1
|
Park H, Kingstad-Bakke B, Cleven T, Jung M, Kawaoka Y, Suresh M. Diversifying T-cell responses: safeguarding against pandemic influenza with mosaic nucleoprotein. J Virol 2025:e0086724. [PMID: 39898643 DOI: 10.1128/jvi.00867-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/22/2024] [Indexed: 02/04/2025] Open
Abstract
Pre-existing T-cell responses have been linked to reduced disease severity and better clinical outcomes during the 2009 influenza pandemic and the recent COVID-19 pandemic. We hypothesized that diversifying T-cell responses, particularly targeting conserved viral proteins such as the influenza A virus (IAV) nucleoprotein (NP), could protect against both epidemic and pandemic IAV strains. To test this, we created a mosaic nucleoprotein (MNP) by synthesizing a sequence that maximized the representation of 9-mer epitopes from 7422 NP sequences across human, swine, and avian IAVs. Notably, the MNP sequence showed high homology with the NP of the H5N1 strain affecting dairy cows in the ongoing outbreak. Mucosal immunization with the adjuvanted MNP vaccine induced robust CD8 and CD4 T-cell responses against both known immunodominant and in silico predicted subdominant epitopes. MNP-vaccinated mice challenged with epidemic H1N1 and H3N2 strains, which shared immunodominant CD8 and/or CD4 T-cell epitopes, showed a significant (~4 log) reduction in lung viral load. Importantly, MNP-vaccinated mice challenged with a pandemic H1N1 strain lacking shared immunodominant CD8 or CD4 epitopes exhibited a superior reduction in lung viral load, linked to T-cell responses targeting subdominant epitopes present in both the MNP and pandemic strain NP. These results suggest that a diversified T-cell response induced by the MNP vaccine could provide broad protection against severe disease from both current and emerging IAV strains. IMPORTANCE The World Health Organization (WHO) estimates that seasonal influenza causes 3-5 million cases of severe illness annually. The influenza virus frequently undergoes genetic changes through antigenic drift and antigenic shift, resulting in annual epidemics and occasional pandemics. Consequently, a major public health objective is to develop a universal influenza vaccine that offers broad protection against both current and pandemic influenza A strains. In this study, we designed a nucleoprotein (NP) antigen (termed mosaic NP) comprising antigenic regions found in thousands of influenza viruses, aiming to use it as a vaccine to induce broad anti-influenza T-cell responses. Our findings indicate that the mosaic NP vaccine provided significant protection against seasonal H1N1 and H3N2, as well as the pandemic H1N1 strain, demonstrating its effectiveness across various influenza subtypes. These findings suggest that the mosaic NP is a potential universal influenza vaccine antigen, capable of protecting against diverse strains of influenza viruses.
Collapse
Affiliation(s)
- Hongtae Park
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Brock Kingstad-Bakke
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Thomas Cleven
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Myunghwan Jung
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - M Suresh
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Pekarek MJ, Weaver EA. Influenza B Virus Vaccine Innovation through Computational Design. Pathogens 2024; 13:755. [PMID: 39338946 PMCID: PMC11434669 DOI: 10.3390/pathogens13090755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
As respiratory pathogens, influenza B viruses (IBVs) cause a significant socioeconomic burden each year. Vaccine and antiviral development for influenza viruses has historically viewed IBVs as a secondary concern to influenza A viruses (IAVs) due to their lack of animal reservoirs compared to IAVs. However, prior to the global spread of SARS-CoV-2, the seasonal epidemics caused by IBVs were becoming less predictable and inducing more severe disease, especially in high-risk populations. Globally, researchers have begun to recognize the need for improved prevention strategies for IBVs as a primary concern. This review discusses what is known about IBV evolutionary patterns and the effect of the spread of SARS-CoV-2 on these patterns. We also analyze recent advancements in the development of novel vaccines tested against IBVs, highlighting the promise of computational vaccine design strategies when used to target both IBVs and IAVs and explain why these novel strategies can be employed to improve the effectiveness of IBV vaccines.
