1
|
Madkhali OA. Drug Delivery of Gelatin Nanoparticles as a Biodegradable Polymer for the Treatment of Infectious Diseases: Perspectives and Challenges. Polymers (Basel) 2023; 15:4327. [PMID: 37960007 PMCID: PMC10648051 DOI: 10.3390/polym15214327] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
In recent years, there has been a growing interest in the use of gelatin nanoparticles (GNPs) for the treatment of infectious diseases. The inherent properties of these nanoparticles make them attractive options for drug delivery. Their biocompatibility ensures that they can interact with biological systems without causing adverse reactions, while their biodegradability ensures that they can break down harmlessly in the body once their function is performed. Furthermore, their capacity for controlled drug release ensures that therapeutic agents can be delivered over a sustained period, thereby enhancing treatment efficacy. This review examines the current landscape of GNP-based drug delivery, with a specific focus on its potential applications and challenges in the context of infectious diseases. Key challenges include controlling drug release rates, ensuring nanoparticle stability under physiological conditions, scaling up production while maintaining quality, mitigating potential immunogenic reactions, optimizing drug loading efficiency, and tracking the biodistribution and clearance of GNPs in the body. Despite these hurdles, GNPs hold promising potential in the realm of infectious disease treatment. Ongoing research and innovation are essential to overcome these obstacles and completely harness the potential of GNPs in clinical applications.
Collapse
Affiliation(s)
- Osama A Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45124, Saudi Arabia
| |
Collapse
|
2
|
Affiliation(s)
- Aydan Gülsu
- Molecular Biology and Genetics Department Muğla Sitki Kocman University Muğla 48000 Turkey
| | - Büşra Kıllı
- Molecular Biology and Genetics Department Muğla Sitki Kocman University Muğla 48000 Turkey
| | - Mehlika Alper
- Molecular Biology and Genetics Department Muğla Sitki Kocman University Muğla 48000 Turkey
| |
Collapse
|
3
|
Nami S, Aghebati-Maleki A, Aghebati-Maleki L. Current applications and prospects of nanoparticles for antifungal drug delivery. EXCLI JOURNAL 2021; 20:562-584. [PMID: 33883983 PMCID: PMC8056051 DOI: 10.17179/excli2020-3068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Currently, the significance of fungi as human pathogens is not medically concealed in the world. Consequently, suitable recognition and treatment of such infections are of great importance and necessitate the need for comprehensive information in this regard. The introduction of new antifungals and their use today, especially in the last two decades, have revolutionized the treatment of fungal infections. On the other hand, increasing drug resistance in the world has overshadowed such developments. The use of NPs results in the treatment of fungal infections and owing to their specific properties, these particles, unlike the pure antibiotics, can exert a greater inhibitory power although with less concentration compared with conventional drugs. Important reasons that have led to the use of antifungal drugs in delivery systems include reduced drug efficacy, limited penetration through tissue, poor aqueous solubility, decreased bioavailability, and poor drug pharmacokinetics. It is therefore hoped that unfavorable properties of antifungal drugs be mitigated via their incorporation into different types of NPs. This review summarizes the different types of NPs as delivery systems of antifungal as well as their advantages over pure drugs.
Collapse
Affiliation(s)
- Sanam Nami
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Gonçalves BC, Lopes Barbosa MG, Silva Olak AP, Belebecha Terezo N, Nishi L, Watanabe MA, Marinello P, Zendrini Rechenchoski D, Dejato Rocha SP, Faccin-Galhardi LC. Antiviral therapies: advances and perspectives. Fundam Clin Pharmacol 2020; 35:305-320. [PMID: 33011993 PMCID: PMC7675511 DOI: 10.1111/fcp.12609] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Viral infections cause high morbidity and mortality, threaten public health, and impose a socioeconomic burden. We have seen the recent emergence of SARS‐CoV‐2 (Severe Acute Respiratory Syndrome Coronavirus 2), the causative agent of COVID‐19 that has already infected more than 29 million people, with more than 900 000 deaths since its identification in December 2019. Considering the significant impact of viral infections, research and development of new antivirals and control strategies are essential. In this paper, we summarize 96 antivirals approved by the Food and Drug Administration between 1987 and 2019. Of these, 49 (51%) are used in treatments against human immunodeficiency virus (HIV), four against human papillomavirus, six against cytomegalovirus, eight against hepatitis B virus, five against influenza, six against herpes simplex virus, 17 against hepatitis C virus and one against respiratory syncytial virus. This review also describes future perspectives for new antiviral therapies such as nanotechnologies, monoclonal antibodies and the CRISPR‐Cas system. These strategies are suggested as inhibitors of viral replication by various means, such as direct binding to the viral particle, blocking the infection, changes in intracellular mechanisms or viral genes, preventing replication and virion formation. We also observed that a large number of viral agents have no therapy available and the majority of those approved in the last 32 years are restricted to some groups, especially anti‐HIV. Additionally, the emergence of new viruses and strains resistant to available antivirals has necessitated the formulation of new antivirals.
