1
|
Han Y, Zhou Z, Jin R, Dai F, Ge Y, Ju X, Ma X, He S, Yuan L, Wang Y, Yang W, Yue X, Chen Z, Sun Y, Corry B, Cox CD, Zhang Y. Mechanical activation opens a lipid-lined pore in OSCA ion channels. Nature 2024; 628:910-918. [PMID: 38570680 DOI: 10.1038/s41586-024-07256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
OSCA/TMEM63 channels are the largest known family of mechanosensitive channels1-3, playing critical roles in plant4-7 and mammalian8,9 mechanotransduction. Here we determined 44 cryogenic electron microscopy structures of OSCA/TMEM63 channels in different environments to investigate the molecular basis of OSCA/TMEM63 channel mechanosensitivity. In nanodiscs, we mimicked increased membrane tension and observed a dilated pore with membrane access in one of the OSCA1.2 subunits. In liposomes, we captured the fully open structure of OSCA1.2 in the inside-in orientation, in which the pore shows a large lateral opening to the membrane. Unusually for ion channels, structural, functional and computational evidence supports the existence of a 'proteo-lipidic pore' in which lipids act as a wall of the ion permeation pathway. In the less tension-sensitive homologue OSCA3.1, we identified an 'interlocking' lipid tightly bound in the central cleft, keeping the channel closed. Mutation of the lipid-coordinating residues induced OSCA3.1 activation, revealing a conserved open conformation of OSCA channels. Our structures provide a global picture of the OSCA channel gating cycle, uncover the importance of bound lipids and show that each subunit can open independently. This expands both our understanding of channel-mediated mechanotransduction and channel pore formation, with important mechanistic implications for the TMEM16 and TMC protein families.
Collapse
Affiliation(s)
- Yaoyao Han
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Aging Studies, Shanghai, China
| | - Zijing Zhou
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Ruitao Jin
- Research School of Biology, Australian National University, Acton, Australian Capital Territory, Australia
| | - Fei Dai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Aging Studies, Shanghai, China
| | - Yifan Ge
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xisan Ju
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Aging Studies, Shanghai, China
| | - Xiaonuo Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Aging Studies, Shanghai, China
| | - Sitong He
- Research School of Biology, Australian National University, Acton, Australian Capital Territory, Australia
| | - Ling Yuan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yingying Wang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Yang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaomin Yue
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongwen Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yadong Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ben Corry
- Research School of Biology, Australian National University, Acton, Australian Capital Territory, Australia.
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia.
- School of Biomedical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
| | - Yixiao Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Satasiya P, Patel S, Patel R, Raigar OP, Modha K, Parekh V, Joshi H, Patel V, Chaudhary A, Sharma D, Prajapati M. Meta-analysis of identified genomic regions and candidate genes underlying salinity tolerance in rice (Oryza sativa L.). Sci Rep 2024; 14:5730. [PMID: 38459066 PMCID: PMC10923909 DOI: 10.1038/s41598-024-54764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
Rice output has grown globally, yet abiotic factors are still a key cause for worry. Salinity stress seems to have the more impact on crop production out of all abiotic stresses. Currently one of the most significant challenges in paddy breeding for salinity tolerance with the help of QTLs, is to determine the QTLs having the best chance of improving salinity tolerance with the least amount of background noise from the tolerant parent. Minimizing the size of the QTL confidence interval (CI) is essential in order to primarily include the genes responsible for salinity stress tolerance. By considering that, a genome-wide meta-QTL analysis on 768 QTLs from 35 rice populations published from 2001 to 2022 was conducted to identify consensus regions and the candidate genes underlying those regions responsible for the salinity tolerance, as it reduces the confidence interval (CI) to many folds from the initial QTL studies. In the present investigation, a total of 65 MQTLs were extracted with an average CI reduced from 17.35 to 1.66 cM including the smallest of 0.01 cM. Identification of the MQTLs for individual traits and then classifying the target traits into correlated morphological, physiological and biochemical aspects, resulted in more efficient interpretation of the salinity tolerance, identifying the candidate genes and to understand the salinity tolerance mechanism as a whole. The results of this study have a huge potential to improve the rice genotypes for salinity tolerance with the help of MAS and MABC.
Collapse
Affiliation(s)
- Pratik Satasiya
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Sanyam Patel
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Ritesh Patel
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Om Prakash Raigar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Kaushal Modha
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Vipul Parekh
- Department of Biotechnology, College of Forestry, Navsari Agricultural University, Navsari, Gujarat, India
| | - Haimil Joshi
- Coastal Soil Salinity Research Station Danti-Umbharat, Navsari Agricultural University, Navsari, Gujarat, India
| | - Vipul Patel
- Regional Rice Research Station, Vyara, Navsari Agricultural University, Navsari, Gujarat, India
| | - Ankit Chaudhary
- Kishorbhai Institute of Agriculture Sciences and Research Centre, Uka Tarsadia University, Bardoli, Gujarat, India.
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| | - Maulik Prajapati
- Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India
| |
Collapse
|
3
|
Rajkumari N, Chowrasia S, Nishad J, Ganie SA, Mondal TK. Metabolomics-mediated elucidation of rice responses to salt stress. PLANTA 2023; 258:111. [PMID: 37919614 DOI: 10.1007/s00425-023-04258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/01/2023] [Indexed: 11/04/2023]
Abstract
MAIN CONCLUSION Role of salinity responsive metabolites of rice and its wild species has been discussed. Salinity stress is one of the important environmental stresses that severely affects rice productivity. Although, several vital physio-biochemical and molecular responses have been activated in rice under salinity stress which were well described in literatures, the mechanistic role of salt stress and microbes-induced metabolites to overcome salt stress in rice are less studied. Nevertheless, over the years, metabolomic studies have allowed a comprehensive analyses of rice salt stress responses. Hence, we review the salt stress-triggered alterations of various metabolites in rice and discuss their significant roles toward salinity tolerance. Some of the metabolites such as serotonin, salicylic acid, ferulic acid and gentisic acid may act as signaling molecules to activate different downstream salt-tolerance mechanisms; whereas, the other compounds such as amino acids, sugars and organic acids directly act as protective agents to maintain osmotic balance and scavenger of reactive oxygen species during the salinity stress. The quantity, type, tissues specificity and time of accumulation of metabolites induced by salinity stress vary between salt-sensitive and tolerant rice genotypes and thus, contribute to their different degrees of salt tolerance. Moreover, few tolerance metabolites such as allantoin, serotonin and melatonin induce unique pathways for activation of defence mechanisms in salt-tolerant varieties of rice, suggesting their potential roles as the universal biomarkers for salt tolerance. Therefore, these metabolites can be applied exogenously to the sensitive genotypes of rice to enhance their performance under salt stress. Furthermore, the microbes of rhizosphere also participated in rice salt tolerance either directly or indirectly by regulating their metabolic pathways. Thus, this review for the first time offers valuable and comprehensive insights into salt-induced spatio-temporal and genotype-specific metabolites in different genotypes of rice which provide a reference point to analyze stress-gene-metabolite relationships for the biomarker designing in rice. Further, it can also help to decipher several metabolic systems associated with salt tolerance in rice which will be useful in developing salt-tolerance cultivars by conventional breeding/genetic engineering/exogenous application of metabolites.
