1
|
Shimokawa C. The gut microbiome-helminth-immune axis in autoimmune diseases. Parasitol Int 2024; 104:102985. [PMID: 39491642 DOI: 10.1016/j.parint.2024.102985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The global prevalence of autoimmune diseases has surged in recent decades. Consequently, environmental triggers have emerged as crucial contributors to autoimmune diseases, equally relevant to classical risk factors, such as genetic polymorphisms, infections, and smoking. Sequencing-based approaches have demonstrated distinct gut microbiota compositions in individuals with autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, type 1 diabetes mellitus (T1D), and systemic lupus erythematosus, compared to healthy controls. Furthermore, fecal microbiota transplantation and microbial inoculation experiments have supported the hypothesis that alterations in the gut microbiota can influence autoimmune responses and disease outcomes. Herein, we propose that intestinal helminths may serve as a critical factor in inducing alterations in the gut microbiota. The concept of helminth-mediated suppression of autoimmune diseases in humans is supported by substantial evidence, aligning with the long-standing "hygiene hypothesis." This review focused on T1D to explore the interactions between parasites, gut microbiota, and the immune system-a topic that remains a black box within this intricate triangular relationship.
Collapse
Affiliation(s)
- Chikako Shimokawa
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
2
|
Szymanski EA, Turner M. Metaphors as design tools for microbial consortia: An analysis of recent peer-reviewed literature. Microb Biotechnol 2024; 17:e14366. [PMID: 38009763 PMCID: PMC10832539 DOI: 10.1111/1751-7915.14366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/25/2023] [Accepted: 10/22/2023] [Indexed: 11/29/2023] Open
Abstract
Single engineered microbial species cannot always conduct complex transformations, while complex, incompletely defined microbial consortia have heretofore been suited to a limited range of tasks. As biodesigners bridge this gap with intentionally designed microbial communities, they will, intentionally or otherwise, build communities that embody particular ideas about what microbial communities can and should be. Here, we suggest that metaphors-ideas about what microbial communities are like-are therefore important tools for designing synthetic consortia-based bioreactors. We identify a range of metaphors currently employed in peer-reviewed microbiome research articles, characterizing each through its potential structural implications and distinctive imagery. We present this metaphor catalogue in the interest of, first, making metaphors visible as design choices, second, enabling deliberate experimentation with them towards expanding the potential design space of the field, and third, encouraging reflection on the goals and values they embed.
Collapse
Affiliation(s)
| | - Marie Turner
- Department of EnglishColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
3
|
Irvine A, McKenzie D, McCoy CJ, Graham RLJ, Graham C, Huws SA, Atkinson LE, Mousley A. Novel integrated computational AMP discovery approaches highlight diversity in the helminth AMP repertoire. PLoS Pathog 2023; 19:e1011508. [PMID: 37523405 PMCID: PMC10414684 DOI: 10.1371/journal.ppat.1011508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/10/2023] [Accepted: 06/23/2023] [Indexed: 08/02/2023] Open
Abstract
Antimicrobial Peptides (AMPs) are immune effectors that are key components of the invertebrate innate immune system providing protection against pathogenic microbes. Parasitic helminths (phylum Nematoda and phylum Platyhelminthes) share complex interactions with their hosts and closely associated microbiota that are likely regulated by a diverse portfolio of antimicrobial immune effectors including AMPs. Knowledge of helminth AMPs has largely been derived from nematodes, whereas the flatworm AMP repertoire has not been described. This study highlights limitations in the homology-based approaches, used to identify putative nematode AMPs, for the characterisation of flatworm AMPs, and reveals that innovative algorithmic AMP prediction approaches provide an alternative strategy for novel helminth AMP discovery. The data presented here: (i) reveal that flatworms do not encode traditional lophotrochozoan AMP groups (Big Defensin, CSαβ peptides and Myticalin); (ii) describe a unique integrated computational pipeline for the discovery of novel helminth AMPs; (iii) reveal >16,000 putative AMP-like peptides across 127 helminth species; (iv) highlight that cysteine-rich peptides dominate helminth AMP-like peptide profiles; (v) uncover eight novel helminth AMP-like peptides with diverse antibacterial activities, and (vi) demonstrate the detection of AMP-like peptides from Ascaris suum biofluid. These data represent a significant advance in our understanding of the putative helminth AMP repertoire and underscore a potential untapped source of antimicrobial diversity which may provide opportunities for the discovery of novel antimicrobials. Further, unravelling the role of endogenous worm-derived antimicrobials and their potential to influence host-worm-microbiome interactions may be exploited for the development of unique helminth control approaches.
Collapse
Affiliation(s)
- Allister Irvine
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Darrin McKenzie
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Ciaran J. McCoy
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Robert L. J. Graham
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Ciaren Graham
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Sharon A. Huws
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Louise E. Atkinson
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Angela Mousley
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
4
|
Ríos-Valencia DG, Ambrosio J, Tirado-Mendoza R, Carrero JC, Laclette JP. What about the Cytoskeletal and Related Proteins of Tapeworms in the Host's Immune Response? An Integrative Overview. Pathogens 2023; 12:840. [PMID: 37375530 DOI: 10.3390/pathogens12060840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Recent advances have increased our understanding of the molecular machinery in the cytoskeleton of mammalian cells, in contrast to the case of tapeworm parasites, where cytoskeleton remains poorly characterized. The pertinence of a better knowledge of the tapeworm cytoskeleton is linked to the medical importance of these parasitic diseases in humans and animal stock. Moreover, its study could offer new possibilities for the development of more effective anti-parasitic drugs, as well as better strategies for their surveillance, prevention, and control. In the present review, we compile the results of recent experiments on the cytoskeleton of these parasites and analyze how these novel findings might trigger the development of new drugs or the redesign of those currently used in addition to supporting their use as biomarkers in cutting-edge diagnostic tests.