Collapse
Affiliation(s)
- Bruna Carolina Gonçalves
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil
| | - Mário Gabriel Lopes Barbosa
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil
| | - Anna Paula Silva Olak
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil
| | - Natalia Belebecha Terezo
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil
| | - Leticia Nishi
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil
| | - Maria Angélica Watanabe
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil
| | - Poliana Marinello
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil
| | - Daniele Zendrini Rechenchoski
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil
| | - Sergio Paulo Dejato Rocha
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil
| | - Lígia Carla Faccin-Galhardi
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86057-970, Brazil
| |
Collapse
|
5
|
Liu W, Jiang X, Liu Y, Ma Q. Bioinformatics Analysis of Quantitative PCR and Reverse Transcription PCR in Detecting HCV RNA. Curr Bioinform 2019. [DOI: 10.2174/1574893613666180703103328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective:This research aimed to make comparisons of sensitivity and specificity between Quantitative real Time Polymerase Chain Reaction (Q-PCR) and Reverse Transcription PCR (RT-PCR) in detecting the ribonucleic acid (RNA) expression levels of Hepatitis C Virus (HCV).Methods:121 patients suffering from hepatitis C and 98 healthy participants with normal liver functions were identified. The venous blood collections were carried out, were subjected to detect the expression levels of HCV RNA via Q-PCR and RT-PCR. And then, the data obtained from these above two detection methods were compared, including the sensitivity and specificity.Results:In terms of Q-PCR, the positive rate of HCV RNA was 72.16%, which was significantly higher when compared with 55.26% of RT-PCR. After statistical analysis, the difference between them was statistically significant (P<0.05). Among the healthy participants, 4 cases were false positive by means of RT-PCR, there was the possibility of missed diagnosis when the samples were evaluated by Q-PCR.Conclusion:: The Q-PCR detection technology performed well in testing HCV, with pretty high sensitivity and specificity. Nevertheless, the false negative results obtained from Q-PCR could not be avoided. In clinical practice, these above two detection methods should be referred to, in order to avoid missed diagnosis.
Collapse
Affiliation(s)
- Wei Liu
- Luhe Hospital Capital Medical University, Beijing, China
| | - Xiwen Jiang
- DAAN Gene Co., Ltd. of Sun Yat-sen University, 19 Xiangshan Road, Science Park, High & New Technology Development District, Guangzhou, Guangdong, China
| | - Yue Liu
- DAAN Gene Co., Ltd. of Sun Yat-sen University, 19 Xiangshan Road, Science Park, High & New Technology Development District, Guangzhou, Guangdong, China
| | - Qingsong Ma
- Qian'an Traditional Chinese Medicine Hospital, 66 Foshan Road, Qian'an, Hebei, China
| |
Collapse
|
6
|
Alizadeh S, Irani S, Bolhassani A, Sadat SM. Simultaneous use of natural adjuvants and cell penetrating peptides improves HCV NS3 antigen-specific immune responses. Immunol Lett 2019; 212:70-80. [PMID: 31254535 DOI: 10.1016/j.imlet.2019.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 06/11/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
To improve an effective hepatitis C virus (HCV) therapeutic vaccine, induction of a strong and long term HCV antigen-specific immune response is an important parameter. HCV non-structural protein 3 (NS3) has antigenic properties and plays a major role in viral clearance. In this study, DNA constructs encoding HCV NS3 and heat shock protein 27 (Hsp27)-NS3 genes, and the recombinant (r) NS3 and rHsp27-NS3 proteins complexed with HR9 and Cady-2 cell penetrating peptides (CPPs) were utilized to evaluate antibody, cytokine and Granzyme B secretion in mice. Herein, the formation of NS3 and Hsp27-NS3 DNA/ HR9 CPP complexes were revealed by gel retardation assay and protection against DNase and protease. Cady-2 peptide was used to form the nanoparticles with rNS3 and rHsp27-NS3 proteins. The size and charge of the nanoparticles were confirmed by SEM and Zetasizer instruments. Next, in vitro transfection of the nanoparticles was assessed by flow cytometry and western blotting. Finally, humoral and cellular immune responses were evaluated using different modalities in mice. Our data showed that HR9 and Cady-2 could form stable nanoparticles with DNA and proteins, respectively and enhance their delivery into HEK-293 T cells in a non-covalent approach. Furthermore, the heterologous Hsp27-NS3 DNA + HR9 prime/rHsp27-NS3+Cady-2 protein boost elicited a higher Th1 cellular immune response with a predominant IgG2a, IgG2b, IFN-γ profile and strong Granzyme B secretion than those induced by other groups. Briefly, the combination of a natural adjuvant (Hsp27) and CPPs (HR9 and Cady-2) could significantly stimulate effective immune responses as a promising approach for development of HCV therapeutic vaccines.