Collapse
Affiliation(s)
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
3
|
Ge P, Ross TM. COBRA HA and NA vaccination elicits long-live protective immune responses against pre-pandemic H2, H5, and H7 influenza virus subtypes. Virology 2024; 597:110119. [PMID: 38850895 DOI: 10.1016/j.virol.2024.110119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
Highly pathogenic avian influenza (HPAI) viruses remain a major threat to both the poultry industry and human public health, and these viruses continue to spread worldwide. In this study, mice were vaccinated with COBRA H2, H5, and H7 hemagglutinin (HA) and two neuraminidase (NA) proteins, N1 and N2. Vaccinated mice were fully protected against lethal challenge with H5N6 influenza virus. Sera collected after vaccination showed cross-reactive IgG antibodies against a panel of wild-type H2, H5, and H7 HA proteins, and N1 and N2 NA proteins. Mice with pre-existing immunity to H1N1 and H3N2 influenza viruses that were subsequently vaccinated with COBRA HA/NA vaccines had enhanced anti-HA stem antibodies compared to vaccinated mice without pre-existing immunity. In addition, sera collected after vaccination had hemagglutinin inhibitory activity against a panel of H2Nx, H5Nx, and H7Nx influenza viruses. These protective antibodies were maintained up for up to 4 months after vaccination.
Collapse
Affiliation(s)
- Pan Ge
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA; Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA; Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
4
|
Targeting Antigens for Universal Influenza Vaccine Development. Viruses 2021; 13:v13060973. [PMID: 34073996 PMCID: PMC8225176 DOI: 10.3390/v13060973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Traditional influenza vaccines generate strain-specific antibodies which cannot provide protection against divergent influenza virus strains. Further, due to frequent antigenic shifts and drift of influenza viruses, annual reformulation and revaccination are required in order to match circulating strains. Thus, the development of a universal influenza vaccine (UIV) is critical for long-term protection against all seasonal influenza virus strains, as well as to provide protection against a potential pandemic virus. One of the most important strategies in the development of UIVs is the selection of optimal targeting antigens to generate broadly cross-reactive neutralizing antibodies or cross-reactive T cell responses against divergent influenza virus strains. However, each type of target antigen for UIVs has advantages and limitations for the generation of sufficient immune responses against divergent influenza viruses. Herein, we review current strategies and perspectives regarding the use of antigens, including hemagglutinin, neuraminidase, matrix proteins, and internal proteins, for universal influenza vaccine development.
Collapse
|
5
|
Strategies Targeting Hemagglutinin as a Universal Influenza Vaccine. Vaccines (Basel) 2021; 9:vaccines9030257. [PMID: 33805749 PMCID: PMC7998911 DOI: 10.3390/vaccines9030257] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/17/2022] Open
Abstract
Influenza virus has significant viral diversity, both through antigenic drift and shift, which makes development of a vaccine challenging. Current influenza vaccines are updated yearly to include strains predicted to circulate in the upcoming influenza season, however this can lead to a mismatch which reduces vaccine efficacy. Several strategies targeting the most abundant and immunogenic surface protein of influenza, the hemagglutinin (HA) protein, have been explored. These strategies include stalk-directed, consensus-based, and computationally derived HA immunogens. In this review, we explore vaccine strategies which utilize novel antigen design of the HA protein to improve cross-reactive immunity for development of a universal influenza vaccine.
Collapse
|
6
|
McMillan CL, Young PR, Watterson D, Chappell KJ. The Next Generation of Influenza Vaccines: Towards a Universal Solution. Vaccines (Basel) 2021; 9:vaccines9010026. [PMID: 33430278 PMCID: PMC7825669 DOI: 10.3390/vaccines9010026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 01/19/2023] Open
Abstract
Influenza viruses remain a constant burden in humans, causing millions of infections and hundreds of thousands of deaths each year. Current influenza virus vaccine modalities primarily induce antibodies directed towards the highly variable head domain of the hemagglutinin protein on the virus surface. Such antibodies are often strain-specific, meaning limited cross-protection against divergent influenza viruses is induced, resulting in poor vaccine efficacy. To attempt to counteract this, yearly influenza vaccination with updated formulations containing antigens from more recently circulating viruses is required. This is an expensive and time-consuming exercise, and the constant arms race between host immunity and virus evolution presents an ongoing challenge for effective vaccine development. Furthermore, there exists the constant pandemic threat of highly pathogenic avian influenza viruses with high fatality rates (~30–50%) or the emergence of new, pathogenic reassortants. Current vaccines would likely offer little to no protection from such viruses in the event of an epidemic or pandemic. This highlights the urgent need for improved influenza virus vaccines capable of providing long-lasting, robust protection from both seasonal influenza virus infections as well as potential pandemic threats. In this narrative review, we examine the next generation of influenza virus vaccines for human use and the steps being taken to achieve universal protection.
