1
|
El-Husseiny HM, Mady EA, Usui T, Ishihara Y, Yoshida T, Kobayashi M, Sasaki K, Ma D, Yairo A, Mandour AS, Hendawy H, Doghish AS, Mohammed OA, Takahashi K, Tanaka R. Adipose Stem Cell-Seeded Decellularized Porcine Pericardium: A Promising Functional Biomaterial to Synergistically Restore the Cardiac Functions Post-Myocardial Infarction. Vet Sci 2023; 10:660. [PMID: 37999483 PMCID: PMC10675230 DOI: 10.3390/vetsci10110660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/19/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
Myocardial infarction (MI) is a serious cardiovascular disease as the leading cause of death globally. Hence, reconstruction of the cardiac tissue comes at the forefront of strategies adopted to restore heart functions following MI. In this investigation, we studied the capacity of rat adipose-derived mesenchymal stem cells (r-AdMSCs) and decellularized porcine pericardium (DPP) to restore heart functions in MI animals. MI was induced in four different groups, three of which were treated either using DPP (MI-DPP group), stem cells (MI-SC group), or both (MI-SC/DPP group). Cardiac functions of these groups and the Sham group were evaluated using echocardiography, the intraventricular pressure gradient (IVPG) on weeks 2 and 4, and intraventricular hemodynamics on week 4. On day 31, the animals were euthanized for histological analysis. Echocardiographic, IVPG and hemodynamic findings indicated that the three treatment strategies shared effectively in the regeneration process. However, the MI-SC/DPP group had a unique synergistic ability to restore heart functions superior to the other treatment protocols. Histology showed that the MI-SC/DPP group presented the lowest (p < 0.05) degeneration score and fibrosis % compared to the other groups. Conclusively, stem cell-seeded DPP is a promising platform for the delivery of stem cells and restoration of heart functions post-MI.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan; (K.S.); (D.M.); (A.Y.); (A.S.M.); (H.H.)
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Elqaliobiya, Egypt
| | - Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan;
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Elqaliobiya, Egypt
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan; (T.U.); (Y.I.)
| | - Yusuke Ishihara
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan; (T.U.); (Y.I.)
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi 183-8509, Tokyo, Japan; (T.Y.); (M.K.)
| | - Mio Kobayashi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi 183-8509, Tokyo, Japan; (T.Y.); (M.K.)
| | - Kenta Sasaki
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan; (K.S.); (D.M.); (A.Y.); (A.S.M.); (H.H.)
| | - Danfu Ma
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan; (K.S.); (D.M.); (A.Y.); (A.S.M.); (H.H.)
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Wei-Gang, Xuanwu District, Nanjing 210095, China
| | - Akira Yairo
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan; (K.S.); (D.M.); (A.Y.); (A.S.M.); (H.H.)
| | - Ahmed S. Mandour
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan; (K.S.); (D.M.); (A.Y.); (A.S.M.); (H.H.)
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Ismailia, Egypt
| | - Hanan Hendawy
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan; (K.S.); (D.M.); (A.Y.); (A.S.M.); (H.H.)
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Ismailia, Egypt
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Cairo, Egypt;
- Department of Biochemistry, and Molecular Biology Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11651, Cairo, Egypt
| | - Osama A. Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Ken Takahashi
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Bunkyo 113-8421, Tokyo, Japan;
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi 183-8509, Tokyo, Japan; (K.S.); (D.M.); (A.Y.); (A.S.M.); (H.H.)
| |
Collapse
|
2
|
Harris AG, Iacobazzi D, Caputo M, Bartoli-Leonard F. Graft rejection in paediatric congenital heart disease. Transl Pediatr 2023; 12:1572-1591. [PMID: 37692547 PMCID: PMC10485650 DOI: 10.21037/tp-23-80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/28/2023] [Indexed: 09/12/2023] Open
Abstract
Congenital heart disease (CHD) affects around 1.35 million neonates worldwide per annum, and surgical repair is necessary in approximately 25% of cases. Xenografts, usually of bovine or porcine origin, are often used for the surgical reconstruction. These xenografts elicit an immune response due to significant immunological incompatibilities between host and donor. Current techniques to dampen the initial hyperacute rejection response involve aldehyde fixation to crosslink xenoantigens, such as galactose-α1,3-galactose and N-glycolylneuraminic acid. While this temporarily masks the epitopes, aldehyde fixation is a suboptimal solution, degrading over time, resulting in cytotoxicity and rejection. The immune response to foreign tissue eventually leads to chronic inflammation and subsequent graft failure, necessitating reintervention to replace the defective bioprosthetic. Decellularisation to remove immunoincompatible material has been suggested as an alternative to fixation and may prove a superior solution. However, incomplete decellularisation poses a significant challenge, causing a substantial immune rejection response and subsequent graft rejection. This review discusses commercially available grafts used in surgical paediatric CHD intervention, looking specifically at bovine jugular vein conduits as a substitute to cryopreserved homografts, as well as decellularised alternatives to the aldehyde-fixed graft. Mechanisms of biological prosthesis rejection are explored, including the signalling cascades of the innate and adaptive immune response. Lastly, emerging strategies of intervention are examined, including the use of tissue from genetically modified pigs, enhanced crosslinking and decellularisation techniques, and augmentation of grafts through in vitro recellularisation or functionalisation with human surface proteins.
Collapse
Affiliation(s)
- Amy G. Harris
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Dominga Iacobazzi
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Massimo Caputo
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
- Bristol Heart Institute, University Hospital Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Francesca Bartoli-Leonard
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
- Bristol Heart Institute, University Hospital Bristol and Weston NHS Foundation Trust, Bristol, UK
| |
Collapse
|
3
|
Potart D, Gluais M, Gaubert A, Da Silva N, Hourques M, Sarrazin M, Izotte J, Mora Charrot L, L'Heureux N. The cell-assembled extracellular matrix: A focus on the storage stability and terminal sterilization of this human "bio" material. Acta Biomater 2023; 166:133-146. [PMID: 37149079 PMCID: PMC7614989 DOI: 10.1016/j.actbio.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
The Cell-Assembled extracellular Matrix (CAM) is an attractive biomaterial because it provided the backbone of vascular grafts that were successfully implanted in patients, and because it can now be assembled in "human textiles". For future clinical development, it is important to consider key manufacturing questions. In this study, the impact of various storage conditions and sterilization methods were evaluated. After 1 year of dry frozen storage, no change in mechanical nor physicochemical properties were detected. However, storage at 4 °C and room temperature resulted in some mechanical changes, especially for dry CAM, but physicochemical changes were minor. Sterilization modified CAM mechanical and physicochemical properties marginally except for hydrated gamma treatment. All sterilized CAM supported cell proliferation. CAM ribbons were implanted subcutaneously in immunodeficient rats to assess the impact of sterilization on the innate immune response. Sterilization accelerated strength loss but no significant difference could be shown at 10 months. Very mild and transient inflammatory responses were observed. Supercritical CO2 sterilization had the least effect. In conclusion, the CAM is a promising biomaterial since it is unaffected by long-term storage in conditions available in hospitals (hydrated at 4 °C), and can be sterilized terminally (scCO2) without compromising in vitro nor in vivo performance. STATEMENT OF SIGNIFICANCE: In the field of tissue engineering, the use of extracellular matrix (ECM) proteins as a scaffolding biomaterial has become very popular. Recently, many investigators have focused on ECM produced by cells in vitro to produce unprocessed biological scaffolds. As this new kind of "biomaterial" becomes more and more relevant, it is critical to consider key manufacturing questions to facilitate future transition to the clinic. This article presents an extensive evaluation of long-term storage stability and terminal sterilization effects on an extracellular matrix assembled by cells in vitro. We believe that this article will be of great interest to help tissue engineers involved in so-called scaffold-free approaches to better prepare the translation from benchtop to bedside.
