1
|
Van Moortel L, Thommis J, Maertens B, Staes A, Clarisse D, De Sutter D, Libert C, Meijer OC, Eyckerman S, Gevaert K, De Bosscher K. Novel assays monitoring direct glucocorticoid receptor protein activity exhibit high predictive power for ligand activity on endogenous gene targets. Biomed Pharmacother 2022; 152:113218. [PMID: 35709653 DOI: 10.1016/j.biopha.2022.113218] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Exogenous glucocorticoids are widely used in the clinic for the treatment of inflammatory disorders and auto-immune diseases. Unfortunately, their use is hampered by many side effects and therapy resistance. Efforts to find more selective glucocorticoid receptor (GR) agonists and modulators (called SEGRAMs) that are able to separate anti-inflammatory effects via gene repression from metabolic effects via gene activation, have been unsuccessful so far. In this study, we characterized a set of functionally diverse GR ligands in A549 cells, first using a panel of luciferase-based reporter gene assays evaluating GR-driven gene activation and gene repression. We expanded this minimal assay set with novel luciferase-based read-outs monitoring GR protein levels, GR dimerization and GR Serine 211 (Ser211) phosphorylation status and compared their outcomes with compound effects on the mRNA levels of known GR target genes in A549 cells and primary hepatocytes. We found that luciferase reporters evaluating GR-driven gene activation and gene repression were not always reliable predictors for effects on endogenous target genes. Remarkably, our novel assay monitoring GR Ser211 phosphorylation levels proved to be the most reliable predictor for compound effects on almost all tested endogenous GR targets, both driven by gene activation and repression. The integration of this novel assay in existing screening platforms running both in academia and industry may therefore boost chances to find novel GR ligands with an actual improved therapeutic benefit.
Collapse
Affiliation(s)
- Laura Van Moortel
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Jonathan Thommis
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Brecht Maertens
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - An Staes
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Dorien Clarisse
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Delphine De Sutter
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Claude Libert
- VIB Center for Inflammation Research (IRC), Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, the Netherlands.
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Kris Gevaert
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Karolien De Bosscher
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| |
Collapse
|
2
|
Sheffer M, Lowry E, Beelen N, Borah M, Amara SNA, Mader CC, Roth JA, Tsherniak A, Freeman SS, Dashevsky O, Gandolfi S, Bender S, Bryan JG, Zhu C, Wang L, Tariq I, Kamath GM, Simoes RDM, Dhimolea E, Yu C, Hu Y, Dufva O, Giannakis M, Syrgkanis V, Fraenkel E, Golub T, Romee R, Mustjoki S, Culhane AC, Wieten L, Mitsiades CS. Genome-scale screens identify factors regulating tumor cell responses to natural killer cells. Nat Genet 2021; 53:1196-1206. [PMID: 34253920 DOI: 10.1038/s41588-021-00889-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/18/2021] [Indexed: 12/26/2022]
Abstract
To systematically define molecular features in human tumor cells that determine their degree of sensitivity to human allogeneic natural killer (NK) cells, we quantified the NK cell responsiveness of hundreds of molecularly annotated 'DNA-barcoded' solid tumor cell lines in multiplexed format and applied genome-scale CRISPR-based gene-editing screens in several solid tumor cell lines, to functionally interrogate which genes in tumor cells regulate the response to NK cells. In these orthogonal studies, NK cell-sensitive tumor cells tend to exhibit 'mesenchymal-like' transcriptional programs; high transcriptional signature for chromatin remodeling complexes; high levels of B7-H6 (NCR3LG1); and low levels of HLA-E/antigen presentation genes. Importantly, transcriptional signatures of NK cell-sensitive tumor cells correlate with immune checkpoint inhibitor (ICI) resistance in clinical samples. This study provides a comprehensive map of mechanisms regulating tumor cell responses to NK cells, with implications for future biomarker-driven applications of NK cell immunotherapies.