Collapse
Affiliation(s)
- Diana G Ríos-Valencia
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Javier Ambrosio
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Rocío Tirado-Mendoza
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Julio César Carrero
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Juan Pedro Laclette
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
5
|
Miyauchi E, Shimokawa C, Steimle A, Desai MS, Ohno H. The impact of the gut microbiome on extra-intestinal autoimmune diseases. Nat Rev Immunol 2023; 23:9-23. [PMID: 35534624 DOI: 10.1038/s41577-022-00727-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 02/08/2023]
Abstract
The prevalence of autoimmune diseases (ADs) worldwide has rapidly increased over the past few decades. Thus, in addition to the classical risk factors for ADs, such as genetic polymorphisms, infections and smoking, environmental triggers have been considered. Recent sequencing-based approaches have revealed that patients with extra-intestinal ADs, such as multiple sclerosis, rheumatoid arthritis, type 1 diabetes and systemic lupus erythematosus, have distinct gut microbiota compositions compared to healthy controls. Faecal microbiota transplantation or inoculation with specific microbes in animal models of ADs support the hypothesis that alterations of gut microbiota influence autoimmune responses and disease outcome. Here, we describe the compositional and functional changes in the gut microbiota in patients with extra-intestinal AD and discuss how the gut microbiota affects immunity. Moreover, we examine how the gut microbiota might be modulated in patients with ADs as a potential preventive or therapeutic approach.
Collapse
Affiliation(s)
- Eiji Miyauchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Institute for Molecular and Cellular Regulation, Gunma University, Haebashi, Gunma, Japan
| | - Chikako Shimokawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Parasitology, National Institute of Infectious Disease, Tokyo, Japan
| | - Alex Steimle
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan.
- Laboratory for Immune Regulation, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan.
| |
Collapse
|
6
|
The Tapeworm Hymenolepis diminuta as an Important Model Organism in the Experimental Parasitology of the 21st Century. Pathogens 2022; 11:pathogens11121439. [PMID: 36558772 PMCID: PMC9784563 DOI: 10.3390/pathogens11121439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The tapeworm Hymenolepis diminuta is a common parasite of the small intestine in rodents but it can also infect humans. Due to its characteristics and ease of maintenance in the laboratory, H. diminuta is also an important model species in studies of cestodiasis, including the search for new drugs, treatments, diagnostics and biochemical processes, as well as its host-parasite interrelationships. A great deal of attention has been devoted to the immune response caused by H. diminuta in the host, and several studies indicate that infection with H. diminuta can reduce the severity of concomitant disease. Here, we present a critical review of the experimental research conducted with the use of H. diminuta as a model organism for over more than two decades (in the 21st century). The present review evaluates the tapeworm H. diminuta as a model organism for studying the molecular biology, biochemistry and immunology aspects of parasitology, as well as certain clinical applications. It also systematizes the latest research on this species. Its findings may contribute to a better understanding of the biology of tapeworms and their adaptation to parasitism, including complex correlations between H. diminuta and invertebrate and vertebrate hosts. It places particular emphasis on its value for the further development of modern experimental parasitology.
Collapse
|
7
|
Hymenolepis diminuta Reduce Lactic Acid Bacterial Load and Induce Dysbiosis in the Early Infection of the Probiotic Colonization of Swiss Albino Rat. Microorganisms 2022; 10:microorganisms10122328. [PMID: 36557581 PMCID: PMC9785584 DOI: 10.3390/microorganisms10122328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Tapeworm infection continues to be an important cause of morbidity worldwide. Recent metagenomics studies have established a link between gut microbiota and parasite infection. The identification of gut probiotics is of foremost importance to explore its relationship and function with the parasite in the host. In this study, the gut content of hosts infected with tapeworm Hymenolepis diminuta and non-infected host gut were disected out to determine their Lactic acid bacterial (LAB) population in MRS agar and microbial community was analysed by metagenomics. The bacterial count was calculated on a bacterial counting chamber and their morphology was determined microscopically and biochemically. Further, to determine the safety profile antibiotic resistance test, antimicrobial, hemolytic activity, and adhesion capability were calculated. We found six dominant probiotic strains and a decrease in LAB load from 1.7-2.3 × 107 CFU/mL in the uninfected group to a range of 8.4 × 105 CFU/mL to 3.2 × 105 CFU/mL in the infected groups with respect to an increase in the parasite number from 10-18. In addition, we found a depletion in the probiotic relative abundance of Lactobacillus and an enrichment in potentially pathogenic Proteobacteria, Fusobacteria, and Streptococcus. Phylogenetic analysis of the six probiotics revealed a close similarity with different strains of L. brevis, L. johnsonii, L. taiwansis, L. reuteri, L. plantarum, and L. pentosus. Thus, this study suggests that the parasite inhibits probiotic colonization in the gut during its early establishment of infection inside the host.
Collapse
|
8
|
Rajeev S, Li S, McKay DM. Hymenolepis diminuta. Trends Parasitol 2022; 38:991-992. [PMID: 35906137 DOI: 10.1016/j.pt.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 01/13/2023]
Affiliation(s)
- Sruthi Rajeev
- Gastrointestinal Research Group, Inflammation Research Network, Host-Parasite Interactions Program, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - ShuHua Li
- Gastrointestinal Research Group, Inflammation Research Network, Host-Parasite Interactions Program, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Derek M McKay
- Gastrointestinal Research Group, Inflammation Research Network, Host-Parasite Interactions Program, Department of Physiology and Pharmacology, Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
9
|
Fu PP, Xiong F, Wu SG, Zou H, Li M, Wang GT, Li WX. Effects of Schyzocotyle acheilognathi (Yamaguti, 1934) infection on the intestinal microbiota, growth and immune reactions of grass carp (Ctenopharyngodon idella). PLoS One 2022; 17:e0266766. [PMID: 35413087 PMCID: PMC9004761 DOI: 10.1371/journal.pone.0266766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Our understanding of interactions among intestinal helminths, gut microbiota and host is still in its infancy in fish. In this study, the effects of Schyzocotyle acheilognathi infection on the intestinal microbiota, growth and immune reactions of grass carp were explored under laboratory conditions. 16S rDNA amplification sequencing results showed that S. acheilognathi infection altered the composition of intestinal microbiota only at the genus level, with a significant increase in the relative abundance of Turicibacter and Ruminococcus (P < 0.05) and a significant decrease in the relative abundance of Gordonia, Mycobacterium and Pseudocanthomonas (P < 0.05). Schyzocotyle acheilognathi infection had no significant effect (P > 0.05) on the alpha diversity indices (including Chao1, ACE, Shannon, Simpson index) of intestinal microbiota in grass carp, but PERMANOVA analysis showed that microbial structure significantly (P < 0.01) differed between hindgut and foregut. PICRUST prediction showed that some metabolism-related pathways were significantly changed after S. acheilognathi infection. The relative abundance of Turicibacter was positively correlated with the fresh weight of tapeworm (foregut: r = 0.48, P = 0.044; hindgut: r = 0.63, P = 0.005). There was no significant difference in the body condition of grass carp between the S. acheilognathi infected group and the uninfected group (P > 0.05). Intestinal tissue section with HE staining showed that S. acheilognathi infection severely damaged the intestinal villi, causing serious degeneration, necrosis and shedding of intestinal epithelial cells. The real-time fluorescent quantitative PCR results showed that S. acheilognathi infection upregulated the mRNA expression of the immune-related genes: Gal1−L2, TGF−β1 and IgM.