Collapse
Affiliation(s)
- Diane Potart
- BIOTIS - Laboratory for the Bioengineering of Tissues (UMR Inserm 1026), University of Bordeaux, Inserm, BIOTIS, UMR1026, Campus Carreire, 146 Rue Léo-Saignat, case 45, Bordeaux F-33076, France
| | - Maude Gluais
- BIOTIS - Laboratory for the Bioengineering of Tissues (UMR Inserm 1026), University of Bordeaux, Inserm, BIOTIS, UMR1026, Campus Carreire, 146 Rue Léo-Saignat, case 45, Bordeaux F-33076, France
| | - Alexandra Gaubert
- University of Bordeaux, CNRS, UMR 5320, Inserm, UMR121, ANRA, Bordeaux F-33076, France
| | - Nicolas Da Silva
- BIOTIS - Laboratory for the Bioengineering of Tissues (UMR Inserm 1026), University of Bordeaux, Inserm, BIOTIS, UMR1026, Campus Carreire, 146 Rue Léo-Saignat, case 45, Bordeaux F-33076, France
| | - Marie Hourques
- BIOTIS - Laboratory for the Bioengineering of Tissues (UMR Inserm 1026), University of Bordeaux, Inserm, BIOTIS, UMR1026, Campus Carreire, 146 Rue Léo-Saignat, case 45, Bordeaux F-33076, France
| | - Marie Sarrazin
- BIOTIS - Laboratory for the Bioengineering of Tissues (UMR Inserm 1026), University of Bordeaux, Inserm, BIOTIS, UMR1026, Campus Carreire, 146 Rue Léo-Saignat, case 45, Bordeaux F-33076, France
| | - Julien Izotte
- Animal Facility A2, University of Bordeaux, Bordeaux F-33076, France
| | - Léa Mora Charrot
- Animal Facility A2, University of Bordeaux, Bordeaux F-33076, France
| | - Nicolas L'Heureux
- BIOTIS - Laboratory for the Bioengineering of Tissues (UMR Inserm 1026), University of Bordeaux, Inserm, BIOTIS, UMR1026, Campus Carreire, 146 Rue Léo-Saignat, case 45, Bordeaux F-33076, France.
| |
Collapse
|
4
|
Biological Scaffolds for Congenital Heart Disease. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010057. [PMID: 36671629 PMCID: PMC9854830 DOI: 10.3390/bioengineering10010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023]
Abstract
Congenital heart disease (CHD) is the most predominant birth defect and can require several invasive surgeries throughout childhood. The absence of materials with growth and remodelling potential is a limitation of currently used prosthetics in cardiovascular surgery, as well as their susceptibility to calcification. The field of tissue engineering has emerged as a regenerative medicine approach aiming to develop durable scaffolds possessing the ability to grow and remodel upon implantation into the defective hearts of babies and children with CHD. Though tissue engineering has produced several synthetic scaffolds, most of them failed to be successfully translated in this life-endangering clinical scenario, and currently, biological scaffolds are the most extensively used. This review aims to thoroughly summarise the existing biological scaffolds for the treatment of paediatric CHD, categorised as homografts and xenografts, and present the preclinical and clinical studies. Fixation as well as techniques of decellularisation will be reported, highlighting the importance of these approaches for the successful implantation of biological scaffolds that avoid prosthetic rejection. Additionally, cardiac scaffolds for paediatric CHD can be implanted as acellular prostheses, or recellularised before implantation, and cellularisation techniques will be extensively discussed.
Collapse
|
5
|
van der Valk DC, Fomina A, Uiterwijk M, Hooijmans CR, Akiva A, Kluin J, Bouten CV, Smits AI. Calcification in Pulmonary Heart Valve Tissue Engineering. JACC Basic Transl Sci 2023. [DOI: 10.1016/j.jacbts.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Strategies for development of decellularized heart valve scaffolds for tissue engineering. Biomaterials 2022; 288:121675. [DOI: 10.1016/j.biomaterials.2022.121675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 01/01/2023]
|
7
|
Naso F, Gandaglia A. Can Heart Valve Decellularization Be Standardized? A Review of the Parameters Used for the Quality Control of Decellularization Processes. Front Bioeng Biotechnol 2022; 10:830899. [PMID: 35252139 PMCID: PMC8891751 DOI: 10.3389/fbioe.2022.830899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
When a tissue or an organ is considered, the attention inevitably falls on the complex and delicate mechanisms regulating the correct interaction of billions of cells that populate it. However, the most critical component for the functionality of specific tissue or organ is not the cell, but the cell-secreted three-dimensional structure known as the extracellular matrix (ECM). Without the presence of an adequate ECM, there would be no optimal support and stimuli for the cellular component to replicate, communicate and interact properly, thus compromising cell dynamics and behaviour and contributing to the loss of tissue-specific cellular phenotype and functions. The limitations of the current bioprosthetic implantable medical devices have led researchers to explore tissue engineering constructs, predominantly using animal tissues as a potentially unlimited source of materials. The high homology of the protein sequences that compose the mammalian ECM, can be exploited to convert a soft animal tissue into a human autologous functional and long-lasting prosthesis ensuring the viability of the cells and maintaining the proper biomechanical function. Decellularization has been shown to be a highly promising technique to generate tissue-specific ECM-derived products for multiple applications, although it might comprise very complex processes that involve the simultaneous use of chemical, biochemical, physical and enzymatic protocols. Several different approaches have been reported in the literature for the treatment of bone, cartilage, adipose, dermal, neural and cardiovascular tissues, as well as skeletal muscle, tendons and gastrointestinal tract matrices. However, most of these reports refer to experimental data. This paper reviews the most common and latest decellularization approaches that have been adopted in cardiovascular tissue engineering. The efficacy of cells removal was specifically reviewed and discussed, together with the parameters that could be used as quality control markers for the evaluation of the effectiveness of decellularization and tissue biocompatibility. The purpose was to provide a panel of parameters that can be shared and taken into consideration by the scientific community to achieve more efficient, comparable, and reliable experimental research results and a faster technology transfer to the market.