Collapse
MESH Headings
- Allogeneic Cells/physiology
- Animals
- B7 Antigens/genetics
- Cell Line, Tumor
- Chromatin Assembly and Disassembly/physiology
- Cytotoxicity Tests, Immunologic/methods
- Cytotoxicity, Immunologic/genetics
- Cytotoxicity, Immunologic/physiology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Genome, Human
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Killer Cells, Natural/physiology
- Mice, Inbred NOD
- Xenograft Model Antitumor Assays
- HLA-E Antigens
- Mice
Collapse
Affiliation(s)
- Michal Sheffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Ludwig Center, Harvard Medical School, Boston, MA, USA.
| | - Emily Lowry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicky Beelen
- Department of Transplantation Immunology, Maastricht University Medical Center+, Maastricht, the Netherlands
- School for Oncology and Developmental Biology, Maastricht University Medical Center+ GROW, Maastricht, the Netherlands
| | - Minasri Borah
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Chris C Mader
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Jennifer A Roth
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Aviad Tsherniak
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Samuel S Freeman
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Olga Dashevsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center, Harvard Medical School, Boston, MA, USA
| | - Sara Gandolfi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center, Harvard Medical School, Boston, MA, USA
| | - Samantha Bender
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Jordan G Bryan
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Cong Zhu
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Li Wang
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Ifrah Tariq
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ricardo De Matos Simoes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center, Harvard Medical School, Boston, MA, USA
| | - Eugen Dhimolea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Ludwig Center, Harvard Medical School, Boston, MA, USA
| | - Channing Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Yiguo Hu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Sichuan University, Chengdu, China
| | - Olli Dufva
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | | | - Ernest Fraenkel
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Todd Golub
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Rizwan Romee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Aedin C Culhane
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Lotte Wieten
- Department of Transplantation Immunology, Maastricht University Medical Center+, Maastricht, the Netherlands
- School for Oncology and Developmental Biology, Maastricht University Medical Center+ GROW, Maastricht, the Netherlands
| | - Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Ludwig Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Van Wyngene L, Vanderhaeghen T, Petta I, Timmermans S, Corbeels K, Van der Schueren B, Vandewalle J, Van Looveren K, Wallaeys C, Eggermont M, Dewaele S, Catrysse L, van Loo G, Beyaert R, Vangoitsenhoven R, Nakayama T, Tavernier J, De Bosscher K, Libert C. ZBTB32 performs crosstalk with the glucocorticoid receptor and is crucial in glucocorticoid responses to starvation. iScience 2021; 24:102790. [PMID: 34337361 PMCID: PMC8324811 DOI: 10.1016/j.isci.2021.102790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 03/25/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022] Open
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis forms a complex neuroendocrine system that regulates the body’s response to stress such as starvation. In contrast with the glucocorticoid receptor (GR), Zinc finger and BTB domain containing 32 (ZBTB32) is a transcription factor with poorly described functional relevance in physiology. This study shows that ZBTB32 is essential for the production of glucocorticoids (GCs) in response to starvation, since ZBTB32−/− mice fail to increase their GC production in the absence of nutrients. In terms of mechanism, GR-mediated upregulation of adrenal Scarb1 gene expression was absent in ZBTB32−/− mice, implicating defective cholesterol import as the cause of the poor GC synthesis. These lower GC levels are further associated with aberrations in the metabolic adaptation to starvation, which could explain the progressive weight gain of ZBTB32−/− mice. In conclusion, ZBTB32 performs a crosstalk with the GR in the metabolic adaptation to starvation via regulation of adrenal GC production. ZBTB32 is involved in the glucocorticoid production in response to starvation GR-mediated upregulation of adrenal Scarb1 regulates cholesterol import The weight gain of ZBTB32−/− mice is associated with aberrant metabolic adaptations