Collapse
Affiliation(s)
- Christopher L.D. McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- Correspondence: (C.L.D.M.); (K.J.C.)
| | - Paul R. Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Keith J. Chappell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (P.R.Y.); (D.W.)
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- The Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
- Correspondence: (C.L.D.M.); (K.J.C.)
| |
Collapse
|
7
|
Progress in the Development of Universal Influenza Vaccines. Viruses 2020; 12:v12091033. [PMID: 32957468 PMCID: PMC7551969 DOI: 10.3390/v12091033] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Influenza viruses pose a significant threat to human health. They are responsible for a large number of deaths annually and have a serious impact on the global economy. There are numerous influenza virus subtypes, antigenic variations occur continuously, and epidemic trends are difficult to predict—all of which lead to poor outcomes of routine vaccination against targeted strain subtypes. Therefore, the development of universal influenza vaccines still constitutes the ideal strategy for controlling influenza. This article reviews the progress in development of universal vaccines directed against the conserved regions of hemagglutinin (HA), neuraminidase (NA), and other structural proteins of influenza viruses using new technologies and strategies with the goals of enhancing our understanding of universal influenza vaccines and providing a reference for research into the exploitation of natural immunity against influenza viruses.
Collapse
|
8
|
Wei CJ, Crank MC, Shiver J, Graham BS, Mascola JR, Nabel GJ. Next-generation influenza vaccines: opportunities and challenges. Nat Rev Drug Discov 2020; 19:239-252. [PMID: 32060419 PMCID: PMC7223957 DOI: 10.1038/s41573-019-0056-x] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Abstract
Seasonal influenza vaccines lack efficacy against drifted or pandemic influenza strains. Developing improved vaccines that elicit broader immunity remains a public health priority. Immune responses to current vaccines focus on the haemagglutinin head domain, whereas next-generation vaccines target less variable virus structures, including the haemagglutinin stem. Strategies employed to improve vaccine efficacy involve using structure-based design and nanoparticle display to optimize the antigenicity and immunogenicity of target antigens; increasing the antigen dose; using novel adjuvants; stimulating cellular immunity; and targeting other viral proteins, including neuraminidase, matrix protein 2 or nucleoprotein. Improved understanding of influenza antigen structure and immunobiology is advancing novel vaccine candidates into human trials.
Collapse
Affiliation(s)
- Chih-Jen Wei
- Sanofi Global Research and Development, Cambridge, MA, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Barney S Graham
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gary J Nabel
- Sanofi Global Research and Development, Cambridge, MA, USA.