Collapse
|
8
|
Karakaya C, van Asten JGM, Ristori T, Sahlgren CM, Loerakker S. Mechano-regulated cell-cell signaling in the context of cardiovascular tissue engineering. Biomech Model Mechanobiol 2022; 21:5-54. [PMID: 34613528 PMCID: PMC8807458 DOI: 10.1007/s10237-021-01521-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
Cardiovascular tissue engineering (CVTE) aims to create living tissues, with the ability to grow and remodel, as replacements for diseased blood vessels and heart valves. Despite promising results, the (long-term) functionality of these engineered tissues still needs improvement to reach broad clinical application. The functionality of native tissues is ensured by their specific mechanical properties directly arising from tissue organization. We therefore hypothesize that establishing a native-like tissue organization is vital to overcome the limitations of current CVTE approaches. To achieve this aim, a better understanding of the growth and remodeling (G&R) mechanisms of cardiovascular tissues is necessary. Cells are the main mediators of tissue G&R, and their behavior is strongly influenced by both mechanical stimuli and cell-cell signaling. An increasing number of signaling pathways has also been identified as mechanosensitive. As such, they may have a key underlying role in regulating the G&R of tissues in response to mechanical stimuli. A more detailed understanding of mechano-regulated cell-cell signaling may thus be crucial to advance CVTE, as it could inspire new methods to control tissue G&R and improve the organization and functionality of engineered tissues, thereby accelerating clinical translation. In this review, we discuss the organization and biomechanics of native cardiovascular tissues; recent CVTE studies emphasizing the obtained engineered tissue organization; and the interplay between mechanical stimuli, cell behavior, and cell-cell signaling. In addition, we review past contributions of computational models in understanding and predicting mechano-regulated tissue G&R and cell-cell signaling to highlight their potential role in future CVTE strategies.
Collapse
Affiliation(s)
- Cansu Karakaya
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
9
|
Noble C, Morse D, Lerman A, Young M. Evaluation of Pericardial Tissues from Assorted Species as a Tissue-Engineered Heart Valve Material. Med Biol Eng Comput 2022; 60:393-406. [PMID: 34984601 DOI: 10.1007/s11517-021-02498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2022]
Abstract
Decellularized pericardial tissue is a strong candidate for a TEHV material as ECM is present to guide cellular infiltration and fixed porcine and bovine pericardial tissue have existing use in bioprosthetic heart valves. In this work, we compare the mechanical and microstructural properties of decellularized-sterilized (DS) porcine, bovine, and bison pericardial tissues with respect to use as a TEHV. H&E staining was used to verify removal of cellular content post-decellularization and to evaluate collagen fiber structure. Additionally, uniaxial and biaxial tension testing were used to compare mechanical performance and, for the latter, acquire constitutive model parameters for subsequent finite element (FE) modeling. H&E staining revealed complete removal of cellular content and good collagen fiber structure. Tensile testing showed comparable mechanical strength between the three DS pericardial tissues and considerably stronger mechanical properties compared to native tissues. Bovine and bison DS pericardial tissues showed the strongest mechanical performance in the FE models with bison demonstrating the overall best mechanical characteristics. The increased thickness of bovine and bison tissues coupled with the strong mechanical behavior and ECM structure indicates that these materials will be resistant to damage until sufficient cellular infiltration has occurred such that damaged tissue can be repaired.
Collapse
Affiliation(s)
- Christopher Noble
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - David Morse
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Melissa Young
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
Vafaee T, Walker F, Thomas D, Roderjan JG, Veiga Lopes S, da Costa FDA, Desai A, Rooney P, Jennings LM, Fisher J, Berry HE, Ingham E. Repopulation of decellularised porcine pulmonary valves in the right ventricular outflow tract of sheep: Role of macrophages. J Tissue Eng 2022; 13:20417314221102680. [PMID: 35782993 PMCID: PMC9243591 DOI: 10.1177/20417314221102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
The primary objective was to evaluate performance of low concentration SDS decellularised porcine pulmonary roots in the right ventricular outflow tract of juvenile sheep. Secondary objectives were to explore the cellular population of the roots over time. Animals were monitored by echocardiography and roots explanted at 1, 3, 6 (n = 4) and 12 months (n = 8) for gross analysis. Explanted roots were subject to histological, immunohistochemical and quantitative calcium analysis (n = 4 at 1, 3 and 12 months) and determination of material properties (n = 4; 12 months). Cryopreserved ovine pulmonary root allografts (n = 4) implanted for 12 months, and non-implanted cellular ovine roots were analysed for comparative purposes. Decellularised porcine pulmonary roots functioned well and were in very good condition with soft, thin and pliable leaflets. Morphometric analysis showed cellular population by 1 month. However, by 12 months the total number of cells was less than 50% of the total cells in non-implanted native ovine roots. Repopulation of the decellularised porcine tissues with stromal (α-SMA+; vimentin+) and progenitor cells (CD34+; CD271+) appeared to be orchestrated by macrophages (MAC 387+/ CD163low and CD163+/MAC 387-). The calcium content of the decellularised porcine pulmonary root tissues increased over the 12-month period but remained low (except suture points) at 401 ppm (wet weight) or below. The material properties of the decellularised porcine pulmonary root wall were unchanged compared to pre-implantation. There were some changes in the leaflets but importantly, the porcine tissues did not become stiffer. The decellularised porcine pulmonary roots showed good functional performance in vivo and were repopulated with ovine cells of the appropriate phenotype in a process orchestrated by M2 macrophages, highlighting the importance of these cells in the constructive tissue remodelling of cardiac root tissues.
