1
|
Lyu F, Zhang T, Gui M, Wang Y, Zhao L, Wu X, Rao L, Liao X. The underlying mechanism of bacterial spore germination: An update review. Compr Rev Food Sci Food Saf 2023; 22:2728-2746. [PMID: 37125461 DOI: 10.1111/1541-4337.13160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/22/2023] [Accepted: 04/01/2023] [Indexed: 05/02/2023]
Abstract
Bacterial spores are highly resilient and universally present on earth and can irreversibly enter the food chain to cause food spoilage or foodborne illness once revived to resume vegetative growth. Traditionally, extensive thermal processing has been employed to efficiently kill spores; however, the relatively high thermal load adversely affects food quality attributes. In recent years, the germination-inactivation strategy has been developed to mildly kill spores based on the circumstance that germination can decrease spore-resilient properties. However, the failure to induce all spores to geminate, mainly owing to the heterogeneous germination behavior of spores, hampers the success of applying this strategy in the food industry. Undoubtedly, elucidating the detailed germination pathway and underlying mechanism can fill the gap in our understanding of germination heterogeneity, thereby facilitating the development of full-scale germination regimes to mildly kill spores. In this review, we comprehensively discuss the mechanisms of spore germination of Bacillus and Clostridium species, and update the molecular basis of the early germination events, for example, the activation of germination receptors, ion release, Ca-DPA release, and molecular events, combined with the latest research evidence. Moreover, high hydrostatic pressure (HHP), an advanced non-thermal food processing technology, can also trigger spore germination, providing a basis for the application of a germination-inactivation strategy in HHP processing. Here, we also summarize the diverse germination behaviors and mechanisms of spores of Bacillus and Clostridium species under HHP, with the aim of facilitating HHP as a mild processing technology with possible applications in food sterilization. Practical Application: This work provides fundamental basis for developing efficient killing strategies of bacterial spores in food industry.
Collapse
Affiliation(s)
- Fengzhi Lyu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Tianyu Zhang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Meng Gui
- Fisheries Science Institute Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Korza G, Goulet M, DeMarco A, Wicander J, Setlow P. Role of Bacillus subtilis Spore Core Water Content and pH in the Accumulation and Utilization of Spores' Large 3-Phosphoglyceric Acid Depot, and the Crucial Role of This Depot in Generating ATP Early during Spore Germination. Microorganisms 2023; 11:microorganisms11010195. [PMID: 36677488 PMCID: PMC9864370 DOI: 10.3390/microorganisms11010195] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
The development of Bacillus spore cores involves the accumulation of 3-phosphoglycerate (3PGA) during sporulation, following core acidification to ~6.4, and before decreases in core water content occur due to Ca-dipicolinc acid (CaDPA) uptake. This core acidification inhibits phosphoglycerate mutase (PGM) at pH 6.4, allowing 3PGA accumulation, although PGM is active at pH 7.4. Spores’ 3PGA is stable for months at 4 °C and weeks at 37 °C. However, in wild-type spore germination, increases in core pH to 7.5−8 and in core water content upon CaDPA release and cortex peptidoglycan hydrolysis allow for rapid 3PGA catabolism, generating ATP; indeed, the earliest ATP generated following germination is from 3PGA catabolism. The current work found no 3PGA in those Bacillus subtilis spores that do not accumulate CaDPA during sporulation and have a core pH of ~7.4. The ATP production in the germination of 3PGA-less spores in a poor medium was minimal, and the germinated spores were >99% dead. However, the 3PGA-replete spores that germinated in the poor medium accumulated >30 times more ATP, and >70% of the germinated spores were found to be alive. These findings indicate why 3PGA accumulation during sporulation (and utilization during germination) in all the Firmicute spores studied can be crucial for spore revival due to the generation of essential ATP. The latter finding further suggests that targeting PGM activity during germination could be a novel way to minimize the damaging effects of spores.
Collapse
|
3
|
Kint N, Morvan C, Martin-Verstraete I. Oxygen response and tolerance mechanisms in Clostridioides difficile. Curr Opin Microbiol 2021; 65:175-182. [PMID: 34896836 DOI: 10.1016/j.mib.2021.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 01/11/2023]
Abstract
While the gut is typically thought of as anoxic, there are two intersecting and decreasing oxygen gradients that are observed in the gut: oxygen decreases from the small to the large intestine and from the intestinal epithelium toward the colon lumen. Gut oxygen levels also increase following antibiotic induced-dysbiosis. While dysbiosis favors growth of Clostridioides difficile, the oxygen increase also causes stress to this anaerobic enteropathogen. To circumvent oxygen threat, C. difficile has developed efficient strategies: sporulation, biofilm formation, the rerouting of central metabolism and the production of oxygen detoxification enzymes. Especially, reverse rubrerythrins and flavodiiron proteins involved in oxygen reduction are crucial in C. difficile ability to tolerate and survive the oxygen concentrations encountered in the gastrointestinal tract. Two regulators, σB and PerR, play pivotal role in the mastering of these adaptive responses by controlling the various systems that protect cells from oxidative damages.
