-5p was downregulated in DR; however, whether BMSCs-secreted exosomes can modulate DR progression via carrying miR-483-5p remains unclear. To mimic DR in vitro, ARPE-19 cells were exposed to 30 mM high glucose (HG). Exosomes were isolated from BMSCs and identified by transmission electron microscopy, nanoparticle tracking analysis, and western blot. Cell counting kit-8 assay was applied for assessing the cell viability. Flow cytometry was applied to test the cell apoptosis. Meanwhile, dual luciferase assay was used to evaluate the association among miR-483-5p and downstream target insulin-like growth factor 1 receptor (IGF-1R). In addition, quantitative reverse-transcription polymerase chain reaction and western blot were used for exploring the level of miR-483-5p and IGF-1R. HG significantly induced apoptosis in ARPE-19 cells, while BMSCs-derived exosomes reversed this phenomenon. In addition, inhibition of miR-483-5p expression of exosomes further aggravated HG-induced ARPE-19 cell apoptosis. Meanwhile, IGF-1R was the downstream messenger RNA of miR-483-5p, and IGF-1R silencing could reverse the effect of exosomes with downregulated miR-483-5p on HG-induced cell injury. Exosomes derived from BMSCs inhibit the progression of DR via carrying miR-483-5p. Thus, our study might provide a theoretical basis for discovering new strategies against DR.
Collapse
Affiliation(s)
- Dan Cao
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Liang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Rong Hu
- Department of Ophthalmology, Hunan Provincial People's Hospital, The First Affiliated hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
3
|
Li J, Chen K, Li X, Zhang X, Zhang L, Yang Q, Xia Y, Xie C, Wang X, Tong J, Shen Y. Mechanistic insights into the alterations and regulation of the AKT signaling pathway in diabetic retinopathy. Cell Death Discov 2023; 9:418. [PMID: 37978169 PMCID: PMC10656479 DOI: 10.1038/s41420-023-01717-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
In the early stages of diabetic retinopathy (DR), diabetes-related hyperglycemia directly inhibits the AKT signaling pathway by increasing oxidative stress or inhibiting growth factor expression, which leads to retinal cell apoptosis, nerve proliferation and fundus microvascular disease. However, due to compensatory vascular hyperplasia in the late stage of DR, the vascular endothelial growth factor (VEGF)/phosphatidylinositol 3 kinase (PI3K)/AKT cascade is activated, resulting in opposite levels of AKT regulation compared with the early stage. Studies have shown that many factors, including insulin, insulin-like growth factor-1 (IGF-1), VEGF and others, can regulate the AKT pathway. Disruption of the insulin pathway decreases AKT activation. IGF-1 downregulation decreases the activation of AKT in DR, which abrogates the neuroprotective effect, upregulates VEGF expression and thus induces neovascularization. Although inhibiting VEGF is the main treatment for neovascularization in DR, excessive inhibition may lead to apoptosis in inner retinal neurons. AKT pathway substrates, including mammalian target of rapamycin (mTOR), forkhead box O (FOXO), glycogen synthase kinase-3 (GSK-3)/nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor kappa-B (NF-κB), are a research focus. mTOR inhibitors can delay or prevent retinal microangiopathy, whereas low mTOR activity can decrease retinal protein synthesis. Inactivated AKT fails to inhibit FOXO and thus causes apoptosis. The GSK-3/Nrf2 cascade regulates oxidation and inflammation in DR. NF-κB is activated in diabetic retinas and is involved in inflammation and apoptosis. Many pathways or vital activities, such as the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) signaling pathways, interact with the AKT pathway to influence DR development. Numerous regulatory methods can simultaneously impact the AKT pathway and other pathways, and it is essential to consider both the connections and interactions between these pathways. In this review, we summarize changes in the AKT signaling pathway in DR and targeted drugs based on these potential sites.