Collapse
Affiliation(s)
- Tayyebeh Vafaee
- Institute of Medical and Biological
Engineering, School of Biomedical Sciences, Faculty of Biological Sciences,
University of Leeds, Leeds, UK
| | - Fiona Walker
- Institute of Medical and Biological
Engineering, School of Biomedical Sciences, Faculty of Biological Sciences,
University of Leeds, Leeds, UK
| | - Dan Thomas
- Institute of Medical and Biological
Engineering, School of Biomedical Sciences, Faculty of Biological Sciences,
University of Leeds, Leeds, UK
| | - João Gabriel Roderjan
- Department of Cardiac Surgery, Santa
Casa de Curitiba, Pontifica Universidade Catolica do Parana, Curitiba, Brazil
| | - Sergio Veiga Lopes
- Department of Cardiac Surgery, Santa
Casa de Curitiba, Pontifica Universidade Catolica do Parana, Curitiba, Brazil
| | - Francisco DA da Costa
- Department of Cardiac Surgery, Santa
Casa de Curitiba, Pontifica Universidade Catolica do Parana, Curitiba, Brazil
| | - Amisha Desai
- Institute of Medical and Biological
Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Paul Rooney
- NHS Blood and Transplant, Tissue and
Eye Services, Estuary Banks, Liverpool, UK
| | - Louise M Jennings
- Institute of Medical and Biological
Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - John Fisher
- Institute of Medical and Biological
Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Helen E Berry
- Institute of Medical and Biological
Engineering, School of Biomedical Sciences, Faculty of Biological Sciences,
University of Leeds, Leeds, UK
| | - Eileen Ingham
- Institute of Medical and Biological
Engineering, School of Biomedical Sciences, Faculty of Biological Sciences,
University of Leeds, Leeds, UK
| |
Collapse
|
11
|
Jana S, Morse D, Lerman A. Leaflet Tissue Generation from Microfibrous Heart Valve Leaflet Scaffolds with Native Characteristics. ACS APPLIED BIO MATERIALS 2021; 4:7836-7847. [PMID: 35006765 DOI: 10.1021/acsabm.1c00768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mechanical and bioprosthetic valves that are currently applied for replacing diseased heart valves are not fully efficient. Heart valve tissue engineering may solve the issues faced by the prosthetic valves in heart valve replacement. The leaflets of native heart valves have a trilayered structure with layer-specific orientations; thus, it is imperative to develop functional leaflet tissue constructs with a native trilayered, oriented structure. Its key solution is to develop leaflet scaffolds with a native morphology and structure. In this study, microfibrous leaflet scaffolds with a native trilayered and oriented structure were developed in an electrospinning system. The scaffolds were implanted for 3 months in rats subcutaneously to study the scaffold efficiencies in generating functional tissue-engineered leaflet constructs. These in vivo tissue-engineered leaflet constructs had a trilayered, oriented structure similar to native leaflets. The tensile properties of constructs indicated that they were able to endure the hydrodynamic load of the native heart valve. Collagen, glycosaminoglycans, and elastin─the predominant extracellular matrix components of native leaflets─were found sufficiently in the leaflet tissue constructs. The residing cells in the leaflet tissue constructs showed vimentin and α-smooth muscle actin expression, i.e., the constructs were in a growing state. Thus, the trilayered, oriented fibrous leaflet scaffolds produced in this study could be useful to develop heart valve scaffolds for successful heart valve replacements.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States.,Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - David Morse
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| |
Collapse
|
12
|
Uiterwijk M, van der Valk DC, van Vliet R, de Brouwer IJ, Hooijmans CR, Kluin J. Pulmonary valve tissue engineering strategies in large animal models. PLoS One 2021; 16:e0258046. [PMID: 34610023 PMCID: PMC8491907 DOI: 10.1371/journal.pone.0258046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/16/2021] [Indexed: 01/10/2023] Open
Abstract
In the last 25 years, numerous tissue engineered heart valve (TEHV) strategies have been studied in large animal models. To evaluate, qualify and summarize all available publications, we conducted a systematic review and meta-analysis. We identified 80 reports that studied TEHVs of synthetic or natural scaffolds in pulmonary position (n = 693 animals). We identified substantial heterogeneity in study designs, methods and outcomes. Most importantly, the quality assessment showed poor reporting in randomization and blinding strategies. Meta-analysis showed no differences in mortality and rate of valve regurgitation between different scaffolds or strategies. However, it revealed a higher transvalvular pressure gradient in synthetic scaffolds (11.6 mmHg; 95% CI, [7.31-15.89]) compared to natural scaffolds (4,67 mmHg; 95% CI, [3,94-5.39]; p = 0.003). These results should be interpreted with caution due to lack of a standardized control group, substantial study heterogeneity, and relatively low number of comparable studies in subgroup analyses. Based on this review, the most adequate scaffold model is still undefined. This review endorses that, to move the TEHV field forward and enable reliable comparisons, it is essential to define standardized methods and ways of reporting. This would greatly enhance the value of individual large animal studies.
Collapse
Affiliation(s)
- M. Uiterwijk
- Heart Center, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - D. C. van der Valk
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - R. van Vliet
- Faculty of medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - I. J. de Brouwer
- Faculty of medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - C. R. Hooijmans
- Department for Health Evidence Unit SYRCLE, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Anesthesiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J. Kluin
- Heart Center, Amsterdam University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
13
|
Effect of sterilization methods on the mechanical stability and extracellular matrix constituents of decellularized brain tissues. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Comparison of the function and structural integrity of cryopreserved pulmonary homografts versus decellularized pulmonary homografts after 180 days implantation in the juvenile ovine model. Cell Tissue Bank 2021; 23:347-366. [PMID: 34453660 DOI: 10.1007/s10561-021-09948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
Homograft availability and durability remain big challenges. Increasing the post-mortem ischaemic harvesting time beyond 24 h increases the potential donor pool. Cryopreservation, routinely used to preserve homografts, damages the extracellular matrix (ECM), contributing to valve degeneration. Decellularization might preserve the ECM, promoting host-cell infiltration and contributing towards better clinical outcomes. This study compared the performance of cryopreserved versus decellularized pulmonary homografts in the right ventricle outflow tract (RVOT) of a juvenile ovine model. Homografts (n = 10) were harvested from juvenile sheep, subjected to 48 h post-mortem cold ischaemia, cryopreserved or decellularized and implanted in the RVOT of juvenile sheep for 180 days. Valve performance was monitored echocardiographically. Explanted leaflet and wall tissue evaluated histologically, on electron microscopical appearance, mechanical properties and calcium content. In both groups the annulus diameter increased. Cryopreserved homografts developed significant (¾) pulmonary regurgitation, with trivial regurgitation (¼) in the decellularized group. Macroscopically, explanted cryopreserved valve leaflets retracted and thickened while decellularized leaflets remained thin and pliable with good coaptation. Cryopreserved leaflets and walls demonstrated loss of interstitial cells with collapsed collagen, and decellularized scaffolds extensive, uniform ingrowth of host-cells with an intact collagen network. Calcific deposits were shown only in leaflets and walls of cryopreserved explants. Young fibroblasts, with vacuoles and rough endoplasmic reticulum in the cytoplasm, repopulated the leaflets and walls of decellularized scaffolds. Young's modulus of wall tissue in both groups increased significantly. Cryopreserved valves deteriorate over time due to loss of cellularity and calcification, while decellularized scaffolds demonstrated host-cell repopulation, structural maintenance, tissue remodelling and growth potential.