Collapse
Affiliation(s)
- Lise Van Wyngene
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Tineke Vanderhaeghen
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Ioanna Petta
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Ghent Gut Inflammation Group (GGIG), Ghent University, 9000 Ghent, Belgium.,Department of Rheumatology, Ghent University, 9000 Ghent, Belgium
| | - Steven Timmermans
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Katrien Corbeels
- Department of Chronic Diseases and Metabolism - Endocrinology, KU Leuven, Leuven, Belgium
| | - Bart Van der Schueren
- Department of Chronic Diseases and Metabolism - Endocrinology, KU Leuven, Leuven, Belgium
| | - Jolien Vandewalle
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Kelly Van Looveren
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Charlotte Wallaeys
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Melanie Eggermont
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Sylviane Dewaele
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Leen Catrysse
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Geert van Loo
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.,Ghent Gut Inflammation Group (GGIG), Ghent University, 9000 Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.,Ghent Gut Inflammation Group (GGIG), Ghent University, 9000 Ghent, Belgium
| | - Roman Vangoitsenhoven
- Department of Chronic Diseases and Metabolism - Endocrinology, KU Leuven, Leuven, Belgium
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jan Tavernier
- Center for Medical Biotechnology, VIB Center for Medical Biotechnology, 9000 Ghent, Belgium.,Cytokine Receptor Laboratory (CRL), Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 3 Albert Baertsoenkaai, 9000 Ghent, Belgium
| | - Karolien De Bosscher
- Center for Medical Biotechnology, VIB Center for Medical Biotechnology, 9000 Ghent, Belgium.,Translational Nuclear Receptor Research Lab, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 3 Albert Baertsoenkaai,9000 Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB Center for Inflammation Research, 9000 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.,Ghent Gut Inflammation Group (GGIG), Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Zhou H, Mehta S, Srivastava SP, Grabinska K, Zhang X, Wong C, Hedayat A, Perrotta P, Fernández-Hernando C, Sessa WC, Goodwin JE. Endothelial cell-glucocorticoid receptor interactions and regulation of Wnt signaling. JCI Insight 2020; 5:131384. [PMID: 32051336 DOI: 10.1172/jci.insight.131384] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
Vascular inflammation is present in many cardiovascular diseases, and exogenous glucocorticoids have traditionally been used as a therapy to suppress inflammation. However, recent data have shown that endogenous glucocorticoids, acting through the endothelial glucocorticoid receptor, act as negative regulators of inflammation. Here, we performed ChIP for the glucocorticoid receptor, followed by next-generation sequencing in mouse endothelial cells to investigate how the endothelial glucocorticoid receptor regulates vascular inflammation. We identified a role of the Wnt signaling pathway in this setting and show that loss of the endothelial glucocorticoid receptor results in upregulation of Wnt signaling both in vitro and in vivo using our validated mouse model. Furthermore, we demonstrate glucocorticoid receptor regulation of a key gene in the Wnt pathway, Frzb, via a glucocorticoid response element gleaned from our genomic data. These results suggest a role for endothelial Wnt signaling modulation in states of vascular inflammation.
Collapse
Affiliation(s)
- Han Zhou
- Department of Pediatrics.,Vascular Biology and Therapeutics Program
| | | | | | - Kariona Grabinska
- Vascular Biology and Therapeutics Program.,Department of Pharmacology
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program.,Integrative Cell Signaling and Neurobiology of Metabolism Program.,Department of Comparative Medicine, and
| | | | - Ahmad Hedayat
- Department of Pediatrics.,Vascular Biology and Therapeutics Program
| | - Paola Perrotta
- Vascular Biology and Therapeutics Program.,Department of Pharmacology
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program.,Integrative Cell Signaling and Neurobiology of Metabolism Program.,Department of Comparative Medicine, and.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - William C Sessa