Collapse
Affiliation(s)
- Pei P. Fu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, P. R. China
| | - Fan Xiong
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Shan G. Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Gui T. Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Wen X. Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- * E-mail:
| |
Collapse
|
10
|
Blecharz-Klin K, Świerczyńska M, Piechal A, Wawer A, Joniec-Maciejak I, Pyrzanowska J, Wojnar E, Zawistowska-Deniziak A, Sulima-Celińska A, Młocicki D, Mirowska-Guzel D. Infection with intestinal helminth (Hymenolepis diminuta) impacts exploratory behavior and cognitive processes in rats by changing the central level of neurotransmitters. PLoS Pathog 2022; 18:e1010330. [PMID: 35286352 PMCID: PMC8947016 DOI: 10.1371/journal.ppat.1010330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/24/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
Parasites may significantly affect the functioning of the host organism including immune response and gut-brain-axis ultimately leading to alteration of the host behavior. The impact of intestinal worms on the host central nervous system (CNS) remains unexplored. The aim of this study was to evaluate the effect of intestinal infection by the tapeworm Hymenolepis diminuta on behavior and functions of the CNS in rats. The 3 months old animals were infected, and the effects on anxiety, exploration, sensorimotor skills and learning processes were assessed at 18 months in Open Field (OF), Novel Object Recognition (NOR) and the Water Maze (WM) tests. After completing the behavioral studies, both infected and non-infected rats were sacrificed, and the collected tissues were subjected to biochemical analysis. The levels of neurotransmitters, their metabolites and amino acids in selected structures of the CNS were determined by HPLC. In addition, the gene expression profile of the pro- and anti-inflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-10) was evaluated by Real-Time PCR to determine the immune response within the CNS to the tapeworm infection. The parasites caused significant changes in exploratory behavior, most notably, a reduction of velocity and total distance moved in the OF test; the infected rats exhibited decreased frequency in the central zone, which may indicate a higher level of anxiety. Additionally, parasite infestation improved spatial memory, assessed in the WM test, and recognition of new objects. These changes are related to the identified reduction in noradrenaline level in the CNS structures and less pronounced changes in striatal serotonergic neurotransmission. H. diminuta infestation was also found to cause a significant reduction of hippocampal expression of IL-6. Our results provide new data for further research on brain function during parasitic infections especially in relation to helminths and diseases in which noradrenergic system may play an important role. Recent advances in the research on parasitic manipulation and/or control of the nervous system of their host resulted in the development of neuro-parasitology, a new and emerging branch of science. There have been advances in this area in relation to parasite-insect interactions or parasites directly invading central nervous system (CNS). However, the neuro-parasitology of parasitic infections in vertebrate hosts remains unexplored. In our study the effect of intestinal infection by the tapeworm on the behavior, neurotransmission and functions of the CNS in rats was evaluated. This infection positively influenced spatial memory and new object recognition. At the same time, the infected animals developed a greater level of anxiety and move more slowly. Behavioral changes were related to the reduction in noradrenaline level in the CNS structures, and less pronounced changes in striatal serotonergic neurotransmission. The results provide important data for the further progress in neuro-parasitology and our understanding of parasite-host interactions. In our opinion in the near future may turn out that the role of the intestinal host macrobiome in the CNS functioning may be just as significant as that of the microbiome. Presented neuro-immunological data provide a new perspectives for further studies on the CNS under intestinal parasite infection. The data of behavioral changes induced by active parasitic infection may be valid for explanations of the host-parasite relationship at the evolutionary level and their molecular adjustment.
Collapse
Affiliation(s)
- Kamilla Blecharz-Klin
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Magdalena Świerczyńska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Agnieszka Piechal
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Adriana Wawer
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Justyna Pyrzanowska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | - Ewa Wojnar
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
| | | | - Anna Sulima-Celińska
- Department of General Biology and Parasitology, Medical University of Warsaw, Warsaw, Poland
| | - Daniel Młocicki
- W. Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Department of General Biology and Parasitology, Medical University of Warsaw, Warsaw, Poland
- * E-mail: (DM); (DM-G)
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warsaw, Poland
- * E-mail: (DM); (DM-G)
| |
Collapse
|
11
|
Guiver E, Galan M, Lippens C, Bellenger J, Faivre B, Sorci G. Increasing helminth infection burden depauperates the diversity of the gut microbiota and alters its composition in mice. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 2:100082. [PMID: 36589866 PMCID: PMC9795360 DOI: 10.1016/j.crpvbd.2022.100082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 01/04/2023]
Abstract
The gut microbiota constitutes a diverse community of organisms with pervasive effects on host homeostasis. The diversity and composition of the gut microbiota depend on both intrinsic (host genetics) and extrinsic (environmental) factors. Here, we investigated the reaction norms of fecal microbiota diversity and composition in three strains of mice infected with increasing doses of the gastrointestinal nematode Heligmosomoides polygyrus. We found that α-diversity (bacterial taxonomic unit richness) declined along the gradient of infective doses, and β-diversity (dissimilarity between the composition of the microbiota of uninfected and infected mice) increased as the infective dose increased. We did not find evidence for genotype by environment (host strain by infective dose) interactions, except when focusing on the relative abundance of the commonest bacterial families. A simulation approach also showed that significant genotype by environment interactions would have been hardly found even with much larger sample size. These results show that increasing parasite burden progressively depauperates microbiota diversity and contributes to rapidly change its composition, independently from the host genetic background.