Collapse
Affiliation(s)
- Nicolas Kint
- Institut Pasteur, Université de Paris, UMR CNRS 2001, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Claire Morvan
- Institut Pasteur, Université de Paris, UMR CNRS 2001, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Isabelle Martin-Verstraete
- Institut Pasteur, Université de Paris, UMR CNRS 2001, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France; Institut Universitaire de France, France.
| |
Collapse
|
4
|
DeMarco AM, Korza G, Granados MR, Mok WWK, Setlow P. Dodecylamine rapidly kills of spores of multiple Firmicute species: properties of the killed spores and the mechanism of the killing. J Appl Microbiol 2021; 131:2612-2625. [PMID: 33998749 DOI: 10.1111/jam.15137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/28/2021] [Accepted: 05/09/2021] [Indexed: 01/07/2023]
Abstract
AIMS Previous work showed that Bacillus subtilis dormant spore killing and germination by dodecylamine take place by different mechanisms. This new work aimed to optimize killing of B. subtilis and other Firmicutes spores and to determine the mechanism of the killing. METHODS AND RESULTS Spores of seven Firmicute species were killed rapidly by dodecylamine under optimal conditions and more slowly by decylamine or tetradecylamine. The killed spores were not recovered by additions to recovery media, and some of the killed spores subsequently germinated, all indicating that dodecylamine-killed spores truly are dead. Spores of two species treated with dodecylamine were more sensitive to killing by a subsequent heat treatment, and spore killing of at least one species was faster with chemically decoated spores. The cores of dodecylamine-killed spores were stained by the nucleic acid stain propidium iodide, and dodecylamine-killed wild-type and germination-deficient spores released their stores of phosphate-containing small molecules. CONCLUSIONS This work indicates that dodecylamine is likely a universal sporicide for Firmicute species, and it kills spores by damaging their inner membrane, with attendant loss of this membrane as a permeability barrier. SIGNIFICANCE AND IMPACT OF THE STUDY There is a significant need for agents that can effectively kill spores of a number of Firmicute species, especially in wide area decontamination. Dodecylamine appears to be a universal sporicide with a novel mechanism of action, and this or some comparable molecule could be useful in wide area spore decontamination.
Collapse
Affiliation(s)
- A M DeMarco
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - G Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - M R Granados
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - W W K Mok
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - P Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| |
Collapse
|
5
|
Lysinibacillus sphaericus III(3)7 and Plasmid Vector pMK4: New Challenges in Cloning Platforms. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The acquisition and especially the maintenance of a plasmid usually brings a fitness cost that reduces the reproductive rate of the bacterial host; for strains like Lysinibacillus sphaericus III(3)7, which possesses important environmental properties, this alteration along with morphological changes and reduced sporulation rates may exert a negative effect on metabolic studies using plasmids as cloning platforms. The aim of this study is to approach the metabolic behavior of pMK4-bearing cells of L. sphaericus III(3)7 through the use of bioinformatic and in vitro analyses. An incompatibility model between the pMK4 vector and a predicted megaplasmid, pBsph, inside III(3)7 cells was constructed based on an incA region. Additionally, in vitro long-term plasmid stability was not found in plasmid-bearing cells. Alignments between replicons, mobile genetic elements and RNA-RNA interactions were assessed, pairwise alignment visualization, graphic models and morphological changes were evaluated by SEM. Metabolite analysis was done through HPLC coupled to a Q-TOF 6545, and electrospray ionization was used, finally, Aedes aegypti and Culex quinquefasciatus larvae were used for larvicidal activity assessment. Results found, a decreased growth rate, spore formation reduction and morphological changes, which supported the idea of metabolic cost exerted by pMK4. An incompatibility between pMK4 and pBsph appears to take place inside L. sphaericus III(3)7 cells, however, further in vitro studies are needed to confirm it.
