1
|
Zhai R, Hu J, Jin M. Towards efficient enzymatic saccharification of pretreated lignocellulose: Enzyme inhibition by lignin-derived phenolics and recent trends in mitigation strategies. Biotechnol Adv 2022; 61:108044. [PMID: 36152893 DOI: 10.1016/j.biotechadv.2022.108044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/24/2022] [Accepted: 09/19/2022] [Indexed: 01/01/2023]
Abstract
Lignocellulosic biorefinery based on its sugar-platform has been considered as an efficient strategy to replace fossil fuel-based refinery. In the bioconversion process, pretreatment is an essential step to firstly open up lignocellulose cell wall structure and enhance the accessibility of carbohydrates to hydrolytic enzymes. However, various lignin and/or carbohydrates degradation products (e.g. phenolics, 5-hydroxymethylfurfural, furfural) also generated during pretreatment, which severely inhibit the following enzymatic hydrolysis and the downstream fermentation process. Among them, the lignin derived phenolics have been considered as the most inhibitory compounds and their inhibitory effects are highly dependent on the source of biomass and the type of pretreatment strategy. Although liquid-solid separation and subsequent washing can remove the lignin derived phenolics and other inhibitors, this is undesirable in the realistic industrial application where the whole slurry of pretreated biomass need to be directly used in the hydrolysis process. This review summarizes the phenolics formation mechanism for various commonly applied pretreatment methods and discusses the key factors that affect the inhibitory effect of phenolics on cellulose hydrolysis. In addition, the recent achievements on the rational design of inhibition mitigation strategies to boost cellulose hydrolysis for sugar-platform biorefinery are also introduced. This review also provides guidance for rational design detoxification strategies to facilitate whole slurry hydrolysis which helps to realize the industrialization of lignocellulose biorefinery.
Collapse
Affiliation(s)
- Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Jianguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
2
|
Cianciosi D, Forbes-Hernández TY, Regolo L, Alvarez-Suarez JM, Navarro-Hortal MD, Xiao J, Quiles JL, Battino M, Giampieri F. The reciprocal interaction between polyphenols and other dietary compounds: Impact on bioavailability, antioxidant capacity and other physico-chemical and nutritional parameters. Food Chem 2021; 375:131904. [PMID: 34963083 DOI: 10.1016/j.foodchem.2021.131904] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023]
Abstract
Polyphenols are plant secondary metabolites, whose biological activity has been widely demonstrated. However, the research in this field is a bit reductive, as very frequently the effect of individual compound is investigated in different experimental models, neglecting more complex, but common, relationships that are established in the diet. This review summarizes the data that highlighted the interaction between polyphenols and other food components, especially macro- (lipids, proteins, carbohydrates and fibers) and micronutrients (minerals, vitamins and organic pigments), paying particular attention on their bioavailability, antioxidant capacity and chemical, physical, organoleptic and nutritional characteristics. The topic of food interaction has yet to be extensively studied because a greater knowledge of the food chemistry behind these interactions and the variables that modify their effects, could offer innovations and improvements in various fields ranging from organoleptic, nutritional to health and economic field.
Collapse
Affiliation(s)
- Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Tamara Y Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, Granada 1800, Spain
| | - Lucia Regolo
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - José M Alvarez-Suarez
- Departamento de Ingeniería en Alimentos. Colegio de Ciencias e Ingenierías. Universidad San Francisco de Quito, Quito, Ecuador 170157, Ecuador; Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito, Quito, Ecuador; King Fahd Medical Research Center, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Maria Dolores Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, Granada 1800, Spain
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, Granada 1800, Spain; Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander 39011, Spain
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China.
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander 39011, Spain; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
3
|
Ing N, Deng K, Chen Y, Aulitto M, Gin JW, Pham TLM, Petzold CJ, Singer SW, Bowen B, Sale KL, Simmons BA, Singh AK, Adams PD, Northen TR. A multiplexed nanostructure-initiator mass spectrometry (NIMS) assay for simultaneously detecting glycosyl hydrolase and lignin modifying enzyme activities. Sci Rep 2021; 11:11803. [PMID: 34083602 PMCID: PMC8175421 DOI: 10.1038/s41598-021-91181-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/07/2021] [Indexed: 11/09/2022] Open
Abstract
Lignocellulosic biomass is composed of three major biopolymers: cellulose, hemicellulose and lignin. Analytical tools capable of quickly detecting both glycan and lignin deconstruction are needed to support the development and characterization of efficient enzymes/enzyme cocktails. Previously we have described nanostructure-initiator mass spectrometry-based assays for the analysis of glycosyl hydrolase and most recently an assay for lignin modifying enzymes. Here we integrate these two assays into a single multiplexed assay against both classes of enzymes and use it to characterize crude commercial enzyme mixtures. Application of our multiplexed platform based on nanostructure-initiator mass spectrometry enabled us to characterize crude mixtures of laccase enzymes from fungi Agaricus bisporus (Ab) and Myceliopthora thermophila (Mt) revealing activity on both carbohydrate and aromatic substrates. Using time-series analysis we determined that crude laccase from Ab has the higher GH activity and that laccase from Mt has the higher activity against our lignin model compound. Inhibitor studies showed a significant reduction in Mt GH activity under low oxygen conditions and increased activities in the presence of vanillin (common GH inhibitor). Ultimately, this assay can help to discover mixtures of enzymes that could be incorporated into biomass pretreatments to deconstruct diverse components of lignocellulosic biomass.