| |
Collapse
|
9
|
Florek K, Mutschler J, McLean HQ, King JP, Flannery B, Belongia EA, Friedrich TC. Antibody-dependent cell-mediated cytotoxicity antibody responses to inactivated and live-attenuated influenza vaccination in children during 2014-15. Vaccine 2019; 38:2088-2094. [PMID: 31753674 DOI: 10.1016/j.vaccine.2019.10.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Seasonal influenza vaccines aim to induce strain-specific neutralizing antibodies. Non-neutralizing antibodies may be more broadly cross-reactive and still protect through mechanisms including antibody-dependent cell-mediated cytotoxicity (ADCC). Influenza vaccines may stimulate ADCC antibodies in adults, but whether they do so in children is unknown. Here we examined how vaccination affects cross-reactive ADCC antibody responses in children after receipt of inactivated trivalent vaccine (IIV3) or quadrivalent live-attenuated vaccine (LAIV4). METHODS Children aged 5-17 were recruited in fall 2014 to provide pre- and post-vaccination serum samples. Children aged 5-9 received LAIV4 based on then-current recommendation, and older children were randomly assigned to IIV3 or LAIV4. We used microtiter-plate-based flow cytometry with an NK cell line to examine ADCC antibody responses to the 2014-15 H3N2 vaccine component (A/Texas/50/2012 [TX12]) and a drifted strain, A/Switzerland/9715293/2013 (SW13). Responses were stratified by two-season (2013-14 and 2014-15) vaccine sequence. RESULTS Eighty-five children received LAIV4 and 45 received IIV3. Prevaccination ADCC activity was highest in children who had received any vaccine in the prior season. Increase in ADCC antibody responses against the vaccine strain TX12 following vaccination was greatest for participants who received IIV3 in 2014-15 and LAIV4 in the prior season (geometric mean fold rise [MFR] = 1.6, 95% CI. 1.23-2.11). This group also had a detectable ADCC response to the drifted SW13 strain. There was a modest ADCC response against SW13 in LAIV4 recipients who were unvaccinated in the previous season (MFR = 1.18, 95% CI 1.10-1.25). There were no significant changes in 2014-15 ADCC response to vaccination among children who had received IIV3 in 2013-14. CONCLUSIONS Vaccinating children with IIV3 after prior receipt of LAIV4 generated a modest increase in ADCC antibodies, including some cross-reactivity with an emerging drift variant. Other vaccine-induced ADCC responses were minimal and not affected by vaccine type or sequence.
Collapse
Affiliation(s)
- Kelsey Florek
- Wisconsin State Laboratory of Hygiene, Madison, WI 53714, USA
| | - James Mutschler
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI 53706, USA
| | - Huong Q McLean
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, 1000 North Oak Ave, Marshfield 54449, WI, USA
| | - Jennifer P King
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, 1000 North Oak Ave, Marshfield 54449, WI, USA
| | - Brendan Flannery
- Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta 30333, GA, USA
| | - Edward A Belongia
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, 1000 North Oak Ave, Marshfield 54449, WI, USA.
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI 53706, USA; Wisconsin National Primate Research Center, Madison, WI 53715, USA.
| |
Collapse
|
10
|
Kingstad-Bakke BA, Chandrasekar SS, Phanse Y, Ross KA, Hatta M, Suresh M, Kawaoka Y, Osorio JE, Narasimhan B, Talaat AM. Effective mosaic-based nanovaccines against avian influenza in poultry. Vaccine 2019; 37:5051-5058. [PMID: 31300285 DOI: 10.1016/j.vaccine.2019.06.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/15/2019] [Accepted: 06/24/2019] [Indexed: 01/09/2023]
Abstract
Avian influenza virus (AIV) is an extraordinarily diverse pathogen that causes significant morbidity in domesticated poultry populations and threatens human life with looming pandemic potential. Controlling avian influenza in susceptible populations requires highly effective, economical and broadly reactive vaccines. Several AIV vaccines have proven insufficient despite their wide use, and better technologies are needed to improve their immunogenicity and broaden effectiveness. Previously, we developed a "mosaic" H5 subtype hemagglutinin (HA) AIV vaccine and demonstrated its broad protection against diverse highly pathogenic H5N1 and seasonal H1N1 virus strains in mouse and non-human primate models. There is a significant interest in developing effective and safe vaccines against AIV that cannot contribute to the emergence of new strains of the virus once circulating in poultry. Here, we report on the development of an H5 mosaic (H5M) vaccine antigen formulated with polyanhydride nanoparticles (PAN) that provide sustained release of encapsulated antigens. H5M vaccine constructs were immunogenic whether delivered by the modified virus Ankara (MVA) strain or encapsulated within PAN. Both humoral and cellular immune responses were generated in both specific-pathogen free (SPF) and commercial chicks. Importantly, chicks vaccinated by H5M constructs were protected in terms of viral shedding from divergent challenge with a low pathogenicity avian influenza (LPAI) strain at 8 weeks post-vaccination. In addition, protective levels of humoral immunity were generated against highly pathogenic avian influenza (HPAI) of the similar H5N1 and genetically dissimilar H5N2 viruses. Overall, the developed platform technologies (MVA vector and PAN encapsulation) were safe and provided high levels of sustained protection against AIV in chickens. Such approaches could be used to design more efficacious vaccines against other important poultry infections.