Collapse
Affiliation(s)
- Emmanuel Guiver
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Maxime Galan
- Centre de Biologie pour la Gestion des Populations, CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, 755 Avenue du Campus Agropolis, CS 30016, 34988 Montferrier-sur-Lez Cedex, France
| | - Cédric Lippens
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Jérôme Bellenger
- Lipides Nutrition Cancer, INSERM UMR 1231, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Bruno Faivre
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Gabriele Sorci
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| |
Collapse
|
12
|
Sloup V, Jankovská I, Štolcová M, Magdálek J, Karešová V, Lanková S, Langrová I. Effects of excessive dietary zinc or zinc/cadmium and tapeworm infection on the biochemical parameters in rats. J Anim Physiol Anim Nutr (Berl) 2021; 105:989-995. [PMID: 33772898 DOI: 10.1111/jpn.13524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/24/2021] [Indexed: 11/30/2022]
Abstract
The main objective of this study was to determine which biochemical blood parameters can serve as indicators of Zn or Zn/Cd burden and tapeworm infection. This study was performed on 44 Wistar male rats during a 6-week period, when rats were or were not fed a zinc/cadmium rich diet and were or were not infected with tapeworms (Hymenolepis diminuta). Total protein, albumin, urea, glucose, triacylglycerols, non-esterified fatty acids, cholesterol, alkaline phosphatase, aspartate aminotransferase, uric acid, Mg, Ca, P and Zn levels were analysed. Control rats with tapeworm infection had significantly higher (p ≤ 0.05) total protein, urea and phosphorus concentrations than did rats unaffected by any experimental factor. Rats given overdoses of zinc lactate exhibited significantly lower glucose levels than did the other rats, especially those infected with tapeworms. Low glucose level in uninfected rats indicate a Zn overdose; high doses of zinc lactate likely decrease levels of glucose via cortisol, which is released during stress. Rats fed the Zn/Cd hyperaccumulating plant Arabidopsis halleri and infected with tapeworms had significantly higher (p ≤ 0.01) cholesterol and urea levels but lower zinc, triacylglycerol, and alkaline phosphatase levels than did rats fed the same diet but free of tapeworms. The increase of alkaline phosphatase level in uninfected rats may indicate both Zn/Cd burden and rat liver damage. Overall, this study not only supports the theory that H. diminuta can serve as a promising model for helminth therapy of the host mammal but also confirmed that this tapeworm is capable to protect somehow the host organism from the harmful effects of heavy metals.
Collapse
Affiliation(s)
- Vladislav Sloup
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ivana Jankovská
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Magdalena Štolcová
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Jan Magdálek
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Veronika Karešová
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Sylva Lanková
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Iva Langrová
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
13
|
Li S, Rajeev S, Wang A, McKay DM. Infection with Hymenolepis diminuta Blocks Colitis and Hastens Recovery While Colitis Has Minimal Impact on Expulsion of the Cestode from the Mouse Host. Pathogens 2021; 10:pathogens10080994. [PMID: 34451458 PMCID: PMC8401575 DOI: 10.3390/pathogens10080994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022] Open
Abstract
Two experimental paradigms were adopted to explore host-helminth interactions involved in the regulation of colitis and to understand if colitis affects the outcome of helminth infection. First, male BALB/c mice infected with H. diminuta were challenged 4 days later with dinitrobenzene sulphonic acid (DNBS) and necropsied 3 days later. Second, mice were infected with H. diminuta 3 days after DNBS treatment and necropsied 11 or 14 days post-DNBS. Mice were assessed for colitic disease severity and infectivity with H. diminuta upon necropsy. Supporting the concept of helminth therapy, mice are protected from DNBS-colitis when infected with H. diminuta only 4 days previously, along with parallel increases in splenic production of Th2 cytokines. In the treatment regimen, H. diminuta infection produced a subtle, statistically significant, enhanced recovery from DNBS. Mice regained body weight quicker, had normalized colon lengths, and showed no overt signs of disease, in comparison to the DNBS-only mice, some of which displayed signs of mild disease at 14 days post-DNBS. Unexpectedly, colitis did not affect the hosts' anti-worm response. The impact of inflammatory disease on helminth infection is deserving of study in a variety of models as auto-inflammatory diseases emerge in world regions where parasitic helminths are endemic.
Collapse
|
14
|
Jenkins TP, Pritchard DI, Tanasescu R, Telford G, Papaiakovou M, Scotti R, Cortés A, Constantinescu CS, Cantacessi C. Experimental infection with the hookworm, Necator americanus, is associated with stable gut microbial diversity in human volunteers with relapsing multiple sclerosis. BMC Biol 2021; 19:74. [PMID: 33853585 PMCID: PMC8048248 DOI: 10.1186/s12915-021-01003-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Helminth-associated changes in gut microbiota composition have been hypothesised to contribute to the immune-suppressive properties of parasitic worms. Multiple sclerosis is an immune-mediated autoimmune disease of the central nervous system whose pathophysiology has been linked to imbalances in gut microbial communities. RESULTS In the present study, we investigated, for the first time, qualitative and quantitative changes in the faecal bacterial composition of human volunteers with remitting multiple sclerosis (RMS) prior to and following experimental infection with the human hookworm, Necator americanus (N+), and following anthelmintic treatment, and compared the findings with data obtained from a cohort of RMS patients subjected to placebo treatment (PBO). Bacterial 16S rRNA high-throughput sequencing data revealed significantly decreased alpha diversity in the faecal microbiota of PBO compared to N+ subjects over the course of the trial; additionally, we observed significant differences in the abundances of several bacterial taxa with putative immune-modulatory functions between study cohorts. Parabacteroides were significantly expanded in the faecal microbiota of N+ individuals for which no clinical and/or radiological relapses were recorded at the end of the trial. CONCLUSIONS Overall, our data lend support to the hypothesis of a contributory role of parasite-associated alterations in gut microbial composition to the immune-modulatory properties of hookworm parasites.
Collapse
Affiliation(s)
- Timothy P. Jenkins
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Present address: Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Radu Tanasescu
- Division of Clinical Neurology, School of Clinical Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, UK
| | - Gary Telford
- Department of Pharmacy, University of Nottingham, Nottingham, UK
| | - Marina Papaiakovou
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- National History Museum, London, UK
| | - Riccardo Scotti
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alba Cortés
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València, València, Spain
| | - Cris S. Constantinescu
- Division of Clinical Neurology, School of Clinical Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, UK
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Jirků M, Lhotská Z, Frgelecová L, Kadlecová O, Petrželková KJ, Morien E, Jirků-Pomajbíková K. Helminth Interactions with Bacteria in the Host Gut Are Essential for Its Immunomodulatory Effect. Microorganisms 2021; 9:microorganisms9020226. [PMID: 33499240 PMCID: PMC7910914 DOI: 10.3390/microorganisms9020226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Colonization by the benign tapeworm, Hymenolepis diminuta, has been associated with a reduction in intestinal inflammation and changes in bacterial microbiota. However, the role of microbiota in the tapeworm anti-inflammatory effect is not yet clear, and the aim of this study was to determine whether disruption of the microflora during worm colonization can affect the course of intestinal inflammation. We added a phase for disrupting the intestinal microbiota using antibiotics to the experimental design for which we previously demonstrated the protective effect of H. diminuta. We monitored the immunological markers, clinical parameters, bacterial microbiota, and histological changes in the colon of rats. After a combination of colonization, antibiotics, and colitis induction, we had four differently affected experimental groups. We observed a different course of the immune response in each group, but no protective effect was found. Rats treated with colonization and antibiotics showed a strong induction of the Th2 response as well as a significant change in microbial diversity. The microbial results also revealed differences in the richness and abundance of some bacterial taxa, influenced by various factors. Our data suggest that interactions between the tapeworm and bacteria may have a major impact on its protective effect.