Collapse
|
15
|
Alekseev ES, Alentiev AY, Belova AS, Bogdan VI, Bogdan TV, Bystrova AV, Gafarova ER, Golubeva EN, Grebenik EA, Gromov OI, Davankov VA, Zlotin SG, Kiselev MG, Koklin AE, Kononevich YN, Lazhko AE, Lunin VV, Lyubimov SE, Martyanov ON, Mishanin II, Muzafarov AM, Nesterov NS, Nikolaev AY, Oparin RD, Parenago OO, Parenago OP, Pokusaeva YA, Ronova IA, Solovieva AB, Temnikov MN, Timashev PS, Turova OV, Filatova EV, Philippov AA, Chibiryaev AM, Shalygin AS. Supercritical fluids in chemistry. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4932] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Jana S, Lerman A. Trilayered tissue construct mimicking the orientations of three layers of a native heart valve leaflet. Cell Tissue Res 2020; 382:321-335. [PMID: 32676860 PMCID: PMC7606802 DOI: 10.1007/s00441-020-03241-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/11/2020] [Indexed: 02/03/2023]
Abstract
A tissue-engineered heart valve can be an alternative to a prosthetic valve in heart valve replacement; however, it is not fully efficient in terms of long-lasting functionality, as leaflets in engineered valves do not possess the trilayered native leaflet structure. Previously, we developed a flat, trilayered, oriented nanofibrous (TN) scaffold mimicking the trilayered structure and orientation of native heart valve leaflets. In vivo tissue engineering-a practical regenerative medicine technology-can be used to develop an autologous heart valve. Thus, in this study, we used our flat, trilayered, oriented nanofibrous scaffolds to develop trilayered tissue structures with native leaflet orientations through in vivo tissue engineering in a rat model. After 2 months of in vivo tissue engineering, infiltrated cells and their deposited collagen fibrils were found aligned in the circumferential and radial layers, and randomly oriented in the random layer of the scaffolds, i.e., trilayered tissue constructs (TTCs) were developed. Tensile properties of the TTCs were higher than that of the control tissue constructs (without any scaffolds) due to influence of fibers of the scaffolds in tissue engineering. Different extracellular matrix proteins-collagen, glycosaminoglycans, and elastin-that exist in native leaflets were observed in the TTCs. Gene expression of the TTCs indicated that the tissue constructs were in growing stage. There was no sign of calcification in the tissue constructs. The TTCs developed with the flat TN scaffolds indicate that an autologous leaflet-shaped, trilayered tissue construct that can function as a native leaflet can be developed.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, 1406 E Rollins St, Columbia, MO, 65211, USA.
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
17
|
Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity. Nat Rev Cardiol 2020; 18:92-116. [PMID: 32908285 DOI: 10.1038/s41569-020-0422-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
Valvular heart disease is a major cause of morbidity and mortality worldwide. Surgical valve repair or replacement has been the standard of care for patients with valvular heart disease for many decades, but transcatheter heart valve therapy has revolutionized the field in the past 15 years. However, despite the tremendous technical evolution of transcatheter heart valves, to date, the clinically available heart valve prostheses for surgical and transcatheter replacement have considerable limitations. The design of next-generation tissue-engineered heart valves (TEHVs) with repair, remodelling and regenerative capacity can address these limitations, and TEHVs could become a promising therapeutic alternative for patients with valvular disease. In this Review, we present a comprehensive overview of current clinically adopted heart valve replacement options, with a focus on transcatheter prostheses. We discuss the various concepts of heart valve tissue engineering underlying the design of next-generation TEHVs, focusing on off-the-shelf technologies. We also summarize the latest preclinical and clinical evidence for the use of these TEHVs and describe the current scientific, regulatory and clinical challenges associated with the safe and broad clinical translation of this technology.
Collapse
|
18
|
Gafarova ER, Grebenik EA, Lazhko AE, Frolova AA, Kuryanova AS, Kurkov AV, Bazhanov IA, Kapomba BS, Kosheleva NV, Novikov IA, Shekhter AB, Golubeva EN, Soloviova AB, Timashev PS. Evaluation of Supercritical CO 2-Assisted Protocols in a Model of Ovine Aortic Root Decellularization. Molecules 2020; 25:molecules25173923. [PMID: 32867356 PMCID: PMC7504408 DOI: 10.3390/molecules25173923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 01/03/2023] Open
Abstract
One of the leading trends in the modern tissue engineering is the development of new effective methods of decellularization aimed at the removal of cellular components from a donor tissue, reducing its immunogenicity and the risk of rejection. Supercritical CO2 (scCO2)-assisted processing has been proposed to improve the outcome of decellularization, reduce contamination and time costs. The resulting products can serve as personalized tools for tissue-engineering therapy of various somatic pathologies. However, the decellularization of heterogeneous 3D structures, such as the aortic root, requires optimization of the parameters, including preconditioning medium composition, the type of co-solvent, values of pressure and temperature inside the scCO2 reactor, etc. In our work, using an ovine aortic root model, we performed a comparative analysis of the effectiveness of decellularization approaches based on various combinations of these parameters. The protocols were based on the combinations of treatments in alkaline, ethanol or detergent solutions with scCO2-assisted processing at different modes. Histological analysis demonstrated favorable effects of the preconditioning in a detergent solution. Following processing in scCO2 medium provided a high decellularization degree, reduced cytotoxicity, and increased ultimate tensile strength and Young’s modulus of the aortic valve leaflets, while the integrity of the extracellular matrix was preserved.
Collapse
Affiliation(s)
- Elvira R. Gafarova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.G.); (A.A.F.); (A.S.K.); (A.V.K.); (I.A.B.); (B.S.K.); (A.B.S.); (P.S.T.)