Collapse
Affiliation(s)
- Nitasana Rajkumari
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, 110012, India
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Soni Chowrasia
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, 110012, India
- Department of Bioscience and Biotechnology, Banastahli Vidyapith, Tonk, Rajasthan, 304022, India
| | - Jyoti Nishad
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, 110012, India
| | - Showkat Ahmad Ganie
- Plant Molecular Sciences and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, Surrey, UK
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, 110012, India.
| |
Collapse
|
4
|
Abd El Moneim D, Mansour H, Alshegaihi RM, Safhi FA, Alwutayd KM, Alshamrani R, Alamri A, Felembam W, Abuzaid AO, Magdy M. Evolutionary insights and expression dynamics of the CaNFYB transcription factor gene family in pepper ( Capsicum annuum) under salinity stress. Front Genet 2023; 14:1288453. [PMID: 38028611 PMCID: PMC10652888 DOI: 10.3389/fgene.2023.1288453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: The Capsicum annuum nuclear factor Y subunit B (CaNFYB) gene family plays a significant role in diverse biological processes, including plant responses to abiotic stressors such as salinity. Methods: In this study, we provide a comprehensive analysis of the CaNFYB gene family in pepper, encompassing their identification, structural details, evolutionary relationships, regulatory elements in promoter regions, and expression profiles under salinity stress. Results and discussion: A total of 19 CaNFYB genes were identified and subsequently characterized based on their secondary protein structures, revealing conserved domains essential for their functionality. Chromosomal distribution showed a non-random localization of these genes, suggesting potential clusters or hotspots for NFYB genes on specific chromosomes. The evolutionary analysis focused on pepper and comparison with other plant species indicated a complex tapestry of relationships with distinct evolutionary events, including gene duplication. Moreover, promoter cis-element analysis highlighted potential regulatory intricacies, with notable occurrences of light-responsive and stress-responsive binding sites. In response to salinity stress, several CaNFYB genes demonstrated significant temporal expression variations, particularly in the roots, elucidating their role in stress adaptation. Particularly CaNFYB01, CaNFYB18, and CaNFYB19, play a pivotal role in early salinity stress response, potentially through specific regulatory mechanisms elucidated by their cis-elements. Their evolutionary clustering with other Solanaceae family members suggests conserved ancestral functions vital for the family's survival under stress. This study provides foundational knowledge on the CaNFYB gene family in C. annuum, paving the way for further research to understand their functional implications in pepper plants and relative species and their potential utilization in breeding programs to enhance salinity tolerance.
Collapse
Affiliation(s)
- Diaa Abd El Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Hassan Mansour
- Department of Biological Sciences, Faculty of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Rana M. Alshegaihi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatmah Ahmed Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Rahma Alshamrani
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amnah Alamri
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wessam Felembam
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amani Omar Abuzaid
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Magdy
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Dong W, Tu J, Deng W, Zhang J, Xu Y, Gu A, An H, Fan K, Wang R, Zhang J, Kui L, Li X. Genome-wide identification of DUF506 gene family in Oryzasativa and expression profiling under abiotic stresses. PeerJ 2023; 11:e16168. [PMID: 37790624 PMCID: PMC10544316 DOI: 10.7717/peerj.16168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/03/2023] [Indexed: 10/05/2023] Open
Abstract
The domain of unknown function 560 (DUF560), also known as the PDDEXK_6 family, is a ubiquitous plant protein that has been confirmed to play critical roles in Arabidopsis root development as well as ABA and abiotic responses. However, genome-wide identification and expression pattern analysis in rice (Oryza sativa) still need to be improved. Based on the phylogenetic relationship, 10 OsDUF506 genes were identified and classified into four subfamilies. Segmental duplication was essential to the expansion of OsDUF506s, which were subjected to purifying selective pressure. Except for OsDUF50609 and OsDUF50610, the OsDUF506s shared colinear gene pairs with five monocot species, showing that they were conserved in evolution. Furthermore, the conserved domains, gene structures, SNPs distribution, and targeting miRNAs were systematically investigated. Massive cis-regulatory elements were discovered in promoter regions, implying that OsDUF506s may be important in hormone regulation and abiotic stress response. Therefore, we analyzed plant hormone-induced transcriptome data and performed qRT-PCR on eight OsDUF506s under drought, cold, and phosphorus-deficient stresses. The results revealed that most OsDUF506s respond to ABA and JA treatment, as well as drought and cold conditions. In conclusion, our findings provided insights into the evolution and function of OsDUF506s, which could benefit crop breeding in the future.
Collapse
Affiliation(s)
- Wei Dong
- Yunnan Academy of Agricultural Sciences, Food Crops Research Institute, Kunming, China
| | - Jian Tu
- Yunnan Academy of Agricultural Sciences, Food Crops Research Institute, Kunming, China
| | - Wei Deng
- Yunnan Academy of Agricultural Sciences, Food Crops Research Institute, Kunming, China
| | - Jianhua Zhang
- Yunnan Academy of Agricultural Sciences, Food Crops Research Institute, Kunming, China
| | - Yuran Xu
- Yunnan Academy of Agricultural Sciences, Food Crops Research Institute, Kunming, China
| | - Anyu Gu
- Yunnan Academy of Agricultural Sciences, Food Crops Research Institute, Kunming, China
| | - Hua An
- Yunnan Academy of Agricultural Sciences, Food Crops Research Institute, Kunming, China
| | - Kui Fan
- Yunnan Grain Industry Group Co., Ltd, Kunming, China
| | - Rui Wang
- Yunnan Grain Industry Group Co., Ltd, Kunming, China
| | | | - Limei Kui
- Yunnan Academy of Agricultural Sciences, Food Crops Research Institute, Kunming, China
| | - Xiaolin Li
- Yunnan Academy of Agricultural Sciences, Food Crops Research Institute, Kunming, China
| |
Collapse
|
6
|
Raza Q, Rashid MAR, Waqas M, Ali Z, Rana IA, Khan SH, Khan IA, Atif RM. Genomic diversity of aquaporins across genus Oryza provides a rich genetic resource for development of climate resilient rice cultivars. BMC PLANT BIOLOGY 2023; 23:172. [PMID: 37003962 PMCID: PMC10064747 DOI: 10.1186/s12870-023-04151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Plant aquaporins are critical genetic players performing multiple biological functions, especially climate resilience and water-use efficiency. Their genomic diversity across genus Oryza is yet to be explored. RESULTS This study identified 369 aquaporin-encoding genes from 11 cultivated and wild rice species and further categorized these into four major subfamilies, among which small basic intrinsic proteins are speculated to be ancestral to all land plant aquaporins. Evolutionarily conserved motifs in peptides of aquaporins participate in transmembrane transport of materials and their relatively complex gene structures provide an evolutionary playground for regulation of genome structure and transcription. Duplication and evolution analyses revealed higher genetic conservation among Oryza aquaporins and strong purifying selections are assisting in conserving the climate resilience associated functions. Promoter analysis highlighted enrichment of gene upstream regions with cis-acting regulatory elements involved in diverse biological processes, whereas miRNA target site prediction analysis unveiled substantial involvement of osa-miR2102-3p, osa-miR2927 and osa-miR5075 in post-transcriptional regulation of gene expression patterns. Moreover, expression patterns of japonica aquaporins were significantly perturbed in response to different treatment levels of six phytohormones and four abiotic stresses, suggesting their multifarious roles in plants survival under stressed environments. Furthermore, superior haplotypes of seven conserved orthologous aquaporins for higher thousand-grain weight are reported from a gold mine of 3,010 sequenced rice pangenomes. CONCLUSIONS This study unveils the complete genomic atlas of aquaporins across genus Oryza and provides a comprehensive genetic resource for genomics-assisted development of climate-resilient rice cultivars.