Collapse
Affiliation(s)
- Milan Jirků
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (Z.L.); (O.K.); (K.J.P.)
- Correspondence: (M.J.); (K.J.-P.); Tel.: +420-38-777-5470 (M.J.); +420-38-777-5470 (K.J.P.)
| | - Zuzana Lhotská
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (Z.L.); (O.K.); (K.J.P.)
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Lucia Frgelecová
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1/3, 612 42 Brno, Czech Republic;
| | - Oldřiška Kadlecová
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (Z.L.); (O.K.); (K.J.P.)
| | - Klára Judita Petrželková
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (Z.L.); (O.K.); (K.J.P.)
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná, 8603 65 Brno, Czech Republic
| | - Evan Morien
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada;
| | - Kateřina Jirků-Pomajbíková
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (Z.L.); (O.K.); (K.J.P.)
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Correspondence: (M.J.); (K.J.-P.); Tel.: +420-38-777-5470 (M.J.); +420-38-777-5470 (K.J.P.)
| |
Collapse
|
16
|
Eukaryotic and Prokaryotic Microbiota Interactions. Microorganisms 2020; 8:microorganisms8122018. [PMID: 33348551 PMCID: PMC7767281 DOI: 10.3390/microorganisms8122018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022] Open
Abstract
The nature of the relationship between the communities of microorganisms making up the microbiota in and on a host body has been increasingly explored in recent years. Microorganisms, including bacteria, archaea, viruses, parasites and fungi, have often long co-evolved with their hosts. In human, the structure and diversity of microbiota vary according to the host’s immunity, diet, environment, age, physiological and metabolic status, medical practices (e.g., antibiotic treatment), climate, season and host genetics. The recent advent of next generation sequencing (NGS) technologies enhanced observational capacities and allowed for a better understanding of the relationship between distinct microorganisms within microbiota. The interaction between the host and their microbiota has become a field of research into microorganisms with therapeutic and preventive interest for public health applications. This review aims at assessing the current knowledge on interactions between prokaryotic and eukaryotic communities. After a brief description of the metagenomic methods used in the studies were analysed, we summarise the findings of available publications describing the interaction between the bacterial communities and protozoa, helminths and fungi, either in vitro, in experimental models, or in humans. Overall, we observed the existence of a beneficial effect in situations where some microorganisms can improve the health status of the host, while the presence of other microorganisms has been associated with pathologies, resulting in an adverse effect on human health.
Collapse
|
17
|
Shute A, Wang A, Jayme TS, Strous M, McCoy KD, Buret AG, McKay DM. Worm expulsion is independent of alterations in composition of the colonic bacteria that occur during experimental Hymenolepis diminuta-infection in mice. Gut Microbes 2020; 11:497-510. [PMID: 31928118 PMCID: PMC7524392 DOI: 10.1080/19490976.2019.1688065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The tapeworm Hymenolepis diminuta fails to establish in mice. Given the potential for helminth-bacteria interaction in the gut and the influence that commensal bacteria exert on host immunity, we tested if worm expulsion was related to alterations in the gut microbiota. Specific pathogen-free (SPF) mice, treated with broad-spectrum antibiotics, or germ-free wild-type mice were infected with H. diminuta, gut bacterial composition assessed by 16S rRNA gene sequencing, and worm counts, blood eosinophilia, goblet cells, splenic IL-4, -5 and -10, and colonic cytokines/chemokines mRNA were assessed. Effects of a PBS-soluble extract of adult H. diminuta on bacterial growth in vitro was tested. H. diminuta-infected mice displayed increased α and β diversity in colonic mucosa-associated and fecal bacterial communities, characterized by increased Lachnospiraceae and clostridium cluster XIVa. In vitro analysis revealed that the worm extract promoted the growth of anaerobic bacteria on M2GSC agar. H. diminuta-infection was accompanied by increased Th2 immune responses, and colon from infected mice had increased levels of IL-10, IL-25, Muc2, trefoil factor 3, and β2-defensin mRNA. SPF-mice treated with antibiotics, or germ-free mice, expelled H. diminuta with kinetics similar to control SPF mice. In both settings, measurements of Th2-immune responses were not significantly different across the groups. Thus, while infection with H. diminuta results in subtle but distinct changes to the colonic microbiota, we have no evidence to support an essential role for gut bacteria in the expulsion of the worm from the mouse host.
Collapse
Affiliation(s)
- Adam Shute
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada,Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Arthur Wang
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Timothy S. Jayme
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada,Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, Alberta, Canada
| | - Kathy D. McCoy
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andre G. Buret
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada,Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Derek M. McKay
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada,Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,CONTACT Derek M. McKay Department of Physiology & Pharmacology, 1877 HSC, University of Calgary, 3330 Hospital Drive NW, Calgary, AlbertaT2N 4N1, Canada
| |
Collapse
|
18
|
Olia A, Shimokawa C, Imai T, Suzue K, Hisaeda H. Suppression of systemic lupus erythematosus in NZBWF1 mice infected with Hymenolepis microstoma. Parasitol Int 2020; 76:102057. [PMID: 31954872 DOI: 10.1016/j.parint.2020.102057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/15/2022]
Abstract
Intestinal helminths induce immune suppressive responses thought to regulate inflammatory diseases including allergies and autoimmune diseases. This study was designed to evaluate whether helminthic infections suppress the natural development of systemic lupus erythematosus (SLE) in NZBWF1 mice. Infection of NZBWF1 SLE-prone mice with two nematodes failed to establish long-lasting settlement. However, the Hymenolepis microstoma (Hm) rodent tapeworm successfully established long-term parasitization of NZBWF1 mice and was used to evaluate the suppressive effects of helminth infection. Ten-month-old NZBWF1 mice developed symptoms including autoantibody generation, proteinuria, glomerular histopathology, and splenomegaly, but mice infected with Hm at 2 months of age did not show any clinical signs. Furthermore, infection with Hm reduced lymphocyte activation and increased regulatory T cells in the spleen and mesenteric lymph nodes. These results indicate that infection with Hm protects NZBWF1 mice from naturally developing SLE and suggest that pathological immunity is attenuated, presumably because of the induction of regulatory T cells.