Collapse
Affiliation(s)
- Jiayuan Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiang Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuhong Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Liyue Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yutong Xia
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Xie
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiawei Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Truong T, Silkiss RZ. The Role of Insulin-like Growth Factor-1 and Its Receptor in the Eye: A Review and Implications for IGF-1R Inhibition. Ophthalmic Plast Reconstr Surg 2023; 39:4-12. [PMID: 36598389 DOI: 10.1097/iop.0000000000002146] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE FDA approval of teprotumumab for thyroid eye disease in January 2020 reinforced interest in the pharmacologic potential of insulin-like growth factor-1 (IGF-1) and its receptor, IGF-1R. Despite recent approval and adaptation for ophthalmic use, IGF-1R inhibitors are not a new therapeutic class. In 1986, Yamashita described aIR3, a monoclonal antibody to IGF-1R (anti-IGF-1R), that inhibited the effect of IGF-1 on growth hormone release. Given the widespread presence of IGF-1R, interrupting this receptor can lead to systemic physiologic effects, some adverse. We aim to review what is known about IGF-1/IGF-1R in the eye and consider the possible local side effects, unintended consequences, and potential uses of this medication class. METHODS A PubMed database search utilizing the keywords "insulin-like growth factor-1, eye, inhibitor, antibody, side effect" was performed to identify publications discussing IGF-1 in the human eye from January 2011 to August 2021. Criteria for acceptance included studies discussing human subjects or human tissue specifically related to the eye. RESULTS Out of a total of 230 articles, 47 were organized in 3 subject groups for discussion: thyroid-associated orbitopathy, cornea and the ocular surface, and the retina and neovascularization. Review of the literature demonstrated that IGF-1 affects growth and development of the eye, epithelial proliferation, retinal angiogenesis, inflammation, and is associated with thyroid-associated orbitopathy. CONCLUSIONS IGF-1R exists throughout in the human body, including the cornea, retina, and orbit. Research regarding ocular effects of IGF-1/IGF-1R outside thyroid eye disease is limited. Carefully designed studies and clinical assessments of patients undergoing treatment with anti-IGF-1R may identify ocular side effects and foster consideration of the role of anti-IGF-1R in ocular therapeutics. Given the increasing use of anti-IGF-1R antibodies, understanding their ocular effects, side effects, and potential systemic implications for use in disease is critical.
Collapse
Affiliation(s)
- Timothy Truong
- Department of Ophthalmology, Division of Oculofacial Plastic Surgery, California Pacific Medical Center, San Francisco, California, U.S.A
| | - Rona Z Silkiss
- Department of Ophthalmology, Division of Oculofacial Plastic Surgery, California Pacific Medical Center, San Francisco, California, U.S.A
- Department of Ophthalmology, Division of Oculofacial Plastic Surgery, Silkiss Eye Surgery, San Francisco, California, U.S.A
| |
Collapse
|
5
|
Design and synthesis of novel quinic acid derivatives: in vitro cytotoxicity and anticancer effect on glioblastoma. Future Med Chem 2020; 12:1891-1910. [PMID: 33124467 DOI: 10.4155/fmc-2020-0194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: Quinic acid (QA) is a cyclic polyol exhibiting anticancer properties on several cancers. However, potential role of QA derivatives against glioblastoma is not well established. Methodology & results: Sixteen novel QA derivatives and QA-16 encapsulated poly (lactic-co-glycolic acid) nanoparticles (QA-16-NPs) were screened for their anti-glioblastoma effect using standard cell and molecular biology methods. Presence of a tertiary hydroxy and silylether groups in the lead compound were identified for the antitumor activity. QA-16 have 90% inhibition with the IC50 of 10.66 μM and 28.22 μM for LN229 and SNB19, respectively. The induction of apoptosis is faster with the increased fold change of caspase 3/7 and reactive oxygen species. Conclusion: QA-16 and QA-16-NPs shows similar cytotoxicity effect, providing the opportunity to use QA-16 as a potential chemotherapeutic agent.
Collapse
|
6
|
Bhattarai A, Wang J, Miao Y. Retrospective ensemble docking of allosteric modulators in an adenosine G-protein-coupled receptor. Biochim Biophys Acta Gen Subj 2020; 1864:129615. [PMID: 32298791 DOI: 10.1016/j.bbagen.2020.129615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/26/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Ensemble docking has proven useful in drug discovery and development. It increases the hit rate by incorporating receptor flexibility into molecular docking as demonstrated on important drug targets including G-protein-coupled receptors (GPCRs). Adenosine A1 receptor (A1AR) is a key GPCR that has been targeted for treating cardiac ischemia-reperfusion injuries, neuropathic pain and renal diseases. Development of allosteric modulators, compounds binding to distinct and less conserved GPCR target sites compared with agonists and antagonists, has attracted increasing interest for designing selective drugs of the A1AR. Despite significant advances, more effective approaches are needed to discover potent and selective allosteric modulators of the A1AR. METHODS Ensemble docking that integrates Gaussian accelerated molecular dynamic (GaMD) simulations and molecular docking using Autodock has been implemented for retrospective docking of known positive allosteric modulators (PAMs) in the A1AR. RESULTS Ensemble docking outperforms docking of the receptor cryo-EM structure. The calculated docking enrichment factors (EFs) and the area under the receiver operating characteristic curves (AUC) are significantly increased. CONCLUSIONS Receptor ensembles generated from GaMD simulations are able to increase the success rate of discovering PAMs of A1AR. It is important to account for receptor flexibility through GaMD simulations and flexible docking. GENERAL SIGNIFICANCE Ensemble docking is a promising approach for drug discovery targeting flexible receptors.