Collapse
Affiliation(s)
- Brock A Kingstad-Bakke
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA; Pan Genome Systems, Madison, WI, USA
| | - Shaswath S Chandrasekar
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Kathleen A Ross
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Masato Hatta
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - M Suresh
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Jorge E Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Adel M Talaat
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA; Pan Genome Systems, Madison, WI, USA.
| |
Collapse
|
11
|
Von Holle TA, Moody MA. Influenza and Antibody-Dependent Cellular Cytotoxicity. Front Immunol 2019; 10:1457. [PMID: 31316510 PMCID: PMC6611398 DOI: 10.3389/fimmu.2019.01457] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/10/2019] [Indexed: 12/26/2022] Open
Abstract
Despite the availability of yearly vaccinations, influenza continues to cause seasonal, and pandemic rises in illness and death. An error prone replication mechanism results in antigenic drift and viral escape from immune pressure, and recombination results in antigenic shift that can rapidly move through populations that lack immunity to newly emergent strains. The development of a “universal” vaccine is a high priority and many strategies have been proposed, but our current understanding of influenza immunity is incomplete making the development of better influenza vaccines challenging. Influenza immunity has traditionally been measured by neutralization of virions and hemagglutination inhibition, but in recent years there has been a growing appreciation of other responses that can contribute to protection such as antibody-dependent cellular cytotoxicity (ADCC) that can kill influenza-infected cells. ADCC has been shown to provide cross-strain protection and to assist in viral clearance, making it an attractive target for “universal” vaccine designs. Here we provide a brief overview of the current state of influenza research that leverages “the other end of the antibody.”
Collapse
Affiliation(s)
- Tarra A Von Holle
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - M Anthony Moody
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States.,Department of Immunology, Duke University School of Medicine, Durham, NC, United States.,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
12
|
Trucchi C, Paganino C, Amicizia D, Orsi A, Tisa V, Piazza MF, Icardi G, Ansaldi F. Universal influenza virus vaccines: what needs to happen next? Expert Opin Biol Ther 2019; 19:671-683. [PMID: 30957589 DOI: 10.1080/14712598.2019.1604671] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Influenza occurs worldwide and causes significant disease burden in terms of morbidity, associated complications, hospitalizations, and deaths. Vaccination constitutes the primary approach for controlling influenza. Current influenza vaccines elicit a strain-specific response yet occasionally exhibit suboptimal effectiveness. This review describes the limits of available immunization tools and the future prospects and potentiality of universal influenza vaccines. AREAS COVERED New 'universal' vaccines, which are presently under development, are expected to overcome the problems related to the high variability of influenza viruses, such as the need for seasonal vaccine updates and re-vaccination. Here, we explore vaccines based on the highly conserved epitopes of the HA, NA, or extracellular domain of the influenza M2 protein, along with those based on the internal proteins such as NP and M1. EXPERT OPINION The development of a universal influenza vaccine that confers protection against homologous, drifted, and shifted influenza virus strains could obviate the need for annual reformulation and mitigate disease burden. The scientific community has long been awaiting the advent of universal influenza vaccines; these are currently under development in laboratories worldwide. If such vaccines are immunogenic, efficacious, and able to confer long-lasting immunity, they might be integrated with or supplant traditional influenza vaccines.
Collapse
Affiliation(s)
- Cecilia Trucchi
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy.,b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy
| | - Chiara Paganino
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy
| | - Daniela Amicizia
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy.,b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Andrea Orsi
- b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Valentino Tisa
- c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Maria Francesca Piazza
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Giancarlo Icardi
- b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Filippo Ansaldi
- a Health Planning Unit , Liguria Health Authority (A.Li.Sa) , Genoa , Italy.,b Hygiene Unit , Ospedale Policlinico San Martino IRCCS teaching hospital , Genoa , Italy.,c Department of Health Sciences , University of Genoa , Genoa , Italy
| |
Collapse
|