- Correspondence: ; Tel.: +7-917-372-5217
| | - Ekaterina A. Grebenik
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.G.); (A.A.F.); (A.S.K.); (A.V.K.); (I.A.B.); (B.S.K.); (A.B.S.); (P.S.T.)
| | - Alexey E. Lazhko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Anastasia A. Frolova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.G.); (A.A.F.); (A.S.K.); (A.V.K.); (I.A.B.); (B.S.K.); (A.B.S.); (P.S.T.)
| | - Anastasia S. Kuryanova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.G.); (A.A.F.); (A.S.K.); (A.V.K.); (I.A.B.); (B.S.K.); (A.B.S.); (P.S.T.)
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Russia;
| | - Alexandr V. Kurkov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.G.); (A.A.F.); (A.S.K.); (A.V.K.); (I.A.B.); (B.S.K.); (A.B.S.); (P.S.T.)
| | - Ilya A. Bazhanov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.G.); (A.A.F.); (A.S.K.); (A.V.K.); (I.A.B.); (B.S.K.); (A.B.S.); (P.S.T.)
| | - Byron S. Kapomba
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.G.); (A.A.F.); (A.S.K.); (A.V.K.); (I.A.B.); (B.S.K.); (A.B.S.); (P.S.T.)
| | - Nastasia V. Kosheleva
- FSBSI “Institute of General Pathology and Pathophysiology”, 125315 Moscow, Russia;
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ivan A. Novikov
- Scientific Research Institute of Eye Diseases, 119021 Moscow, Russia;
| | - Anatoly B. Shekhter
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.G.); (A.A.F.); (A.S.K.); (A.V.K.); (I.A.B.); (B.S.K.); (A.B.S.); (P.S.T.)
| | - Elena N. Golubeva
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Anna B. Soloviova
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Russia;
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.G.); (A.A.F.); (A.S.K.); (A.V.K.); (I.A.B.); (B.S.K.); (A.B.S.); (P.S.T.)
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Russia;
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
19
|
Veryasova NN, Lazhko AE, Isaev DE, Grebenik EA, Timashev PS. Supercritical Carbon Dioxide—A Powerful Tool for Green Biomaterial Chemistry. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2020. [DOI: 10.1134/s1990793119070236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Jana S, Lerman A. In vivo tissue engineering of a trilayered leaflet-shaped tissue construct. Regen Med 2020; 15:1177-1192. [PMID: 32100626 PMCID: PMC7097987 DOI: 10.2217/rme-2019-0078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/28/2020] [Indexed: 01/10/2023] Open
Abstract
Aim: We aimed to develop a leaflet-shaped trilayered tissue construct mimicking the morphology of native heart valve leaflets. Materials & methods: Electrospinning and in vivo tissue engineering methods were employed. Results: We developed leaflet-shaped microfibrous scaffolds, each with circumferentially, randomly and radially oriented three layers mimicking the trilayered, oriented structure of native leaflets. After 3 months in vivo tissue engineering with the scaffolds, the generated leaflet-shaped tissue constructs had a trilayered structure mimicking the orientations of native heart valve leaflets. Presence of collagen, glycosaminoglycans and elastin seen in native leaflets was observed in the engineered tissue constructs. Conclusion: Trilayered, oriented fibrous scaffolds brought the orientations of the infiltrated cells and their produced extracellular matrix proteins into the constructs.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
21
|
Bednarski DM, Lantz EE, Bobst CE, Eisenhut AR, Eyles SJ, Fey JP. Sterilization of epidermal growth factor with supercritical carbon dioxide and peracetic acid; analysis of changes at the amino acid and protein level. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140334. [PMID: 31786473 DOI: 10.1016/j.bbapap.2019.140334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/05/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022]
Abstract
Aseptic processing and terminal sterilization become increasingly challenging as medical devices become more complex and include active biologics. Terminal sterilization is preferred for patient safety and production costs. We aimed to determine how sterilization using supercritical CO2 (scCO2) with low levels of peracetic acid (PAA) affects amino acids and human epidermal growth factor (EGF) as a model protein. In a benchtop reactivity test, the amino acids methionine, tryptophan, arginine and lysine reacted with low levels of PAA in solution. At PAA levels used for scCO2 sterilization, however, mass spectrometry only identified oxidative adducts on methionine and tryptophan. Mass spectrometry analysis of EGF exposed to scCO2/PAA identified oxidative adducts on residues Met21, Trp49 and Trp50, as well as a low level of truncations after residues Trp49 and Trp50. Importantly, processing of EGF in solution with scCO2 did not affect its native conformation, and sterilized EGF maintained its activity in cell proliferation assays. When processing samples in lyophilized form with scCO2/PAA, amino acids did not react with PAA and the presence of adducts was strongly reduced on methionine and tryptophan, both as single amino acids and in EGF. Truncation after tryptophan residues did not occur. EGF sterilized in the lyophilized form retained its activity when processing occurred with added moisture. These results have significant implications for the maintenance of biological function in sterilized decellularized scaffolds and the ability to manufacture terminally sterilized combination devices containing therapeutic peptides or proteins.
Collapse
Affiliation(s)
| | - Ellen E Lantz
- iFyber LLC, 950 Danby Rd Suite 198, Ithaca, NY 14850, USA
| | - Cedric E Bobst
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | | | - Stephen J Eyles
- Department of Biochemistry and Molecular Biology & Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Julien P Fey
- NovaSterilis Inc., 3109 N Triphammer Road, Lansing, NY 14882, USA.
| |
Collapse
|
22
|
Noble C, Maxson EL, Lerman A, Young MD. Mechanical and finite element evaluation of a bioprinted scaffold following recellularization in a rat subcutaneous model. J Mech Behav Biomed Mater 2019; 102:103519. [PMID: 31879268 DOI: 10.1016/j.jmbbm.2019.103519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 12/23/2022]
Abstract
Tissue engineered heart valves (TEHV) provide several advantages over currently available aortic heart valve replacements. Bioprinting provides a patient-specific means of developing a TEHV scaffold from imaging data, and the capability to embed the patient's own cells within the scaffold. In this work we investigated the remodeling capacity of a collagen-based bio-ink by implanting bioprinted disks in a rat subcutaneous model for 2, 4 and 12 weeks and evaluating the mechanical response using biaxial testing and subsequent finite element (FE) modeling. Samples explanted after 2 and 4 weeks showed inferior mechanical properties compared to native tissues while 12 week explants showed a mechanical response of similar magnitude but did not demonstrate the anisotropy present in native tissues. In the FE analysis, the model utilizing mechanical properties from samples explanted after 12 weeks showed the closest mechanical behavior to the native tissues. However, in diastole native tissues showed higher stress in the leaflet belly and lower strain at the commissures compared to 12 week explants, likely due to the anisotropy present in the native tissues. Thus, either further remodeling is required in situ in the aortic valve position or by in vitro preconditioning in an environment such as a bioreactor. Regardless, these results demonstrate the utility of FE analysis to optimize bioprinting process parameters for the most favorable in vivo mechanical performance.