Collapse
Affiliation(s)
- Apurba Bhattarai
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
7
|
Heikkilä E, Hermant A, Thevenet J, Bermont F, Kulkarni SS, Ratajczak J, Santo-Domingo J, Dioum EH, Canto C, Barron D, Wiederkehr A, De Marchi U. The plant product quinic acid activates Ca 2+ -dependent mitochondrial function and promotes insulin secretion from pancreatic beta cells. Br J Pharmacol 2019; 176:3250-3263. [PMID: 31166006 DOI: 10.1111/bph.14757] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/07/2019] [Accepted: 05/04/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Quinic acid (QA) is an abundant natural compound from plant sources which may improve metabolic health. However, little attention has been paid to its effects on pancreatic beta-cell functions, which contribute to the control of metabolic health by lowering blood glucose. Strategies targeting beta-cell signal transduction are a new approach for diabetes treatment. This study investigated the efficacy of QA to stimulate beta-cell function by targeting the basic molecular machinery of metabolism-secretion coupling. EXPERIMENTAL APPROACH We measured bioenergetic parameters and insulin exocytosis in a model of insulin-secreting beta-cells (INS-1E), together with Ca2+ homeostasis, using genetically encoded sensors, targeted to different subcellular compartments. Islets from mice chronically infused with QA were also assessed. KEY RESULTS QA triggered transient cytosolic Ca2+ increases in insulin-secreting cells by mobilizing Ca2+ from intracellular stores, such as endoplasmic reticulum. Following glucose stimulation, QA increased glucose-induced mitochondrial Ca2+ transients. We also observed a QA-induced rise of the NAD(P)H/NAD(P)+ ratio, augmented ATP synthase-dependent respiration, and enhanced glucose-stimulated insulin secretion. QA promoted beta-cell function in vivo as islets from mice infused with QA displayed improved glucose-induced insulin secretion. A diet containing QA improved glucose tolerance in mice. CONCLUSIONS AND IMPLICATIONS QA modulated intracellular Ca2+ homeostasis, enhancing glucose-stimulated insulin secretion in both INS-1E cells and mouse islets. By increasing mitochondrial Ca2+ , QA activated the coordinated stimulation of oxidative metabolism, mitochondrial ATP synthase-dependent respiration, and therefore insulin secretion. Bioactive agents raising mitochondrial Ca2+ in pancreatic beta-cells could be used to treat diabetes.
Collapse
Affiliation(s)
- Eija Heikkilä
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Aurelie Hermant
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | | | - Flavien Bermont
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | | | | | | | - El Hadji Dioum
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Carles Canto
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Denis Barron
- Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | | | | |
Collapse
|
8
|
Evangelista Falcon W, Ellingson SR, Smith JC, Baudry J. Ensemble Docking in Drug Discovery: How Many Protein Configurations from Molecular Dynamics Simulations are Needed To Reproduce Known Ligand Binding? J Phys Chem B 2019; 123:5189-5195. [DOI: 10.1021/acs.jpcb.8b11491] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Wilfredo Evangelista Falcon
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
- UT/ORNL Center for Molecular Biophysics, Oak Ridge, Tennessee 37830, United States
- College of Medicine, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sally R. Ellingson
- UT/ORNL Center for Molecular Biophysics, Oak Ridge, Tennessee 37830, United States
| | - Jeremy C. Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
- UT/ORNL Center for Molecular Biophysics, Oak Ridge, Tennessee 37830, United States
| | - Jerome Baudry
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| |
Collapse
|
9
|
Askari H, Rajani SF, Poorebrahim M, Haghi-Aminjan H, Raeis-Abdollahi E, Abdollahi M. A glance at the therapeutic potential of irisin against diseases involving inflammation, oxidative stress, and apoptosis: An introductory review. Pharmacol Res 2018; 129:44-55. [PMID: 29414191 DOI: 10.1016/j.phrs.2018.01.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 01/22/2018] [Indexed: 12/19/2022]
Abstract
Irisin is a hormone-like molecule mainly released by skeletal muscles in response to exercise. Irisin induces browning of the white adipose tissue and has been shown to regulate glucose and lipid homeostasis. Keeping its energy expenditure and metabolic properties in view, numerous studies have focused on its therapeutic potential for the treatment of metabolic disorders like obesity and type 2 diabetes. Recently, the anti-inflammatory, anti-apoptotic and anti-oxidative properties of irisin have received a great deal of attention of the scientific society. These pathogenic processes are often associated with initiation, progression, and prognosis of numerous diseases like myocardial infarction, kidney diseases, cancer, lung injury, inflammatory bowel diseases, atherosclerosis, liver diseases, obesity and type 2 diabetes. In the current review, we present evidence regarding the anti-inflammatory, anti-apoptotic and anti-oxidative potential of irisin pertaining to various pathological conditions. Here, we explore multiple molecular pathways targeted by irisin therapy. Given the promising effects of irisin, many diseases with evident oxidative stress, inflammation and apoptosis can be targeted by irisin.
Collapse
Affiliation(s)
- Hassan Askari
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sulail Fatima Rajani
- Department of Physiology, School of Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Poorebrahim
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Raeis-Abdollahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Toxicology and Diseases Group, Pharmaceutical Sciences Research Centre, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|