- Vascular Biology and Therapeutics Program.,Department of Pharmacology
| | - Julie E Goodwin
- Department of Pediatrics.,Vascular Biology and Therapeutics Program
| |
Collapse
|
5
|
Lea S, Li J, Plumb J, Gaffey K, Mason S, Gaskell R, Harbron C, Singh D. P38 MAPK and glucocorticoid receptor crosstalk in bronchial epithelial cells. J Mol Med (Berl) 2020; 98:361-374. [PMID: 31974640 PMCID: PMC7080672 DOI: 10.1007/s00109-020-01873-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/06/2019] [Accepted: 01/06/2020] [Indexed: 12/23/2022]
Abstract
Abstract p38 MAPK inhibition may have additive and synergistic anti-inflammatory effects when used with corticosteroids. We investigated crosstalk between p38 MAPK inhibitors and corticosteroids in bronchial epithelial cells to investigate synergistic effects on cytokine production and the molecular mechanisms involved. Effects of the p38 MAPK inhibitor BIRB-796 and dexamethasone alone and in combination on LPS, polyI:C or TNFα -induced IL-6, CXCL8 and RANTES were assessed in 16HBEs (human epithelial cell line) and on TNFα-induced IL-6 and CXCL8 in primary human epithelial cells from asthma patients and healthy controls. 16HBEs were used to assess effects of BIRB-796 alone and in combination with dexamethasone on glucocorticoid receptor (GR) activity by reporter gene assay, expression of GR target genes and nuclear localisation using Western blot. The effects of BIRB-796 on TNFα stimulated phosphorylation of p38 MAPK and GR at serine (S) 226 by Western blot. Epithelial levels of phosphorylated p38 MAPK and GR S226 were determined by immunohistochemistry in bronchial biopsies from asthma patients and healthy controls. BIRB-796 in combination with dexamethasone increased inhibition of cytokine production in a synergistic manner. Combination treatment significantly increased GR nuclear localisation compared to dexamethasone alone. BIRB-796 inhibited TNFα-induced p38 MAPK and GR S226 phosphorylation. Phosphorylated GR S226 and p38 MAPK levels were increased in bronchial epithelium of more severe asthma patients. Molecular crosstalk exists between p38 MAPK activation and GR function in human bronchial epithelial cells, which alters GR activity. Combining a p38 MAPK inhibitor and a corticosteroid may demonstrate therapeutic potential in severe asthma. Key messages • Combination of corticosteroid and p38 inhibitor in human bronchial epithelial cells • Combination increased cytokine inhibition synergistically and nuclear GR • p38 MAPK inhibition reduced TNFα-induced phosphorylation of GR at S226 but not S211 • Phosphorylated GRS226 and p38 is increased in bronchial epithelium in severe asthma • Combining a p38 inhibitor and a corticosteroid may be effective in asthma treatment Electronic supplementary material The online version of this article (10.1007/s00109-020-01873-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simon Lea
- University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester, Manchester, M23 9LT, UK.
| | - Jian Li
- University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester, Manchester, M23 9LT, UK
| | - Jonathan Plumb
- University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester, Manchester, M23 9LT, UK
| | - Kate Gaffey
- University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester, Manchester, M23 9LT, UK
| | - Sarah Mason
- University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester, Manchester, M23 9LT, UK
| | - Rosie Gaskell
- University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester, Manchester, M23 9LT, UK
| | - Chris Harbron
- Roche Pharmaceuticals, 6 Falcon Way, Welwyn Garden City, AL7 1TW, UK
| | - Dave Singh
- University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester, Manchester, M23 9LT, UK
| |
Collapse
|
6
|
Reddy PR, Samavedam S, Aluru N, Yelle S, Rajyalakshmi B. Metabolic Resuscitation Using Hydrocortisone, Ascorbic Acid, and Thiamine: Do Individual Components Influence Reversal of Shock Independently? Indian J Crit Care Med 2020; 24:649-652. [PMID: 33024369 PMCID: PMC7519600 DOI: 10.5005/jp-journals-10071-23515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aims and objective To study the effects of various components of “metabolic resuscitation” on the shock reversal among patients with septic shock Introduction Sepsis is characterized by dysregulated host response to infection. Mitochondrial dysfunction which occurs early in sepsis is associated with multiorgan dysfunction. Therapies such as adequate resuscitation, early administration of antibiotics, and aggressive monitoring reduced mortality substantially but it still remains high for those with