Collapse
Affiliation(s)
- Qasim Raza
- Precision Agriculture and Analytics Lab, Centre for Advanced Studies in Agriculture and Food Security, National Centre in Big Data and Cloud Computing, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Muhammad Waqas
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zulfiqar Ali
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Iqrar Ahmad Rana
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sultan Habibullah Khan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Iqrar Ahmad Khan
- Precision Agriculture and Analytics Lab, Centre for Advanced Studies in Agriculture and Food Security, National Centre in Big Data and Cloud Computing, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Rana Muhammad Atif
- Precision Agriculture and Analytics Lab, Centre for Advanced Studies in Agriculture and Food Security, National Centre in Big Data and Cloud Computing, University of Agriculture Faisalabad, Faisalabad, Pakistan.
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| |
Collapse
|
7
|
Zhang X, Cheng X, Zhang C, Ma X, Zhang Y, Song J, Xie M. Genome-wide analysis of hyperosmolality-gated calcium-permeable channel (OSCA) family members and their involvement in various osmotic stresses in Brassica napus. Gene 2023; 856:147137. [PMID: 36574938 DOI: 10.1016/j.gene.2022.147137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022]
Abstract
Plant hyperosmolality-gated calcium-permeable channel (OSCA) is a calcium permeable cation channel that responds to hyperosmotic stress and plays a pivotal role in plant growth, development and stress response. Through a genome-wide survey, 41 OSCA genes were identified from the genome of Brassica napus. The OSCA family genes were unevenly distributed over 14 chromosomes of B. napus and phylogenetic analysis separated the OSCA family into four clades. Motif analyses indicated that OSCA proteins in the same clade were highly conserved and the protein conserved motifs shared similar composition patterns. The OSCA promoter regions contained many hormone-related elements and stress response elements. Gene duplication analysis elucidated that WGD/segmental duplication was the main driving force for the expansion of OSCA genes during evolution and these genes mainly underwent purifying selection. RNA-seq and qRT-PCR analysis of different tissues showed that OSCA genes are expressed and function mainly in the root. Among these genes, BnOSCA3.1a and BnOSCA3.1c had relatively high expression levels under osmotic stresses and cold stress and were highly expressed in different tissues. Protein interaction network analysis showed that a total of 5802 proteins might interact with OSCAs in B. napus, while KEGG/GO enrichment analysis indicated that OSCAs and their interacting proteins were mainly involved in plant response to abiotic stress. This systematic analysis of the OSCAs in B. napus identified gene structures, evolutionary features, expression patterns and related biological processes. These findings will facilitate further functional and evolutionary analysis of OSCAs in B. napus for breeding of osmotic-stress-resistant plants.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China; Shaanxi Province Key Laboratory of Bio-resources, Hanzhong 723001, Shaanxi, China; Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Hanzhong 723001, Shaanxi, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723001, Shaanxi, China
| | - Xiaohui Cheng
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430000, China
| | - Chenlu Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
| | - Xiuqi Ma
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
| | - Yu Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China.
| | - Jianmin Song
- Shaanxi Province Key Laboratory of Bio-resources, Hanzhong 723001, Shaanxi, China.
| | - Meili Xie
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430000, China.
| |
Collapse
|
8
|
Genomewide identification and analysis of the OSCA gene family in barley (Hordeum vulgare L.). J Genet 2022. [DOI: 10.1007/s12041-022-01375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
9
|
Ahmad M. Genomics and transcriptomics to protect rice ( Oryza sativa. L.) from abiotic stressors: -pathways to achieving zero hunger. FRONTIERS IN PLANT SCIENCE 2022; 13:1002596. [PMID: 36340401 PMCID: PMC9630331 DOI: 10.3389/fpls.2022.1002596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
More over half of the world's population depends on rice as a major food crop. Rice (Oryza sativa L.) is vulnerable to abiotic challenges including drought, cold, and salinity since it grown in semi-aquatic, tropical, or subtropical settings. Abiotic stress resistance has bred into rice plants since the earliest rice cultivation techniques. Prior to the discovery of the genome, abiotic stress-related genes were identified using forward genetic methods, and abiotic stress-tolerant lines have developed using traditional breeding methods. Dynamic transcriptome expression represents the degree of gene expression in a specific cell, tissue, or organ of an individual organism at a specific point in its growth and development. Transcriptomics can reveal the expression at the entire genome level during stressful conditions from the entire transcriptional level, which can be helpful in understanding the intricate regulatory network relating to the stress tolerance and adaptability of plants. Rice (Oryza sativa L.) gene families found comparatively using the reference genome sequences of other plant species, allowing for genome-wide identification. Transcriptomics via gene expression profiling which have recently dominated by RNA-seq complements genomic techniques. The identification of numerous important qtl,s genes, promoter elements, transcription factors and miRNAs involved in rice response to abiotic stress was made possible by all of these genomic and transcriptomic techniques. The use of several genomes and transcriptome methodologies to comprehend rice (Oryza sativa, L.) ability to withstand abiotic stress have been discussed in this review.