Collapse
|
6
|
Setlow P, Christie G. Bacterial Spore mRNA - What's Up With That? Front Microbiol 2020; 11:596092. [PMID: 33193276 PMCID: PMC7649253 DOI: 10.3389/fmicb.2020.596092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/28/2020] [Indexed: 01/19/2023] Open
Abstract
Bacteria belonging to the orders Bacillales and Clostridiales form spores in response to nutrient starvation. From a simplified morphological perspective, the spore can be considered as comprising a central protoplast or core, that is, enveloped sequentially by an inner membrane (IM), a peptidoglycan cortex, an outer membrane, and a proteinaceous coat. All of these structures are characterized by unique morphological and/or structural features, which collectively confer metabolic dormancy and properties of environmental resistance to the quiescent spore. These properties are maintained until the spore is stimulated to germinate, outgrow and form a new vegetative cell. Spore germination comprises a series of partially overlapping biochemical and biophysical events - efflux of ions from the core, rehydration and IM reorganization, disassembly of cortex and coat - all of which appear to take place in the absence of de novo ATP and protein synthesis. If the latter points are correct, why then do spores of all species examined to date contain a diverse range of mRNA molecules deposited within the spore core? Are some of these molecules "functional," serving as translationally active units that are required for efficient spore germination and outgrowth, or are they just remnants from sporulation whose sole purpose is to provide a reservoir of ribonucleotides for the newly outgrowing cell? What is the fate of these molecules during spore senescence, and indeed, are conditions within the spore core likely to provide any opportunity for changes in the transcriptional profile of the spore during dormancy? This review encompasses a historical perspective of spore ribonucleotide biology, from the earliest biochemical led analyses - some of which in hindsight have proved to be remarkably prescient - through the transcriptomic era at the turn of this century, to the latest next generation sequencing derived insights. We provide an overview of the key literature to facilitate reasoned responses to the aforementioned questions, and many others, prior to concluding by identifying the major outstanding issues in this crucial area of spore biology.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Investigating Synthesis of the MalS Malic Enzyme during Bacillus subtilis Spore Germination and Outgrowth and the Influence of Spore Maturation and Sporulation Conditions. mSphere 2020; 5:5/4/e00464-20. [PMID: 32759333 PMCID: PMC7407067 DOI: 10.1128/msphere.00464-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The spores formed by Bacillus subtilis remain in a quiescent state for extended periods due to their dormancy and resistance features. Dormancy is linked to a very low level of core water content and a phase-bright state of spores. The present report, focusing on proteins MalS and PdhD (pyruvate dehydrogenase subunit D) and complementary to our companion report published in this issue, aims to shed light on a major dilemma in the field, i.e., whether protein synthesis, in particular that of MalS, takes place in phase-bright spores. Clustered MalS-GFP in dormant spores diffuses throughout the spore as germination proceeds. However, fluorescence intensity measurements, supported by Western blot analysis and SILAC proteomics, confirm that there is no new MalS protein synthesis in bright-phase dormant spores. Spore-forming bacteria of the orders Bacillales and Clostridiales play a major role in food spoilage and foodborne diseases. When environmental conditions become favorable, these spores can germinate as the germinant receptors located on the spore’s inner membrane are activated via germinant binding. This leads to the formation of vegetative cells via germination and subsequent outgrowth and potential deleterious effects on foods. The present report focuses on analysis of the synthesis of the MalS (malic enzyme) protein during Bacillus subtilis spore germination by investigating the dynamics of the presence and fluorescence level of a MalS-GFP (MalS-green fluorescent protein) fusion protein using time-lapse fluorescence microscopy. Our results show an initial increase in MalS-GFP fluorescence intensity within the first 15 min of germination, followed by a discernible drop and stabilization of the fluorescence throughout spore outgrowth as reported previously (L. Sinai, A. Rosenberg, Y. Smith, E. Segev, and S. Ben-Yehuda, Mol Cell 57:695–707, 2015, https://doi.org/10.1016/j.molcel.2014.12.019). However, in contrast to the earlier report, both Western blotting and SILAC (stable isotopic labeling of amino acids in cell culture) analysis showed there was no increase in MalS-GFP levels during the 15 min after the addition of germinants and that MalS synthesis did not begin until more than 90 min after germinant addition. Thus, the increase in MalS-GFP fluorescence early in germination is not due to new protein synthesis but is perhaps due to a change in the physical environment of the spore cores. Our findings also show that different sporulation conditions and spore maturation times affect expression of MalS-GFP and the germination behavior of the spores, albeit to a minor extent, but still result in no changes in MalS-GFP levels early in spore germination. IMPORTANCE The spores formed by Bacillus subtilis remain in a quiescent state for extended periods due to their dormancy and resistance features. Dormancy is linked to a very low level of core water content and a phase-bright state of spores. The present report, focusing on proteins MalS and PdhD (pyruvate dehydrogenase subunit D) and complementary to our companion report published in this issue, aims to shed light on a major dilemma in the field, i.e., whether protein synthesis, in particular that of MalS, takes place in phase-bright spores. Clustered MalS-GFP in dormant spores diffuses throughout the spore as germination proceeds. However, fluorescence intensity measurements, supported by Western blot analysis and SILAC proteomics, confirm that there is no new MalS protein synthesis in bright-phase dormant spores.
Collapse
|