Collapse
Affiliation(s)
- Alex Olia
- Department of Parasitology, Graduate School of Medicine, Gunma University, Gunma, Japan; Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Chikako Shimokawa
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Imai
- Department of Parasitology, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Kazutomo Suzue
- Department of Parasitology, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Hajime Hisaeda
- Department of Parasitology, Graduate School of Medicine, Gunma University, Gunma, Japan; Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
19
|
Fredensborg BL, Fossdal í Kálvalíð I, Johannesen TB, Stensvold CR, Nielsen HV, Kapel CMO. Parasites modulate the gut-microbiome in insects: A proof-of-concept study. PLoS One 2020; 15:e0227561. [PMID: 31935259 PMCID: PMC6959588 DOI: 10.1371/journal.pone.0227561] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/21/2019] [Indexed: 01/18/2023] Open
Abstract
Host-parasite interactions may be modulated by host- or parasite-associated microbes, but the role of these are often overlooked. Particularly for parasites with intestinal stages (either larval or adult), the host gut microbiome may play a key role for parasite establishment; moreover, the microbiome may change in response to invading parasites. Hypothesis testing at the organismal level may be hampered, particularly in mammalian definitive hosts, by ethical, logistical, and economical restrictions. Thus, invertebrates naturally serving as intermediate hosts to parasites with complex life cycles may inform the development of mammalian models as an early-stage host-parasite model. In addition, several important pathogens are vectored by insects, and insect gut microbiome-pathogen interactions may provide essential base-line knowledge, which may be used to control vectorborne pathogens. Here, we used the grain beetle, Tenebrio molitor, a host of the tapeworm Hymenolepis diminuta, to explore interactions between infection status and resident gut microbiota at two pre-determined time points (day two and seven) post infection. Using 16S/18S microbial profiling, we measured key parameters of the composition, relative abundance, and diversity of the host gut bacteriome and mycobiome. In addition, we quantified the systemic beetle immune response to infection by Phenoloxidase activity and hemocyte abundance. We found significant changes in the gut bacteriome and mycobiome in relation to infection status and beetle age. Thus, the relative abundance of Proteobacteria was significantly higher in the gut of infected beetles and driven mostly by an increased abundance of Acinetobacter. In addition, the mycobiome was less abundant in infected beetles but maintained higher Shannon diversity in infected compared with non-infected beetles. Beetles treated with a broad-spectrum antibiotic (Tetracycline) exhibited significantly reduced parasite establishment compared with the untreated control group, indicating that the host microbiome may greatly influence hatching of eggs and subsequent establishment of H. diminuta larvae. Our results suggest that experimental work using invertebrates may provide a platform for explorative studies of host-parasite-microbe interactions and their underlying mechanisms.
Collapse
Affiliation(s)
- Brian L. Fredensborg
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| | - Inga Fossdal í Kálvalíð
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Thor B. Johannesen
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - C. Rune Stensvold
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Henrik V. Nielsen
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Christian M. O. Kapel
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
20
|
Helminth-microbiota cross-talk - A journey through the vertebrate digestive system. Mol Biochem Parasitol 2019; 233:111222. [PMID: 31541662 DOI: 10.1016/j.molbiopara.2019.111222] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022]
Abstract
The gastrointestinal (GI) tract of vertebrates is inhabited by a vast array of organisms, i.e., the microbiota and macrobiota. The former is composed largely of commensal microorganisms, which play vital roles in host nutrition and maintenance of energy balance, in addition to supporting the development and function of the vertebrate immune system. By contrast, the macrobiota includes parasitic helminths, which are mostly considered detrimental to host health via a range of pathogenic effects that depend on parasite size, location in the GI tract, burden of infection, metabolic activity, and interactions with the host immune system. Sharing the same environment within the vertebrate host, the GI microbiota and parasitic helminths interact with each other, and the results of such interactions may impact, directly or indirectly, on host health and homeostasis. The complex relationships occurring between parasitic helminths and microbiota have long been neglected; however, recent studies point towards a role for these interactions in the overall pathophysiology of helminth disease, as well as in parasite-mediated suppression of inflammation. Whilst several discrepancies in qualitative and quantitative modifications in gut microbiota composition have been described based on host and helminth species under investigation, we argue that attention should be paid to the systems biology of the gut compartment under consideration, as variations in the abundances of the same population of bacteria inhabiting different niches of the GI tract may result in varying functional consequences for host physiology.
Collapse
|
21
|
Contribution of the Gut Microbiota in P28GST-Mediated Anti-Inflammatory Effects: Experimental and Clinical Insights. Cells 2019; 8:cells8060577. [PMID: 31212833 PMCID: PMC6627314 DOI: 10.3390/cells8060577] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022] Open
Abstract
An original immuno-regulatory strategy against inflammatory bowel diseases based on the use of 28 kDa glutathione S-transferase (P28GST), a unique schistosome protein, was recently proposed. Improvement of intestinal inflammation occurs through restoration of the immunological balance between pro-inflammatory T-helper 1 (Th1) responses and both T-helper 2 (Th2) and regulatory responses. However, detailed mechanisms explaining how P28GST prevents colitis and promotes gut homeostasis remain unknown. Considering the complex interplay between the adaptive and innate immune system and the intestinal microbiota, we raised the question of the possible role of the microbial ecosystem in the anti-inflammatory effects mediated by the helminth-derived P28GST protein. We first analyzed, by 16S rRNA sequencing, the bacterial profiles of mice fecal microbiota at several time points of the P28GST-immunomodulation period prior to trinitrobenzene sulfonic acid (TNBS)-colitis. The influence of gut microbiota in the P28GST-mediated anti-inflammatory effects was then assessed by fecal microbiota transplantation experiments from P28GST-immunized mice to either conventional or microbiota depleted naïve recipient mice. Finally, the experimental data were supplemented by the temporal fecal microbiota compositions of P28GST-treated Crohn’s disease patients from a pilot clinical study (NCT02281916). The P28GST administration slightly modulated the diversity and composition of mouse fecal microbiota while it significantly reduced experimental colitis in mice. Fecal microbiota transplantation experiments failed to restore the P28GST-induced anti-inflammatory effects. In Crohn’s disease patients, P28GST also induced slight changes in their overall fecal bacterial composition. Collectively, these results provide key elements in both the anti-inflammatory mechanisms and the safe therapeutic use of immunomodulation with such promising helminth-derived molecules.