Collapse
Affiliation(s)
- Mushtaq Ahmad
- Visiting Scientist Plant Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
10
|
Tomar S, Subba A, Bala M, Singh AK, Pareek A, Singla-Pareek SL. Genetic Conservation of CBS Domain Containing Protein Family in Oryza Species and Their Association with Abiotic Stress Responses. Int J Mol Sci 2022; 23:ijms23031687. [PMID: 35163610 PMCID: PMC8836131 DOI: 10.3390/ijms23031687] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
Crop Wild Relatives (CWRs) form a comprehensive gene pool that can answer the queries related to plant domestication, speciation, and ecological adaptation. The genus ‘Oryza’ comprises about 27 species, of which two are cultivated, while the remaining are wild. Here, we have attempted to understand the conservation and diversification of the genes encoding Cystathionine β-synthase (CBS) domain-containing proteins (CDCPs) in domesticated and CWRs of rice. Few members of CDCPs were previously identified to be stress-responsive and associated with multiple stress tolerance in rice. Through genome-wide analysis of eleven rice genomes, we identified a total of 36 genes encoding CDCPs in O. longistaminata, 38 in O. glaberrima, 39 each in O. rufipogon, O. glumaepatula, O. brachyantha, O. punctata, and O. sativa subsp. japonica, 40 each in O. barthii and O. meridionalis, 41 in O. nivara, and 42 in O. sativa subsp. indica. Gene duplication analysis as well as non-synonymous and synonymous substitutions in the duplicated gene pairs indicated that this family is shaped majorly by the negative or purifying selection pressure through the long-term evolution process. We identified the presence of two additional hetero-domains, namely TerCH and CoatomerE (specifically in O. sativa subsp. indica), which were not reported previously in plant CDCPs. The in silico expression analysis revealed some of the members to be responsive to various abiotic stresses. Furthermore, the qRT-PCR based analysis identified some members to be highly inducive specifically in salt-tolerant genotype in response to salinity. The cis-regulatory element analysis predicted the presence of numerous stress as well as a few phytohormone-responsive elements in their promoter region. The data presented in this study would be helpful in the characterization of these CDCPs from rice, particularly in relation to abiotic stress tolerance.
Collapse
Affiliation(s)
- Surabhi Tomar
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.T.); (A.S.)
| | - Ashish Subba
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.T.); (A.S.)
| | - Meenu Bala
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi 834010, India; (M.B.); (A.K.S.)
| | - Anil Kumar Singh
- School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi 834010, India; (M.B.); (A.K.S.)
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi 110012, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India;
- National Agri-Food Biotechnology Institute, Mohali 140306, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.T.); (A.S.)
- Correspondence:
| |
Collapse
|
11
|
Lohani N, Singh MB, Bhalla PL. Biological Parts for Engineering Abiotic Stress Tolerance in Plants. BIODESIGN RESEARCH 2022; 2022:9819314. [PMID: 37850130 PMCID: PMC10521667 DOI: 10.34133/2022/9819314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2023] Open
Abstract
It is vital to ramp up crop production dramatically by 2050 due to the increasing global population and demand for food. However, with the climate change projections showing that droughts and heatwaves becoming common in much of the globe, there is a severe threat of a sharp decline in crop yields. Thus, developing crop varieties with inbuilt genetic tolerance to environmental stresses is urgently needed. Selective breeding based on genetic diversity is not keeping up with the growing demand for food and feed. However, the emergence of contemporary plant genetic engineering, genome-editing, and synthetic biology offer precise tools for developing crops that can sustain productivity under stress conditions. Here, we summarize the systems biology-level understanding of regulatory pathways involved in perception, signalling, and protective processes activated in response to unfavourable environmental conditions. The potential role of noncoding RNAs in the regulation of abiotic stress responses has also been highlighted. Further, examples of imparting abiotic stress tolerance by genetic engineering are discussed. Additionally, we provide perspectives on the rational design of abiotic stress tolerance through synthetic biology and list various bioparts that can be used to design synthetic gene circuits whose stress-protective functions can be switched on/off in response to environmental cues.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
12
|
Safder I, Shao G, Sheng Z, Hu P, Tang S. Genome-wide identification studies - A primer to explore new genes in plant species. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:9-22. [PMID: 34558163 DOI: 10.1111/plb.13340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Genome data have accumulated rapidly in recent years, doubling roughly after every 6 months due to the influx of next-generation sequencing technologies. A plethora of plant genomes are available in comprehensive public databases. This easy access to data provides an opportunity to explore genome datasets and recruit new genes in various plant species not possible a decade ago. In the past few years, many gene families have been published using these public datasets. These genome-wide studies identify and characterize gene members, gene structures, evolutionary relationships, expression patterns, protein interactions and gene ontologies, and predict putative gene functions using various computational tools. Such studies provide meaningful information and an initial framework for further functional elucidation. This review provides a concise layout of approaches used in these gene family studies and demonstrates an outline for employing various plant genome datasets in future studies.
Collapse
Affiliation(s)
- I Safder
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China
| | - G Shao
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China
| | - Z Sheng
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China
| | - P Hu
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China
| | - S Tang
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
13
|
Yang W, Chen L, Zhao J, Wang J, Li W, Yang T, Dong J, Ma Y, Zhou L, Chen J, Wu W, Zhang S, Liu B. Genome-Wide Association Study of Pericarp Color in Rice Using Different Germplasm and Phenotyping Methods Reveals Different Genetic Architectures. FRONTIERS IN PLANT SCIENCE 2022; 13:841191. [PMID: 35356125 PMCID: PMC8959774 DOI: 10.3389/fpls.2022.841191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 05/08/2023]
Abstract
Pericarp colors (PC) in rice are determined by the types and content of flavonoids in the pericarp. The flavonoid compounds have strong antioxidant activities and are beneficial to human health. However, the genetic basis of PC in rice is still not well-understood. In this study, a genome-wide association study (GWAS) of PC was performed in a diverse rice collection consisting of 442 accessions using different phenotyping methods in two locations over 2 years. In the whole population consisting of white and colored pericarp rice, a total of 11 quantitative trait loci (QTLs) were identified using two phenotyping methods. Among these QTLs, nine were identified using the phenotypes represented by the presence and absence of pigmentation in pericarp, while 10 were identified using phenotypes of the degree of PC (DPC), in which eight are common QTLs identified using the two phenotyping methods. Using colored rice accessions and phenotypes based on DPC, four QTLs were identified, and they were totally different from the QTLs identified using the whole population, suggesting the masking effects of major genes on minor genes. Compared with the previous studies, 10 out of the 15 QTLs are first reported in this study. Based on the differential expression analysis of the predicted genes within the QTL region by both RNA-seq and real-time PCR (RT-PCR) and the gene functions in previous studies, LOC_Os01g49830, encoding a RAV transcription factor was considered as the candidate gene underlying qPC-1, a novel QTL with a large effect in this study. Our results provide a new insight into the genetic basis of PC in rice and contribute to developing the value-added rice with optimized flavonoid content through molecular breeding.