septic shock. Combination of vitamin C, hydrocortisone, and thiamine improved outcome in a retrospective study, but how effective is this therapy in isolation compared to combination has to be known before implementation. Materials and methods This study is single-center, prospective, randomized nonblinded trial done in septic shock patients admitted to the medical intensive care unit. Subjects were randomized to three groups of hydrocortisone (H), hydrocortisone, ascorbic acid (HA), hydrocortisone, ascorbic acid, thiamine (HAT). Following randomization, they received hydrocortisone 200 mg over 24 hours as infusion, intravenous ascorbic acid 1.5 g every 6 hours, thiamine 200 mg twice daily as allotted and continued till shock reversal or death. Primary outcome is time to shock reversal and secondary outcome is time to vasopressor dose reduction from hemodynamic SOFA score 4–3. Results Twenty seven subjects were randomized into 3 groups of 9 each, of which 17 (63%) patients met primary outcome and secondary outcome has been studied in 16 (59%) patients. Eight patients (29.5%) died and did not meet either outcome and two patients (7.5%) met secondary outcome but not primary outcome because of discharge to other hospital. There is no difference in time to shock reversal [mean, SD in H (7422, 8348), HA (2528, 3086), HAT (1860, 749), p value 0.17]. There is no difference in time to shock reversal from hemodynamic SOFA 4–3 [mean, SD in H (4935, 6406), HA (2310, 2515), HAT (1800, 1282), p value 0.35]. Conclusion In patients with septic shock, there is no difference in time to shock reversal comparing individual components of metabolic resuscitation. How to cite this article Reddy PR, Samavedam S, Aluru N, Yelle S, Rajyalakshmi B. Metabolic Resuscitation Using Hydrocortisone, Ascorbic Acid, and Thiamine: Do Individual Components Influence Reversal of Shock Independently? Indian J Crit Care Med 2020;24(8):649–652.
Collapse
Affiliation(s)
| | - Srinivas Samavedam
- Department of Critical Care, Virinchi Hospital, Hyderabad, Telangana, India
| | - Narmada Aluru
- Department of Critical Care, Virinchi Hospital, Hyderabad, Telangana, India
| | - Sangeeta Yelle
- Department of Critical Care, Virinchi Hospital, Hyderabad, Telangana, India
| | - Boggu Rajyalakshmi
- Department of Critical Care, Virinchi Hospital, Hyderabad, Telangana, India
| |
Collapse
|
7
|
Souffriau J, Eggermont M, Van Ryckeghem S, Van Looveren K, Van Wyngene L, Van Hamme E, Vuylsteke M, Beyaert R, De Bosscher K, Libert C. A screening assay for Selective Dimerizing Glucocorticoid Receptor Agonists and Modulators (SEDIGRAM) that are effective against acute inflammation. Sci Rep 2018; 8:12894. [PMID: 30150712 PMCID: PMC6110732 DOI: 10.1038/s41598-018-31150-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023] Open
Abstract
It has been suggested that glucocorticoid receptor (GR) agonists that promote GR homodimerization more than standard glucocorticoids such as Dexamethasone could be more effective anti-inflammatory molecules against acute and life-threatening inflammatory conditions. To test this hypothesis, we set up a screening pipeline aimed at discovering such Selective Dimerizing GR Agonists and Modulators (SEDIGRAM). The pipeline consists of a reporter gene assay based on a palindromic glucocorticoid responsive element (GRE). This assay represents GR dimerization in human A549 lung epithelial cells. In the pipeline, this is followed by analysis of endogenous GRE-driven gene expression, a FRET assay confirming dimerization, and monitoring of in vitro and in vivo anti-inflammatory activity. In a proof of principle experiment, starting from seven candidate compounds, we identified two potentially interesting compounds (Cortivazol and AZD2906) that confer strong protection in a mouse model of aggressive TNF-induced lethal inflammation. A screening pipeline for SEDIGRAM may assist the search for compounds that promote GR dimerization and limit overwhelming acute inflammatory responses.
Collapse
Affiliation(s)
- Jolien Souffriau
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Melanie Eggermont
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sara Van Ryckeghem
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kelly Van Looveren
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lise Van Wyngene
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Evelien Van Hamme
- Bio Imaging Core, Center for Inflammation Research, VIB, Ghent, Belgium
| | | | - Rudi Beyaert
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab, Center for Medical Biotechnology Center, VIB, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|