Collapse
|
22
|
Toro-Londono MA, Bedoya-Urrego K, Garcia-Montoya GM, Galvan-Diaz AL, Alzate JF. Intestinal parasitic infection alters bacterial gut microbiota in children. PeerJ 2019; 7:e6200. [PMID: 30643702 PMCID: PMC6327884 DOI: 10.7717/peerj.6200] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 12/03/2018] [Indexed: 12/29/2022] Open
Abstract
The study of the burden that parasites can exert upon the bacterial gut microbiota was restricted by the available technologies and their costs. Currently, next-generation sequencing coupled with traditional methodologies allows the study of eukaryotic parasites (protozoa and helminths) and its effects on the human bacterial gut microbiota diversity. This diversity can be altered by a variety of factors such as age, diet, genetics and parasitic infections among others. The disturbances of the gut microbiota have been associated with a variety of illnesses. Children population in developing countries, are especially susceptible to parasitic infections because of the lack of proper sanitation and undernutrition, allowing both, the thriving of intestinal parasites and profound alteration of the gut microbiota. In this work, we have sampled the stool of 23 children from four different children's care-centers in Medellin, Colombia, and we have identified the eukaryotic parasites by traditional and molecular methodologies coupled with microbial profiling using 16S rDNA sequencing. This mixed methodology approach has allowed us to establish an interesting relationship between Giardia intestinalis and helminth infection, having both effects upon the bacterial gut microbiota enterotypes, causing a switch from a type I to a type II enterotype upon infection.
Collapse
Affiliation(s)
- Miguel A. Toro-Londono
- Centro Nacional de Secuenciación Genómica—CNSG, Universidad de Antioquia, Medellin, Antioquia, Colombia
| | - Katherine Bedoya-Urrego
- Centro Nacional de Secuenciación Genómica—CNSG, Universidad de Antioquia, Medellin, Antioquia, Colombia
- Parasitology group, School of Medicine, Universidad de Antioquia, Medellin, Antioquia, Colombia
| | | | - Ana L. Galvan-Diaz
- Environmental Microbiology Group, School of Microbiology, Universidad de Antioquia, Medellin, Antioquia, Colombia
| | - Juan F. Alzate
- Centro Nacional de Secuenciación Genómica—CNSG, Universidad de Antioquia, Medellin, Antioquia, Colombia
- Parasitology group, School of Medicine, Universidad de Antioquia, Medellin, Antioquia, Colombia
| |
Collapse
|
23
|
Bao J, Zheng H, Wang Y, Zheng X, He L, Qi W, Wang T, Guo B, Guo G, Zhang Z, Zhang W, Li J, McManus DP. Echinococcus granulosus Infection Results in an Increase in Eisenbergiella and Parabacteroides Genera in the Gut of Mice. Front Microbiol 2018; 9:2890. [PMID: 30555437 PMCID: PMC6281689 DOI: 10.3389/fmicb.2018.02890] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
Cystic echinococcosis (CE) is a chronic infectious disease caused by Echinococcus granulosus. To confirm whether the infection impacts on the gut microbiota, we established a mouse model of E. granulosus infection in this study whereby BALB/c mice were infected with micro-cysts of E. granulosus. After 4 months of infection, fecal samples were collected for high-throughput sequencing of the hypervariable regions of the 16S rRNA gene. Sequence analysis revealed a total of 13,353 operational taxonomic units (OTUs) with only 40.6% of the OTUs having genera reference information and 101 of the OTUs were significantly increased in infected mice. Bioinformatics analysis showed that the common core microbiota were not significantly changed at family level. However, two genera (Eisenbergiella and Parabacteroides) were enriched in the infected mice (P AMOV A < 0.05) at genus level. Functional analysis indicated that seven pathways were altered in the E. granulosus Infection Group compared with the Uninfected Group. Spearman correlation analysis showed strong correlations of IgG, IgG1 and IgG2a with nine major genera. E. granulosus cyst infection may change the gut microbiota which may be associated with metabolic pathways.
Collapse
Affiliation(s)
- Jianling Bao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,College of Public Health, Xinjiang Medical University, Urumqi, China
| | - Huajun Zheng
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China.,Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Yuezhu Wang
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
| | - Xueting Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Li He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wenjing Qi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tian Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Baoping Guo
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Gang Guo
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhaoxia Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,College of Public Health, Xinjiang Medical University, Urumqi, China
| | - Jun Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
24
|
Młocicki D, Sulima A, Bień J, Näreaho A, Zawistowska-Deniziak A, Basałaj K, Sałamatin R, Conn DB, Savijoki K. Immunoproteomics and Surfaceomics of the Adult Tapeworm Hymenolepis diminuta. Front Immunol 2018; 9:2487. [PMID: 30483248 PMCID: PMC6240649 DOI: 10.3389/fimmu.2018.02487] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022] Open
Abstract
In cestodiasis, mechanical and molecular contact between the parasite and the host activates the immune response of the host and may result in inflammatory processes, leading to ulceration and intestinal dysfunctions. The aim of the present study was to identify antigenic proteins of the adult cestode Hymenolepis diminuta by subjecting the total protein extracts from adult tapeworms to 2DE immunoblotting (two-dimensional electrophoresis combined with immunoblotting) using sera collected from experimentally infected rats. A total of 36 protein spots cross-reacting with the rat sera were identified using LC-MS/MS. As a result, 68 proteins, including certain structural muscle proteins (actin, myosin, and paramyosin) and moonlighters (heat shock proteins, kinases, phosphatases, and glycolytic enzymes) were identified; most of these were predicted to possess binding and/or catalytic activity required in various metabolic and cellular processes, and reported here as potential antigens of the adult cestode for the first time. As several of these antigens can also be found at the cell surface, the surface-associated proteins were extracted and subjected to in-solution digestion for LC-MS/MS identification (surfaceomics). As a result, a total of 76 proteins were identified, from which 31 proteins, based on 2DE immunoblotting, were predicted to be immunogenic. These included structural proteins actin, myosin and tubulin as well as certain moonlighting proteins (heat-shock chaperones) while enzymes with diverse catalytic activities were found as the most dominating group of proteins. In conclusion, the present study shed new light into the complexity of the enteric cestodiasis by showing that the H. diminuta somatic proteins exposed to the host possess immunomodulatory functions, and that the immune response of the host could be stimulated by diverse mechanisms, involving also those triggering protein export via yet unknown pathways.