Collapse
Affiliation(s)
- Christopher Noble
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eva L Maxson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Melissa D Young
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
23
|
Jana S. Endothelialization of cardiovascular devices. Acta Biomater 2019; 99:53-71. [PMID: 31454565 DOI: 10.1016/j.actbio.2019.08.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 01/10/2023]
Abstract
Blood-contacting surfaces of cardiovascular devices are not biocompatible for creating an endothelial layer on them. Numerous research studies have mainly sought to modify these surfaces through physical, chemical and biological means to ease early endothelial cell (EC) adhesion, migration and proliferation, and eventually to build an endothelial layer on the surfaces. The first priority for surface modification is inhibition of protein adsorption that leads to inhibition of platelet adhesion to the device surfaces, which may favor EC adhesion. Surface modification through surface texturing, if applicable, can bring some hopeful outcomes in this regard. Surface modifications through chemical and/or biological means may play a significant role in easy endothelialization of cardiovascular devices and inhibit smooth muscle cell proliferation. Cellular engineering of cells relevant to endothelialization can boost the positive outcomes obtained through surface engineering. This review briefly summarizes recent developments and research in early endothelialization of cardiovascular devices. STATEMENT OF SIGNIFICANCE: Endothelialization of cardiovascular implants, including heart valves, vascular stents and vascular grafts is crucial to solve many problems in our health care system. Numerous research efforts have been made to improve endothelialization on the surfaces of cardiovascular implants, mainly through surface modifications in three ways - physically, chemically and biologically. This review is intended to highlight comprehensive research studies to date on surface modifications aiming for early endothelialization on the blood-contacting surfaces of cardiovascular implants. It also discusses future perspectives to help guide endothelialization strategies and inspire further innovations.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
24
|
Ribeiro N, Soares GC, Santos-Rosales V, Concheiro A, Alvarez-Lorenzo C, García-González CA, Oliveira AL. A new era for sterilization based on supercritical CO 2 technology. J Biomed Mater Res B Appl Biomater 2019; 108:399-428. [PMID: 31132221 DOI: 10.1002/jbm.b.34398] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 11/06/2022]
Abstract
The increasing complexity in morphology and composition of modern biomedical materials (e.g., soft and hard biological tissues, synthetic and natural-based scaffolds, technical textiles) and the high sensitivity to the processing environment requires the development of innovative but benign technologies for processing and treatment. This scenario is particularly applicable where current conventional techniques (steam/dry heat, ethylene oxide, and gamma irradiation) may not be able to preserve the functionality and integrity of the treated material. Sterilization using supercritical carbon dioxide emerges as a green and sustainable technology able to reach the sterility levels required by regulation without altering the original properties of even highly sensitive materials. In this review article, an updated survey of experimental protocols based on supercritical sterilization and of the efficacy results sorted by microbial strains and treated materials was carried out. The application of the supercritical sterilization process in materials used for biomedical, pharmaceutical, and food applications is assessed. The opportunity of supercritical sterilization of not only replace the above mentioned conventional techniques, but also of reach unmet needs for sterilization in highly sensitive materials (e.g., single-use medical devices, the next-generation biomaterials, and medical devices and graft tissues) is herein unveiled.
Collapse
Affiliation(s)
- Nilza Ribeiro
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Gonçalo C Soares
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Víctor Santos-Rosales
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos A García-González
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana L Oliveira
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| |
Collapse
|
25
|
Bonetti A, Marchini M, Ortolani F. Ectopic mineralization in heart valves: new insights from in vivo and in vitro procalcific models and promising perspectives on noncalcifiable bioengineered valves. J Thorac Dis 2019; 11:2126-2143. [PMID: 31285908 DOI: 10.21037/jtd.2019.04.78] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ectopic calcification of native and bioprosthetic heart valves represents a major public health problem causing severe morbidity and mortality worldwide. Valve procalcific degeneration is known to be caused mainly by calcium salt precipitation onto membranes of suffering non-scavenged cells and dead-cell-derived products acting as major hydroxyapatite nucleators. Although etiopathogenesis of calcification in native valves is still far from being exhaustively elucidated, it is well known that bioprosthesis mineralization may be primed by glutaraldehyde-mediated toxicity for xenografts, cryopreservation-related damage for allografts and graft immune rejection for both. Instead, mechanical valves, which are free from calcification, are extremely thrombogenic, requiring chronic anticoagulation therapies for transplanted patients. Since surgical substitution of failed valves is still the leading therapeutic option, progressive improvements in tissue engineering techniques are crucial to attain readily available valve implants with good biocompatibility, proper functionality and long-term durability in order to meet the considerable clinical demand for valve substitutes. Bioengineered valves obtained from acellular non-valvular scaffolds or decellularized native valves are proving to be a compelling alternative to mechanical and bioprosthetic valve implants, as they appear to permit repopulation by the host's own cells with associated tissue remodelling, growth and repair, besides showing less propensity to calcification and adequate hemodynamic performances. In this review, insights into valve calcification onset as revealed by in vivo and in vitro procalcific models are updated as well as advances in the field of valve bioengineering.
Collapse
|
26
|
Khorramirouz R, Go JL, Noble C, Morse D, Lerman A, Young MD. In Vivo Response of Acellular Porcine Pericardial for Tissue Engineered Transcatheter Aortic Valves. Sci Rep 2019; 9:1094. [PMID: 30705386 PMCID: PMC6355869 DOI: 10.1038/s41598-018-37550-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/07/2018] [Indexed: 12/24/2022] Open
Abstract
Current heart valve prostheses have limitations that include durability, inability to grow in pediatric patients, and lifelong anticoagulation. Transcatheter aortic valve replacements are minimally invasive procedures, and therefore have emerged as an alternative to traditional valve prostheses. In this experiment, the regenerative capacity of potential tissue engineered transcatheter valve scaffolds (1) acellular porcine pericardium and (2) mesenchymal stem cell-seeded acellular porcine pericardium were compared to native porcine aortic valve cusps in a rat subcutaneous model for up to 8 weeks. Immunohistochemistry, extracellular matrix evaluation, and tissue biomechanics were evaluated on the explanted tissue. Acellular valve scaffolds expressed CD163, CD31, alpha smooth muscle actin, and vimentin at each time point indicating host cell recellularization; however, MSC-seeded tissue showed greater recellularization. Inflammatory cells were observed with CD3 biomarker in native porcine pericardial tissue throughout the study. No inflammation was observed in either acellular or MSC-seeded scaffolds. There was no mechanical advantage observed in MSC-seeded tissue; however after the first week post-explant, there was a decrease in mechanical properties in all groups (p < 0.05). MSC-seeded and acellular porcine pericardium expressed decreased inflammatory response and better host-cell recellularization compared to the native porcine aortic valve cusps.