Collapse
Affiliation(s)
- Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Luo Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Wenhui Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Jiansong Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Wei Wu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- *Correspondence: Shaohong Zhang,
| | - Bin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- Bin Liu,
| |
Collapse
|
14
|
Poudel HP, Tilhou NW, Sanciangco MD, Vaillancourt B, Kaeppler SM, Buell CR, Casler MD. Genetic loci associated with winter survivorship in diverse lowland switchgrass populations. THE PLANT GENOME 2021; 14:e20159. [PMID: 34661986 DOI: 10.1002/tpg2.20159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
High winter mortality limits biomass yield of lowland switchgrass (Panicum virgatum L.) planted in the northern latitudes of North America. Breeding of cold tolerant switchgrass cultivars requires many years due to its perennial growth habit and the unpredictable winter selection pressure that is required to identify winter-hardy individuals. Identification of causal genetic variants for winter survivorship would accelerate the improvement of switchgrass biomass production. The objective of this study was to identify allelic variation associated with winter survivorship in lowland switchgrass populations using bulk segregant analysis (BSA). Twenty-nine lowland switchgrass populations were evaluated for winter survival at two locations in southern Wisconsin and 21 populations with differential winter survivorship were used for BSA. A maximum of 10% of the individuals (8-20) were bulked to create survivor and nonsurvivor DNA pools from each population and location. The DNA pools were evaluated using exome capture sequencing, and allele frequencies were used to conduct statistical tests. The BSA tests revealed nine quatitative trait loci (QTL) from tetraploid populations and seven QTL from octoploid populations. Many QTL were population-specific, but some were identified in multiple populations that originated across a broad geographic landscape. Four QTL (at positions 88 Mb on chromosome 2N, 115 Mb on chromosome 5K, and 1 and 100 Mb on chromosome 9N) were potentially the most useful QTL. Markers associated with winter survivorship in this study can be used to accelerate breeding cycles of lowland switchgrass populations and should lead to improvements in adaptation within USDA hardiness zones 4 and 5.
Collapse
Affiliation(s)
- Hari P Poudel
- Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Neal W Tilhou
- Dep. of Agronomy, Univ. of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | - C Robin Buell
- Dep. of Plant Biology, Michigan State Univ., East Lansing, MI, USA
| | | |
Collapse
|
15
|
Zhao J, Wang P, Gao W, Long Y, Wang Y, Geng S, Su X, Jiao Y, Chen Q, Qu Y. Genome-wide identification of the DUF668 gene family in cotton and expression profiling analysis of GhDUF668 in Gossypium hirsutum under adverse stress. BMC Genomics 2021; 22:395. [PMID: 34044774 PMCID: PMC8162019 DOI: 10.1186/s12864-021-07716-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background Domain of unknown function 668 (DUF668) may play a crucial role in the plant growth and developmental response to adverse stress. However, our knowledge of the function of the DUF668 gene family is limited. Results Our study was conducted based on the DUF668 gene family identified from cotton genome sequencing. Phylogenetic analysis showed that the DUF668 family genes can be classified into four subgroups in cotton. We identified 32 DUF668 genes, which are distributed on 17 chromosomes and most of them located in the nucleus of Gossypium hirsutum. Gene structure and motif analyses revealed that the members of the DUF668 gene family can be clustered in G. hirsutum into two broad groups, which are relatively evolutionarily conserved. Transcriptome data analysis showed that the GhDUF668 genes are differentially expressed in different tissues under various stresses (cold, heat, drought, salt, and Verticillium dahliae), and expression is generally increased in roots and stems. Promoter and expression analyses indicated that Gh_DUF668–05, Gh_DUF668–08, Gh_DUF668–11, Gh_DUF668–23 and Gh_DUF668–28 in G. hirsutum might have evolved resistance to adverse stress. Additionally, qRT-PCR revealed that these 5 genes in four cotton lines, KK1543 (drought resistant), Xinluzao 26 (drought sensitive), Zhongzhimian 2 (disease resistant) and Simian 3 (susceptible), under drought and Verticillium wilt stress were all significantly induced. Roots had the highest expression of these 5 genes before and after the treatment. Among them, the expression levels of Gh_DUF668–08 and Gh_DUF668–23 increased sharply at 6 h and reached a maximum at 12 h under biotic and abiotic stress, which showed that they might be involved in the process of adverse stress resistance in cotton. Conclusion The significant changes in GhDUF668 expression in the roots after adverse stress indicate that GhDUF668 is likely to increase plant resistance to stress. This study provides an important theoretical basis for further research on the function of the DUF668 gene family and the molecular mechanism of adverse stress resistance in cotton. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07716-w.
Collapse
Affiliation(s)
- Jieyin Zhao
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Peng Wang
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Wenju Gao
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Yilei Long
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Yuxiang Wang
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Shiwei Geng
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Xuening Su
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Yang Jiao
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Yanying Qu
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China.
| |
Collapse
|
16
|
Jain P, Hussian S, Nishad J, Dubey H, Bisht DS, Sharma TR, Mondal TK. Identification and functional prediction of long non-coding RNAs of rice (Oryza sativa L.) at reproductive stage under salinity stress. Mol Biol Rep 2021; 48:2261-2271. [PMID: 33742326 DOI: 10.1007/s11033-021-06246-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/20/2021] [Indexed: 11/28/2022]
Abstract
Salinity adversely affects the yield and growth of rice (Oryza sativa L.) plants severely, particularly at reproductive stage. Long non-coding RNAs (lncRNAs) are key regulators of diverse molecular and cellular processes in plants. Till now, no systematic study has been reported for regulatory roles of lncRNAs in rice under salinity at reproductive stage. In this study, total 80 RNA-seq data of Horkuch (salt-tolerant) and IR-29 (salt-sensitive) genotypes of rice were used and found 1626 and 2208 transcripts as putative high confidence lncRNAs, among which 1529 and 2103 were found to be novel putative lncRNAs in root and leaf tissue respectively. In Horkuch and IR-29, 14 and 16 lncRNAs were differentially expressed in root tissue while 18 and 63 lncRNAs were differentially expressed in leaf tissue. Interaction analysis among the lncRNAs, miRNAs and corresponding mRNAs indicated that these modules are involved in different biochemical pathways e.g. phenyl propanoid pathway during salinity stress in rice. Interestingly, two differentially expressed lncRNAs such as TCONS_00008914 and TCONS_00008749 were found as putative target mimics of known rice miRNAs. This study indicates that lncRNAs are involved in salinity adaptation of rice at reproductive stage through certain biochemical pathways.