Collapse
Affiliation(s)
- Daniel Młocicki
- Department of General Biology and ParasitologyMedical University of Warsaw, Warsaw, Poland
- Witold Stefański Institute of ParasitologyPolish Academy of Sciences, Warsaw, Poland
| | - Anna Sulima
- Department of General Biology and ParasitologyMedical University of Warsaw, Warsaw, Poland
| | - Justyna Bień
- Witold Stefański Institute of ParasitologyPolish Academy of Sciences, Warsaw, Poland
| | - Anu Näreaho
- Department of Veterinary BiosciencesUniversity of Helsinki, Helsinki, Finland
| | | | - Katarzyna Basałaj
- Witold Stefański Institute of ParasitologyPolish Academy of Sciences, Warsaw, Poland
| | - Rusłan Sałamatin
- Department of General Biology and ParasitologyMedical University of Warsaw, Warsaw, Poland
- Department of Parasitology and Vector-Borne DiseasesNational Institute of Public Health–National Institute of Hygiene, Warsaw, Poland
| | - David Bruce Conn
- Department of Invertebrate Zoology, Museum of Comparative Zoology, Harvard UniversityCambridge, MA, United States
- One Health Center, Berry CollegeMount Berry, GA, United States
| | - Kirsi Savijoki
- Division of Pharmaceutical BiosciencesUniversity of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Kapczuk P, Kosik-Bogacka D, Łanocha-Arendarczyk N, Gutowska I, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. Selected Molecular Mechanisms Involved in the Parasite⁻Host System Hymenolepis diminuta⁻Rattus norvegicus. Int J Mol Sci 2018; 19:ijms19082435. [PMID: 30126154 PMCID: PMC6121280 DOI: 10.3390/ijms19082435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 01/27/2023] Open
Abstract
The rat tapeworm Hymenolepis diminuta is a parasite of the small intestine of rodents (mainly mice and rats), and accidentally humans. It is classified as a non-invasive tapeworm due to the lack of hooks on the tapeworm’s scolex, which could cause mechanical damage to host tissues. However, many studies have shown that metabolites secreted by H. diminuta interfere with the functioning of the host’s gastrointestinal tract, causing an increase in salivary secretion, suppression of gastric acid secretion, and an increase in the trypsin activity in the duodenum chyme. Our work presents the biochemical and molecular mechanisms of a parasite-host interaction, including the influence on ion transport and host intestinal microflora, morphology and biochemical parameters of blood, secretion of antioxidant enzymes, expression of Toll-like receptors, mechanisms of immune response, as well as the expression and activity of cyclooxygenases. We emphasize the interrelations between the parasite and the host at the cellular level resulting from the direct impact of the parasite as well as host defense reactions that lead to changes in the host’s tissues and organs.
Collapse
Affiliation(s)
- Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Danuta Kosik-Bogacka
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24, 71-460 Szczecin, Poland.
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| |
Collapse
|
26
|
The benign helminth Hymenolepis diminuta ameliorates chemically induced colitis in a rat model system. Parasitology 2018; 145:1324-1335. [DOI: 10.1017/s0031182018000896] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractThe tapeworm Hymenolepis diminuta is a model for the impact of helminth colonization on the mammalian immune system and a candidate therapeutic agent for immune mediated inflammatory diseases (IMIDs). In mice, H. diminuta protects against models of inflammatory colitis by inducing a strong type 2 immune response that is activated to expel the immature worm. Rats are the definitive host of H. diminuta, and are colonized stably and over long time periods without harming the host. Rats mount a mild type 2 immune response to H. diminuta colonization, but this response does not generally ameliorate colitis. Here we investigate the ability of different life cycle stages of H. diminuta to protect rats against a model of colitis induced through application of the haptenizing agent dinitrobenzene sulphonic acid (DNBS) directly to the colon, and monitor rat clinical health, systemic inflammation measured by TNFα and IL-1β, and the gut microbiota. We show that immature H. diminuta induces a type 2 response as measured by increased IL-4, IL-13 and IL-10 expression, but does not protect against colitis. In contrast, rats colonized with mature H. diminuta and challenged with severe colitis (two applications of DNBS) have lower inflammation and less severe clinical symptoms. This effect is not related the initial type 2 immune response. The gut microbiota is disrupted during colitis and does not appear to play an overt role in H. diminuta-mediated protection.
Collapse
|
27
|
Leung JM, Graham AL, Knowles SCL. Parasite-Microbiota Interactions With the Vertebrate Gut: Synthesis Through an Ecological Lens. Front Microbiol 2018; 9:843. [PMID: 29867790 PMCID: PMC5960673 DOI: 10.3389/fmicb.2018.00843] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/12/2018] [Indexed: 12/14/2022] Open
Abstract
The vertebrate gut teems with a large, diverse, and dynamic bacterial community that has pervasive effects on gut physiology, metabolism, and immunity. Under natural conditions, these microbes share their habitat with a similarly dynamic community of eukaryotes (helminths, protozoa, and fungi), many of which are well-known parasites. Both parasites and the prokaryotic microbiota can dramatically alter the physical and immune landscape of the gut, creating ample opportunities for them to interact. Such interactions may critically alter infection outcomes and affect overall host health and disease. For instance, parasite infection can change how a host interacts with its bacterial flora, either driving or protecting against dysbiosis and inflammatory disease. Conversely, the microbiota can alter a parasite's colonization success, replication, and virulence, shifting it along the parasitism-mutualism spectrum. The mechanisms and consequences of these interactions are just starting to be elucidated in an emergent transdisciplinary area at the boundary of microbiology and parasitology. However, heterogeneity in experimental designs, host and parasite species, and a largely phenomenological and taxonomic approach to synthesizing the literature have meant that common themes across studies remain elusive. Here, we use an ecological perspective to review the literature on interactions between the prokaryotic microbiota and eukaryotic parasites in the vertebrate gut. Using knowledge about parasite biology and ecology, we discuss mechanisms by which they may interact with gut microbes, the consequences of such interactions for host health, and how understanding parasite-microbiota interactions may lead to novel approaches in disease control.
Collapse
Affiliation(s)
- Jacqueline M Leung
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | | |
Collapse
|
28
|
Associations between Gut Microbiota and Common Luminal Intestinal Parasites. Trends Parasitol 2018; 34:369-377. [DOI: 10.1016/j.pt.2018.02.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 02/08/2023]
|