Collapse
Affiliation(s)
- Reza Khorramirouz
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jason L Go
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Christopher Noble
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - David Morse
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Melissa D Young
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
27
|
Soares GC, Learmonth DA, Vallejo MC, Davila SP, González P, Sousa RA, Oliveira AL. Supercritical CO 2 technology: The next standard sterilization technique? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:520-540. [PMID: 30889727 DOI: 10.1016/j.msec.2019.01.121] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/26/2018] [Accepted: 01/25/2019] [Indexed: 02/03/2023]
Abstract
Sterilization of implantable medical devices is of most importance to avoid surgery related complications such as infection and rejection. Advances in biotechnology fields, such as tissue engineering, have led to the development of more sophisticated and complex biomedical devices that are often composed of natural biomaterials. This complexity poses a challenge to current sterilization techniques which frequently damage materials upon sterilization. The need for an effective alternative has driven research on supercritical carbon dioxide (scCO2) technology. This technology is characterized by using low temperatures and for being inert and non-toxic. The herein presented paper reviews the most relevant studies over the last 15 years which cover the use of scCO2 for sterilization and in which effective terminal sterilization is reported. The major topics discussed here are: microorganisms effectively sterilized by scCO2, inactivation mechanisms, operating parameters, materials sterilized by scCO2 and major requirements for validation of such technique according to medical devices' standards.
Collapse
Affiliation(s)
- Gonçalo C Soares
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - David A Learmonth
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, Guimarães, Portugal
| | - Mariana C Vallejo
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, Guimarães, Portugal
| | - Sara Perez Davila
- New Materials Group, Applied Physics Department, IIS-GS, University of Vigo, Vigo, Spain
| | - Pío González
- New Materials Group, Applied Physics Department, IIS-GS, University of Vigo, Vigo, Spain
| | - Rui A Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, Guimarães, Portugal
| | - Ana L Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal.
| |
Collapse
|
28
|
Go JL, Prem K, Al-Hijji MA, Qin Q, Noble C, Young MD, Lerman LO, Lerman A. Experimental Metabolic Syndrome Model Associated with Mechanical and Structural Degenerative Changes of the Aortic Valve. Sci Rep 2018; 8:17835. [PMID: 30546028 PMCID: PMC6292876 DOI: 10.1038/s41598-018-36388-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022] Open
Abstract
The purpose of this study was to test the hypothesis that an experimental high fat (HF) animal with metabolic syndrome results in structural degeneration of the aortic valve. Domestic pigs were divided (n = 12) and administered either a normal or HF diet. After 16-weeks, the HF diet group had increased weight (p ≤ 0.05), total cholesterol (p ≤ 0.05), and systolic and diastolic pressure (p ≤ 0.05). The aortic valve extracellular matrix showed loss of elastin fibers and increased collagen deposition in the HF diet group. Collagen was quantified with ELISA, which showed an increased concentration of collagen types 1 and 3 (p ≤ 0.05). In the HF diet group, the initial stages of microcalcification were observed. Uniaxial mechanical testing of aortic cusps revealed that the HF diet group expressed a decrease in ultimate tensile strength and elastic modulus compared to the control diet group (p ≤ 0.05). Western blot and immunohistochemistry indicated the presence of proteins: lipoprotein-associated phospholipase A2, osteopontin, and osteocalcin with an increased expression in the HF diet group. The current study demonstrates that experimental metabolic syndrome induced by a 16-week HF diet was associated with a statistically significant alteration to the physical architecture of the aortic valve.
Collapse
Affiliation(s)
- Jason L Go
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, 55905, MN, USA
| | - Komal Prem
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, 55905, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, 55905, MN, USA
| | - Mohammed A Al-Hijji
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, 55905, MN, USA
| | - Qing Qin
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, 55905, MN, USA
| | - Christopher Noble
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, 55905, MN, USA
| | - Melissa D Young
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, 55905, MN, USA
| | - Lilach O Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, 55905, MN, USA.,Department of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, 55905, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, 55905, MN, USA.
| |
Collapse
|
29
|
Motta SE, Lintas V, Fioretta ES, Hoerstrup SP, Emmert MY. Off-the-shelf tissue engineered heart valves for in situ regeneration: current state, challenges and future directions. Expert Rev Med Devices 2017; 15:35-45. [PMID: 29257706 DOI: 10.1080/17434440.2018.1419865] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Transcatheter aortic valve replacement (TAVR) is continuously evolving and is expected to surpass surgical valve implantation in the near future. Combining durable valve substitutes with minimally invasive implantation techniques might increase the clinical relevance of this therapeutic option for younger patient populations. Tissue engineering offers the possibility to create tissue engineered heart valves (TEHVs) with regenerative and self-repair capacities which may overcome the pitfalls of current TAVR prostheses. AREAS COVERED This review focuses on off-the-shelf TEHVs which rely on a clinically-relevant in situ tissue engineering approach and which have already advanced into preclinical or first-in-human investigation. EXPERT COMMENTARY Among the off-the-shelf in situ TEHVs reported in literature, the vast majority covers pulmonary valve substitutes, and only few are combined with transcatheter implantation technologies. Hence, further innovations should include the development of transcatheter tissue engineered aortic valve substitutes, which would considerably increase the clinical relevance of such prostheses.
Collapse
Affiliation(s)
- Sarah E Motta
- a Institute for Regenerative Medicine (IREM) , University of Zurich , Zurich , Switzerland
| | - Valentina Lintas
- a Institute for Regenerative Medicine (IREM) , University of Zurich , Zurich , Switzerland
| | - Emanuela S Fioretta
- a Institute for Regenerative Medicine (IREM) , University of Zurich , Zurich , Switzerland
| | - Simon P Hoerstrup
- a Institute for Regenerative Medicine (IREM) , University of Zurich , Zurich , Switzerland.,b Wyss Translational Center Zurich , University and ETH Zurich , Zurich , Switzerland
| | - Maximilian Y Emmert
- a Institute for Regenerative Medicine (IREM) , University of Zurich , Zurich , Switzerland.,b Wyss Translational Center Zurich , University and ETH Zurich , Zurich , Switzerland.,c Heart Center Zurich , University Hospital Zurich , Zurich , Switzerland
| |
Collapse
|