Collapse
Affiliation(s)
- Priyanka Jain
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Samreen Hussian
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Jyoti Nishad
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Himanshu Dubey
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Deepak Singh Bisht
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Tilak Raj Sharma
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Tapan Kumar Mondal
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India.
| |
Collapse
|
17
|
Ganie SA, Ahammed GJ. Dynamics of cell wall structure and related genomic resources for drought tolerance in rice. PLANT CELL REPORTS 2021; 40:437-459. [PMID: 33389046 DOI: 10.1007/s00299-020-02649-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/04/2020] [Indexed: 05/03/2023]
Abstract
Cell wall plasticity plays a very crucial role in vegetative and reproductive development of rice under drought and is a highly potential trait for improving rice yield under drought. Drought is a major constraint in rice (Oryza sativa L.) cultivation severely affecting all developmental stages, with the reproductive stage being the most sensitive. Rice plants employ multiple strategies to cope with drought, in which modification in cell wall dynamics plays a crucial role. Over the years, significant progress has been made in discovering the cell wall-specific genomic resources related to drought tolerance at vegetative and reproductive stages of rice. However, questions remain about how the drought-induced changes in cell wall made by these genomic resources potentially influence the vegetative and reproductive development of rice. The possibly major candidate genes underlying the function of quantitative trait loci directly or indirectly associated with the cell wall plasticization-mediated drought tolerance of rice might have a huge promise in dissecting the putative genomic regions associated with cell wall plasticity under drought. Furthermore, engineering the drought tolerance of rice using cell wall-related genes from resurrection plants may have huge prospects for rice yield improvement. Here, we review the comprehensive multidisciplinary analyses to unravel different components and mechanisms involved in drought-induced cell wall plasticity at vegetative and reproductive stages that could be targeted for improving rice yield under drought.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Department of Biotechnology, Visva-Bharati, Santiniketan, West Bengal, 731235, India.
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
18
|
Waseem M, Aslam MM, Shaheen I. The DUF221 domain-containing (DDP) genes identification and expression analysis in tomato under abiotic and phytohormone stress. GM CROPS & FOOD 2021; 12:586-599. [PMID: 34379048 PMCID: PMC8820248 DOI: 10.1080/21645698.2021.1962207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The domain of unknown function (DUF221 domain-containing) proteins regulates various aspects of plant growth, development, responses to abiotic stresses, and hormone transduction pathways. To understand the role of DDP proteins in tomato, a comprehensive genome-wide analysis was performed in the tomato genome. A total of 12 DDP genes were identified and distributed in 8 chromosomes in the tomato genome. Phylogenetically all SlDDPs were clustered into four clades, subsequently supported by their gene structure and conserved motifs distribution. The SlDDPs contained various cis-acting elements involved in plant responses to abiotic and various phytohormones stresses. The tissue-specific expression profile analysis revealed the constitutive expression of SlDDPs in roots, leaves, and developmental phases of fruit. It was found that SlDDP1, SlDDP3, SlDDP4, SlDDP9, SlDDP10, and SlDDP12 exhibited high expression levels in fruits at different development stages. Of these genes, SlDDP12 contained ethylene (ERE) responsive elements in their promoter regions, suggesting its role in ethylene-dependent fruit ripening. It was found that a single SlDDP induced by two or more abiotic and phytohormone stresses. These include, SlDDP1, SlDDP2, SlDDP3, SlDDP4, SlDDP7, SlDDP8, and SlDDP10 was induced under salt, drought, ABA, and IAA stresses. Moreover, tomato SlDDPs were targeted by multiple miRNA gene families as well. In conclusion, this study predicted that the putative DDP genes might help improve abiotic and phytohormone tolerance in plants, particularly tomato, rice, and other economically important crop plant species.
Collapse
Affiliation(s)
- Muhammad Waseem
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | | | - Iffat Shaheen
- Faculty of Agriculture Science and Technology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
19
|
Li C, Hou D, Zhang L, Li X, Fan J, Dong Y, Zhu J, Huang Z, Xu Z, Li L. Molecular characterization and function analysis of the rice OsDUF617 family. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1934541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Chunliu Li
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Dejia Hou
- Department of Physics, College of Science, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Lin Zhang
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xiaohong Li
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jiangbo Fan
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yilun Dong
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jianqing Zhu
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Zhengjian Huang
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Zhengjun Xu
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, PR China
| | - Lihua Li
- Rice Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, PR China
| |
Collapse
|
20
|
Thor K, Jiang S, Michard E, George J, Scherzer S, Huang S, Dindas J, Derbyshire P, Leitão N, DeFalco TA, Köster P, Hunter K, Kimura S, Gronnier J, Stransfeld L, Kadota Y, Bücherl CA, Charpentier M, Wrzaczek M, MacLean D, Oldroyd GED, Menke FLH, Roelfsema MRG, Hedrich R, Feijó J, Zipfel C. The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature 2020; 585:569-573. [PMID: 32846426 DOI: 10.1038/s41586-020-2702-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/19/2020] [Indexed: 12/25/2022]
Abstract
Perception of biotic and abiotic stresses often leads to stomatal closure in plants1,2. Rapid influx of calcium ions (Ca2+) across the plasma membrane has an important role in this response, but the identity of the Ca2+ channels involved has remained elusive3,4. Here we report that the Arabidopsis thaliana Ca2+-permeable channel OSCA1.3 controls stomatal closure during immune signalling. OSCA1.3 is rapidly phosphorylated upon perception of pathogen-associated molecular patterns (PAMPs). Biochemical and quantitative phosphoproteomics analyses reveal that the immune receptor-associated cytosolic kinase BIK1 interacts with and phosphorylates the N-terminal cytosolic loop of OSCA1.3 within minutes of treatment with the peptidic PAMP flg22, which is derived from bacterial flagellin. Genetic and electrophysiological data reveal that OSCA1.3 is permeable to Ca2+, and that BIK1-mediated phosphorylation on its N terminus increases this channel activity. Notably, OSCA1.3 and its phosphorylation by BIK1 are critical for stomatal closure during immune signalling, and OSCA1.3 does not regulate stomatal closure upon perception of abscisic acid-a plant hormone associated with abiotic stresses. This study thus identifies a plant Ca2+ channel and its activation mechanisms underlying stomatal closure during immune signalling, and suggests specificity in Ca2+ influx mechanisms in response to different stresses.