Collapse
Affiliation(s)
- Sina Alizadeh
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Abd Ellah NH, Tawfeek HM, John J, Hetta HF. Nanomedicine as a future therapeutic approach for Hepatitis C virus. Nanomedicine (Lond) 2019; 14:1471-1491. [PMID: 31166139 DOI: 10.2217/nnm-2018-0348] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) is not easily cleared from the human body and in most cases turned into chronic infection. This chronicity is a major cause of liver damage, cirrhosis and hepatocellular carcinoma. Therefore, immediate detection and treatment of HCV guarantees eradication of the virus and prevention of chronicity complications. Since discovery of HCV in 1989, several emerging treatments were developed such as polyethylene glycol(PEG)-ylated interferon/ribavirin, direct acting antivirals and host targeting antivirals. Despite the progress in anti-HCV therapy, there is still a pressing need of new approaches for affordable and effective drug delivery systems using nanomedicine. In this review, the contribution of nanoparticles as a promising delivery system for HCV immunizing, diagnostic and therapeutic agents are discussed.
Collapse
Affiliation(s)
- Noura H Abd Ellah
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Medical Sciences Building, University of Cincinnati, Cincinnati, OH 45267, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.,Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Karak, Jordan
| | - James John
- Central Research Facilities, Sri Ramachandra institute of higher education & research, Sri Ramachandra University, Chennai, India
| | - Helal F Hetta
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt.,Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0595, USA
| |
Collapse
|
8
|
Echave MC, Hernáez-Moya R, Iturriaga L, Pedraz JL, Lakshminarayanan R, Dolatshahi-Pirouz A, Taebnia N, Orive G. Recent advances in gelatin-based therapeutics. Expert Opin Biol Ther 2019; 19:773-779. [PMID: 31009588 DOI: 10.1080/14712598.2019.1610383] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Biomaterials have provided a wide range of exciting opportunities in tissue engineering and regenerative medicine. Gelatin, a collagen-derived natural biopolymer, has been extensively used in regenerative medicine applications over the years, due to its cell-responsive properties and the capacity to deliver a wide range of biomolecules. AREAS COVERED The most relevant properties of gelatin as biomaterial are presented together with its main therapeutic applications. The latter includes drug delivery systems, tissue engineering approaches, potential uses as ink for 3D/4D Bioprinting, and its relevance in organ-on-a-chip platforms. EXPERT OPINION Advances in polymer chemistry, mechanobiology, imaging technologies, and 3D biofabrication techniques have expanded the application of gelatin in multiple biomedical research applications ranging from bone and cartilage tissue engineering, to wound healing and anti-cancer therapy. Here, we highlight the latest advances in gelatin-based approaches within the fields of biomaterial-based drug delivery and tissue engineering together with some of the most relevant challenges and limitations.