Collapse
Affiliation(s)
- Nicole Ing
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Kai Deng
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Martina Aulitto
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer W Gin
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Thanh Le Mai Pham
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Steve W Singer
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Benjamin Bowen
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kenneth L Sale
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anup K Singh
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Paul D Adams
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,University of California, Berkeley, CA, 94720, USA
| | - Trent R Northen
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA. .,Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
4
|
Go MR, Kim HJ, Yu J, Choi SJ. Toxicity and Toxicokinetics of Amygdalin in Maesil ( Prunus mume) Syrup: Protective Effect of Maesil against Amygdalin Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11432-11440. [PMID: 30284447 DOI: 10.1021/acs.jafc.8b03686] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Maesil ( Prunus mume, green plum)-based products have been widely used in Asian cooking, which may contain amygdalin enzymatically converted to hydrogen cyanide after oral ingestion. In this study, the toxicity of Maesil syrups matured with and without Maesils was evaluated by focusing on relationship between amygdalin toxicity and its metabolic change. The cytotoxicity of amygdalin was highly related to its metabolites converted by β-glucosidase, and the metabolic change was retarded in Maesil syrup. Toxicokinetics revealed extremely low oral absorption and short half-life of amygdalin standard and Maesil syrups, and delayed metabolic change of amygdalin in Maesil syrup was found. It seems that complex Maesil syrup components play roles against amygdalin degradation. Maesil syrup matured with Maesils had higher total polyphenols, lower amygdalin, and shorter half-life in bloodstream than Maesil syrup without Maesils, suggesting more safety benefit. No significant oral toxicity of Maesil syrups was found after 14-day repeated administration, implying their safety.
Collapse
Affiliation(s)
- Mi-Ran Go
- Division of Applied Food System, Major of Food Science & Technology , Seoul Women's University , Seoul 01797 , Republic of Korea
| | - Hyeon-Jin Kim
- Division of Applied Food System, Major of Food Science & Technology , Seoul Women's University , Seoul 01797 , Republic of Korea
| | - Jin Yu
- Division of Applied Food System, Major of Food Science & Technology , Seoul Women's University , Seoul 01797 , Republic of Korea
| | - Soo-Jin Choi
- Division of Applied Food System, Major of Food Science & Technology , Seoul Women's University , Seoul 01797 , Republic of Korea
| |
Collapse
|
5
|
Li W, Ji P, Zhou Q, Hua C, Han C. Insights into the Synergistic Biodegradation of Waste Papers Using a Combination of Thermostable Endoglucanase and Cellobiohydrolase from Chaetomium thermophilum. Mol Biotechnol 2018; 60:49-54. [PMID: 29192396 DOI: 10.1007/s12033-017-0043-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Enzymatic hydrolysis is considered an efficient and environmental strategy for the degradation of organic waste materials. Compared to mesophilic cellulases, thermostable cellulases with considerable activity are more advantageous in waste paper hydrolysis, particularly in terms of their participation in synergistic action. In this study, the synergistic effect of two different types of thermostable Chaetomium thermophilum cellulases, the endoglucanase CTendo45 and the cellobiohydrolase CtCel6, on five common kinds of waste papers was investigated. CtCel6 significantly enhanced the bioconversion process, and CTendo45 synergistically increased the degradation, with a maximum degree of synergistic effect of 1.67 when the mass ratio of CTendo45/CtCel6 was 5:3. The synergistic degradation products of each paper material were also determined. Additionally, the activities of CTendo45 and CtCel6 were found to be insensitive to various metals at 2 mM and 10 mM ion concentrations. This study gives an initial insight into a satisfactory synergistic effect of C. thermophilum thermostable cellulases for the hydrolysis of different paper materials, which provides a potential combination of enzymes for industrial applications, including environmentally friendly waste management and cellulosic ethanol production.
Collapse
Affiliation(s)
- Weiguang Li
- Department of Mycology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Peng Ji
- Department of Mycology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Qinzheng Zhou
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Chengyao Hua
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Chao Han
- Department of Mycology, Shandong Agricultural University, Taian, 271018, Shandong, China. .,College of Resources and Environment, Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|