Collapse
Affiliation(s)
- Kathrin Thor
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Shushu Jiang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.,Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Erwan Michard
- University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, MD, USA
| | - Jeoffrey George
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.,Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Sönke Scherzer
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Shouguang Huang
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Julian Dindas
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Nuno Leitão
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK.,Synthace Ltd, London, UK
| | - Thomas A DeFalco
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.,Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Philipp Köster
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Kerri Hunter
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sachie Kimura
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga, Japan
| | - Julien Gronnier
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.,Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Lena Stransfeld
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.,Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Yasuhiro Kadota
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.,RIKEN Center for Sustainable Resource Science, Plant Immunity Research Group, Yokohama, Japan
| | - Christoph A Bücherl
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.,Dr. Friedrich Eberth Arzneimittel GmbH, Ursensollen, Germany
| | - Myriam Charpentier
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Michael Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Daniel MacLean
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Giles E D Oldroyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK.,Sainsbury Laboratory Cambridge University, Cambridge, UK
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - M Rob G Roelfsema
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - José Feijó
- University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, MD, USA
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK. .,Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
21
|
Rohilla M, Singh N, Mazumder A, Sen P, Roy P, Chowdhury D, Singh NK, Mondal TK. Genome-wide association studies using 50 K rice genic SNP chip unveil genetic architecture for anaerobic germination of deep-water rice population of Assam, India. Mol Genet Genomics 2020; 295:1211-1226. [PMID: 32506235 DOI: 10.1007/s00438-020-01690-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
North Eastern part of India such as Assam is inundated by flood every year where the farmers are forced to grow the traditional tall deep-water rice. Genetic improvement of this type of rice is slow because of insufficient knowledge about their genetic architecture and population structure. In the present investigation, the genetic diversity architecture of 94 deep-water rice genotypes of Assam and association mapping strategy was, for the first time, applied to determine the significant SNPs and genes for deep-water rice. These genotypes are known for their unique elongation ability under deep-water condition. The anaerobic germination (AG) related trait-associated genes identified here can provide affluent resources for rice breeding especially in flood-prone areas. We investigated the genome-wide association studies (GWAS) using 50 K rice genic SNP chip across 94 deep-water rice genotypes collected from different flood-prone districts/villages of Assam. Population structure and diversity analysis revealed that these genotypes were stratified into four sub-populations. Using GWAS approach, 20 significant genes were identified and found to be associated with AG-related traits. Of them, two most relevant genes (OsXDH1and SSXT) have been identified which explain phenotypic variability (R2 > 20%) in the population. These genes were located in Chr 3 (LOC_Os03g31550) which encodes for enzyme xanthine dehydrogenase 1(OsXDH1) and in Chr 12 (LOC_Os12g31350) which encodes for SSXT family protein. Both of these genes were found to be associated with anaerobic response index (increase in the coleoptile length under water in anaerobic condition with respect to control), respectively. Interestingly, OsXDH1is involved in purine catabolism pathway and acts as a scavenger of reactive oxygen species in plants, whereas SSXT is GRF1-interacting factor 3. These two candidate genes associated with AG of deep-water rice have been found to be reported for the first time. Thus, this study provides a greater resource for breeders not only for improvement of deep-water rice, but also for AG tolerant variety useful for direct-seeded rice in flood-affected areas.
Collapse
Affiliation(s)
- Megha Rohilla
- ICAR-National Institute for Plant Biotechnology, Pusa, New Delhi, 110012, India
| | - Nisha Singh
- ICAR-National Institute for Plant Biotechnology, Pusa, New Delhi, 110012, India
| | - Abhishek Mazumder
- ICAR-National Institute for Plant Biotechnology, Pusa, New Delhi, 110012, India
| | - Priyabrata Sen
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Priyanka Roy
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Dhiren Chowdhury
- Regional Agricultural Research Station, Assam Agricultural University, North Lakhimpur, Assam, India
| | | | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology, Pusa, New Delhi, 110012, India.
| |
Collapse
|
22
|
Lamers J, van der Meer T, Testerink C. How Plants Sense and Respond to Stressful Environments. PLANT PHYSIOLOGY 2020; 182:1624-1635. [PMID: 32132112 PMCID: PMC7140927 DOI: 10.1104/pp.19.01464] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/26/2020] [Indexed: 05/18/2023]
Abstract
Plants are exposed to an ever-changing environment to which they have to adjust accordingly. Their response is tightly regulated by complex signaling pathways that all start with stimulus perception. Here, we give an overview of the latest developments in the perception of various abiotic stresses, including drought, salinity, flooding, and temperature stress. We discuss whether proposed perception mechanisms are true sensors, which is well established for some abiotic factors but not yet fully elucidated for others. In addition, we review the downstream cellular responses, many of which are shared by various stresses but result in stress-specific physiological and developmental output. New sensing mechanisms have been identified, including heat sensing by the photoreceptor phytochrome B, salt sensing by glycosylinositol phosphorylceramide sphingolipids, and drought sensing by the specific calcium influx channel OSCA1. The simultaneous occurrence of multiple stress conditions shows characteristic downstream signaling signatures that were previously considered general signaling responses. The integration of sensing of multiple stress conditions and subsequent signaling responses is a promising venue for future research to improve the understanding of plant abiotic stress perception.
Collapse
Affiliation(s)
- Jasper Lamers
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| | - Tom van der Meer
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| |
Collapse
|
23
|
Ding S, Feng X, Du H, Wang H. Genome-wide analysis of maize OSCA family members and their involvement in drought stress. PeerJ 2019; 7:e6765. [PMID: 30997296 PMCID: PMC6462396 DOI: 10.7717/peerj.6765] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/08/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Worldwide cultivation of maize is often impacted negatively by drought stress. Hyperosmolality-gated calcium-permeable channels (OSCA) have been characterized as osmosensors in Arabidopsis. However, the involvement of members of the maize OSCA (ZmOSCA) gene family in response to drought stress is unknown. It is furthermore unclear which ZmOSCA gene plays a major role in genetic improvement of drought tolerance in Maize. METHODS We predicted the protein domain structure and transmembrane regions by using the NCBI Conserved Domain Database database and TMHMM server separately. The phylogeny tree was built by Mega7. We used the mixed linear model in TASSEL to perform the family-based association analysis. RESULTS In this report, 12 ZmOSCA genes were uncovered in the maize genome by a genome-wide survey and analyzed systematically to reveal their synteny and phylogenetic relationship with the genomes of rice, maize, and sorghum. These analyses indicated a relatively conserved evolutionary history of the ZmOSCA gene family. Protein domain and transmembrane analysis indicated that most of the 12 ZmOSCAs shared similar structures with their homologs. The result of differential expression analysis under drought at various stages, as well as the expression profiles in 15 tissues, revealed a functional divergence of ZmOSCA genes. Notably, the expression level of ZmOSCA4.1 being up-regulated in both seedlings and adult leaves. Notably, the association analysis between genetic variations in these genes and drought tolerance was detected. Significant associations between genetic variation in ZmOSCA4.1 and drought tolerance were found at the seedling stage. Our report provides a detailed analysis of the ZmOSCAs in the maize genome. These findings will contribute to future studies on the functional characterization of ZmOSCA proteins in response to water deficit stress, as well as understanding the mechanism of genetic variation in drought tolerance in maize.