Collapse
Affiliation(s)
- Mari Carmen Echave
- a NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU, Paseo de la Universidad 7 , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Centre in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain
| | - Raquel Hernáez-Moya
- a NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU, Paseo de la Universidad 7 , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Centre in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain
| | - Leire Iturriaga
- a NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU, Paseo de la Universidad 7 , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Centre in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain
| | - José Luis Pedraz
- a NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU, Paseo de la Universidad 7 , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Centre in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain
| | - Rajamani Lakshminarayanan
- c Anti-Infectives Research Group , Singapore Eye Research Institute, The Academia , Discovery Tower , Singapore.,d Ophthalmology and Visual Sciences Academic Clinical Program , Duke-NUS Graduate Medical School , Singapore
| | - Alireza Dolatshahi-Pirouz
- e Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark, DTU Nanotech , Copenhagen , Denmark.,f Department of Dentistry - Regenerative Biomaterials, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Nayere Taebnia
- e Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark, DTU Nanotech , Copenhagen , Denmark
| | - Gorka Orive
- a NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU, Paseo de la Universidad 7 , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Centre in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain.,c Anti-Infectives Research Group , Singapore Eye Research Institute, The Academia , Discovery Tower , Singapore.,g University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua) , Vitoria , Spain
| |
Collapse
|
9
|
Elzoghby AO. Pharmaceutical nanotechnology in Egypt: diverse applications and promising outcomes. Nanomedicine (Lond) 2019; 14:649-653. [PMID: 30693819 DOI: 10.2217/nnm-2018-0426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.,Division of Engineering in Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Harvard-MIT Division of Health Sciences & Technology (HST), Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Modified gelatin nanoparticles for gene delivery. Int J Pharm 2019; 554:224-234. [DOI: 10.1016/j.ijpharm.2018.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 01/13/2023]
|
11
|
DeFrates K, Markiewicz T, Gallo P, Rack A, Weyhmiller A, Jarmusik B, Hu X. Protein Polymer-Based Nanoparticles: Fabrication and Medical Applications. Int J Mol Sci 2018; 19:E1717. [PMID: 29890756 PMCID: PMC6032199 DOI: 10.3390/ijms19061717] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/15/2022] Open
Abstract
Nanoparticles are particles that range in size from about 1⁻1000 nanometers in diameter, about one thousand times smaller than the average cell in a human body. Their small size, flexible fabrication, and high surface-area-to-volume ratio make them ideal systems for drug delivery. Nanoparticles can be made from a variety of materials including metals, polysaccharides, and proteins. Biological protein-based nanoparticles such as silk, keratin, collagen, elastin, corn zein, and soy protein-based nanoparticles are advantageous in having biodegradability, bioavailability, and relatively low cost. Many protein nanoparticles are easy to process and can be modified to achieve desired specifications such as size, morphology, and weight. Protein nanoparticles are used in a variety of settings and are replacing many materials that are not biocompatible and have a negative impact on the environment. Here we attempt to review the literature pertaining to protein-based nanoparticles with a focus on their application in drug delivery and biomedical fields. Additional detail on governing nanoparticle parameters, specific protein nanoparticle applications, and fabrication methods are also provided.
Collapse
Affiliation(s)
- Kelsey DeFrates
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.
| | - Theodore Markiewicz
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.
| | - Pamela Gallo
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| | - Aaron Rack
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| | - Aubrie Weyhmiller
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
| | - Brandon Jarmusik
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA.
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
12
|
Parhiz H, Khoshnejad M, Myerson JW, Hood E, Patel PN, Brenner JS, Muzykantov VR. Unintended effects of drug carriers: Big issues of small particles. Adv Drug Deliv Rev 2018; 130:90-112. [PMID: 30149885 PMCID: PMC6588191 DOI: 10.1016/j.addr.2018.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
Humoral and cellular host defense mechanisms including diverse phagocytes, leukocytes, and immune cells have evolved over millions of years to protect the body from microbes and other external and internal threats. These policing forces recognize engineered sub-micron drug delivery systems (DDS) as such a threat, and react accordingly. This leads to impediment of the therapeutic action, extensively studied and discussed in the literature. Here, we focus on side effects of DDS interactions with host defenses. We argue that for nanomedicine to reach its clinical potential, the field must redouble its efforts in understanding the interaction between drug delivery systems and the host defenses, so that we can engineer safer interventions with the greatest potential for clinical success.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Makan Khoshnejad
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob W Myerson
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Hood
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Priyal N Patel
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob S Brenner
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Vladimir R Muzykantov
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Targeted Therapeutics and Translational Nanomedicine (CT3N), University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|