Collapse
Affiliation(s)
- Shuangcheng Ding
- Agricultural College, Yangtze University, Jingzhou, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| | - Xin Feng
- Agricultural College, Yangtze University, Jingzhou, China
| | - Hewei Du
- College of Life Science, Yangtze University, Jingzhou, China
| | - Hongwei Wang
- Agricultural College, Yangtze University, Jingzhou, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| |
Collapse
|
24
|
Ganie SA, Molla KA, Henry RJ, Bhat KV, Mondal TK. Advances in understanding salt tolerance in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:851-870. [PMID: 30759266 DOI: 10.1007/s00122-019-03301-3308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/02/2019] [Indexed: 05/28/2023]
Abstract
This review presents a comprehensive overview of the recent research on rice salt tolerance in the areas of genomics, proteomics, metabolomics and chemical genomics. Salinity is one of the major constraints in rice cultivation globally. Traditionally, rice is a glycophyte except for a few genotypes that have been widely used in salinity tolerance breeding of rice. Both seedling and reproductive stages of rice are considered to be the salt-susceptible stages; however, research efforts have been biased towards improving the understanding of seedling-stage salt tolerance. An extensive literature survey indicated that there have been very few attempts to develop reproductive stage-specific salt tolerance in rice probably due to the lack of salt-tolerant phenotypes at the reproductive stage. Recently, the role of DNA methylation, genome duplication and codon usage bias in salinity tolerance of rice have been studied. Furthermore, the study of exogenous salt stress alleviants in rice has opened up another potential avenue for understanding and improving its salt tolerance. There is a need to not only generate additional genomic resources in the form of salt-responsive QTLs and molecular markers and to characterize the genes and their upstream regulatory regions, but also to use them to gain deep insights into the mechanisms useful for developing tolerant varieties. We analysed the genomic locations of diverse salt-responsive genomic resources and found that rice chromosomes 1-6 possess the majority of these salinity-responsive genomic resources. The review presents a comprehensive overview of the recent research on rice salt tolerance in the areas of genomics, proteomics, metabolomics and chemical genomics, which should help in understanding the molecular basis of salinity tolerance and its more effective improvement in rice.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Kutubuddin Ali Molla
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - K V Bhat
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Tapan Kumar Mondal
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India.
- ICAR-National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, 110012, India.
| |
Collapse
|
25
|
Ganie SA, Molla KA, Henry RJ, Bhat KV, Mondal TK. Advances in understanding salt tolerance in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:851-870. [PMID: 30759266 DOI: 10.1007/s00122-019-03301-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/02/2019] [Indexed: 05/03/2023]
Abstract
This review presents a comprehensive overview of the recent research on rice salt tolerance in the areas of genomics, proteomics, metabolomics and chemical genomics. Salinity is one of the major constraints in rice cultivation globally. Traditionally, rice is a glycophyte except for a few genotypes that have been widely used in salinity tolerance breeding of rice. Both seedling and reproductive stages of rice are considered to be the salt-susceptible stages; however, research efforts have been biased towards improving the understanding of seedling-stage salt tolerance. An extensive literature survey indicated that there have been very few attempts to develop reproductive stage-specific salt tolerance in rice probably due to the lack of salt-tolerant phenotypes at the reproductive stage. Recently, the role of DNA methylation, genome duplication and codon usage bias in salinity tolerance of rice have been studied. Furthermore, the study of exogenous salt stress alleviants in rice has opened up another potential avenue for understanding and improving its salt tolerance. There is a need to not only generate additional genomic resources in the form of salt-responsive QTLs and molecular markers and to characterize the genes and their upstream regulatory regions, but also to use them to gain deep insights into the mechanisms useful for developing tolerant varieties. We analysed the genomic locations of diverse salt-responsive genomic resources and found that rice chromosomes 1-6 possess the majority of these salinity-responsive genomic resources. The review presents a comprehensive overview of the recent research on rice salt tolerance in the areas of genomics, proteomics, metabolomics and chemical genomics, which should help in understanding the molecular basis of salinity tolerance and its more effective improvement in rice.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Kutubuddin Ali Molla
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - K V Bhat
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India
| | - Tapan Kumar Mondal
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012, India.
- ICAR-National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, 110012, India.
| |
Collapse
|
26
|
Chowrasia S, Panda AK, Rawal HC, Kaur H, Mondal TK. Identification of jumonjiC domain containing gene family among the Oryza species and their expression analysis in FL478, a salt tolerant rice genotype. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:43-53. [PMID: 29960182 DOI: 10.1016/j.plaphy.2018.06.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 05/26/2023]
Abstract
The jumonji (JMJ)-C domain containing proteins belong to histone demethylases family with the ability to demethylate the tri-methylated histone residues. They act as chromatin regulators to regulate many physiological functions in plants. The present study deals with the characterization of JMJ-C gene family members in wild as well as cultivated rice species and their expression analysis in salt tolerant rice genotype, FL478. The genome wide study identified 151 members belonging to JMJ-C gene family in 11 different Oryza species. We also studied their structure, genomic location, gene duplication events, phylogenetic relationship, in silico expression analysis and identified cis elements in their promoters. We also found a few JMJ-C gene family members in rice which underwent duplication before the whole genome duplication event of the rice. The qRT-PCR based expression profiling revealed that out of the total 15 rice JMJ-C members, two were highly expressed in the flag leaf stage of FL478 under salt treatment. These two candidate JMJ-C members were also found to render salinity tolerance when over-expressed in yeast cells. Thus, the present study helps in further structural as well as functional characterization of JMJ-C genes under salinity stress in Oryza species.
Collapse
Affiliation(s)
- Soni Chowrasia
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India
| | - Alok Kumar Panda
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India
| | - Hukam C Rawal
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India
| | - Harmeet Kaur
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India
| | - Tapan Kumar Mondal
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India.
| |
Collapse
|
27
|
Gumi AM, Guha PK, Mazumder A, Jayaswal P, Mondal TK. Characterization of OglDREB2A gene from African rice ( Oryza glaberrima), comparative analysis and its transcriptional regulation under salinity stress. 3 Biotech 2018; 8:91. [PMID: 29430353 PMCID: PMC5796934 DOI: 10.1007/s13205-018-1098-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/05/2018] [Indexed: 01/17/2023] Open
Abstract
In this study, AP2 DNA-binding domain-containing transcription factor, OglDREB2A, was cloned from the African rice (Oryza glaberrima) and compared with 3000 rice genotypes. Further, the phylogenetic and various structural analysis was performed using in silico approaches. Further, to understand its allelic variation in rice, SNPs and indels were detected among the 3000 rice genotypes which indicated that while coding region is highly conserved, yet noncoding regions such as UTR and intron contained most of the variation. Phylogenetic analysis of the OglDREB2A sequence in different Oryza as well as in diverse eudicot species revealed that DREB from various Oryza species were diversed much earlier than other genes. Further, structural features and in silico analyses provided insights into different properties of OglDREB2A protein. The neutrality test on the coding region of OglDREB2A from different genotypes of O. glaberrima showed the lack of selection in this gene. Among the different developmental stages, it was upregulated at tillering and flag leaf under salinity treatment indicating its positive role in seedling and reproductive stage tolerance. Real-time PCR analysis also indicated the conserve expression pattern of this gene under salinity stress across the three different Oryza species having different degree of salinity tolerance.
Collapse
Affiliation(s)
- Abubakar Mohammad Gumi
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012 India
- Present Address: Department of Biological Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Pritam Kanti Guha
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012 India
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, IARI, New Delhi, 110012 India
| | - Abhishek Mazumder
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, IARI, New Delhi, 110012 India
| | - Pawan Jayaswal
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, IARI, New Delhi, 110012 India
| | - Tapan Kumar Mondal
- ICAR-National Bureau of Plant Genetic Resources, IARI Campus, Pusa, New Delhi, 110012 India
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, IARI, New Delhi, 110012 India
- Present Address: Department of Biological Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|