1
|
Quílez C, Bebiano LB, Jones E, Maver U, Meesters L, Parzymies P, Petiot E, Rikken G, Risueño I, Zaidi H, Zidarič T, Bekeschus S, H van den Bogaard E, Caley M, Colley H, López NG, Letsiou S, Marquette C, Maver T, Pereira RF, Tobin DJ, Velasco D. Targeting the Complexity of In Vitro Skin Models: A Review of Cutting-Edge Developments. J Invest Dermatol 2024; 144:2650-2670. [PMID: 39127929 DOI: 10.1016/j.jid.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Accepted: 04/10/2024] [Indexed: 08/12/2024]
Abstract
Skin in vitro models offer much promise for research, testing drugs, cosmetics, and medical devices, reducing animal testing and extensive clinical trials. There are several in vitro approaches to mimicking human skin behavior, ranging from simple cell monolayer to complex organotypic and bioengineered 3-dimensional models. Some have been approved for preclinical studies in cosmetics, pharmaceuticals, and chemicals. However, development of physiologically reliable in vitro human skin models remains in its infancy. This review reports on advances in in vitro complex skin models to study skin homeostasis, aging, and skin disease.
Collapse
Affiliation(s)
- Cristina Quílez
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Luís B Bebiano
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Eleri Jones
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia; Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Luca Meesters
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Piotr Parzymies
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Emma Petiot
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Gijs Rikken
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ignacio Risueño
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Hamza Zaidi
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Tanja Zidarič
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Sander Bekeschus
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany; ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | | | - Matthew Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Helen Colley
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Nuria Gago López
- Melanoma group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sophia Letsiou
- Department of Biomedical Sciences, University of West Attica, Athens, Greece; Department of Food Science and Technology, University of West Attica, Athens, Greece
| | - Christophe Marquette
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia; Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rúben F Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Desmond J Tobin
- Charles Institute of Dermatology, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Diego Velasco
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain.
| |
Collapse
|
2
|
Eastman AC, Rosson G, Kim N, Kang S, Raraigh K, Goff LA, Merlo C, Lechtzin N, Cutting GR, Sharma N. Establishment of a conditionally reprogrammed primary eccrine sweat gland culture for evaluation of tissue-specific CFTR function. J Cyst Fibros 2024; 23:1173-1179. [PMID: 38969603 PMCID: PMC11624101 DOI: 10.1016/j.jcf.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Sweat chloride concentration is used both for CF diagnosis and for tracking CFTR modulator efficacy over time, but the relationship between sweat chloride and lung health is heterogeneous and informed by CFTR genotype. Here, we endeavored to characterize ion transport in eccrine sweat glands (ESGs). METHODS First, ESGs were microdissected from a non-CF skin donor to analyze individual glands. We established primary cultures of ESG cells via conditional reprogramming for functional testing of ion transport by short circuit current measurement and examined cell composition by single-cell RNA-sequencing (scRNA-seq) comparing with whole dissociated ESGs. Secondly, we cultured nasal epithelial (NE) cells and ESGs from two people with CF (pwCF) to assess modulator efficacy. Finally, NEs and ESGs were grown from one person with the CFTR genotype F312del/F508del to explore genotype-phenotype heterogeneity. RESULTS ESG primary cells from individuals without CF demonstrated robust ENaC and CFTR function. scRNA-seq demonstrated both secretory and ductal ESG markers in cultured ESG cells. In both NEs and ESGs from pwCF homozygous for F508del, minimal baseline CFTR function was observed, and treatment with CFTR modulators significantly enhanced function. Notably, NEs from an individual bearing F312del/F508del exhibited significant baseline CFTR function, whereas ESGs from the same person displayed minimal CFTR function, consistent with observed phenotype. CONCLUSIONS This study has established a novel primary culture technique for ESGs that allows for functional ion transport measurement to assess modulator efficacy and evaluate genotype-phenoytpe heterogeneity. To our knowledge, this is the first reported application of conditional reprogramming and scRNA-seq of microdissected ESGs.
Collapse
Affiliation(s)
- Alice C Eastman
- Johns Hopkins School of Medicine, Department of Human Genetics, Miller Research Building, 733N Broadway, Baltimore, MD 21205, USA
| | - Gedge Rosson
- Johns Hopkins Medicine, Department of Plastic and Reconstructive Surgery, 601N Caroline St, Baltimore, MD 21287, USA
| | - Noori Kim
- Johns Hopkins School of Medicine, Department Medicine, Division of Dermatology, 601N Caroline St, Baltimore, MD 21287, USA
| | - Sewon Kang
- Johns Hopkins School of Medicine, Department Medicine, Division of Dermatology, 601N Caroline St, Baltimore, MD 21287, USA
| | - Karen Raraigh
- Johns Hopkins School of Medicine, Department of Human Genetics, Miller Research Building, 733N Broadway, Baltimore, MD 21205, USA
| | - Loyal A Goff
- Johns Hopkins School of Medicine, Department of Human Genetics, Miller Research Building, 733N Broadway, Baltimore, MD 21205, USA
| | - Christian Merlo
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Noah Lechtzin
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Garry R Cutting
- Johns Hopkins School of Medicine, Department of Human Genetics, Miller Research Building, 733N Broadway, Baltimore, MD 21205, USA
| | - Neeraj Sharma
- Johns Hopkins School of Medicine, Department of Human Genetics, Miller Research Building, 733N Broadway, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Deng M, Odhiambo WO, Qin M, To TT, Brewer GM, Kheshvadjian AR, Cheng C, Agak GW. Analysis of intracellular communication reveals consistent gene changes associated with early-stage acne skin. Cell Commun Signal 2024; 22:400. [PMID: 39143467 PMCID: PMC11325718 DOI: 10.1186/s12964-024-01725-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/23/2024] [Indexed: 08/16/2024] Open
Abstract
A comprehensive understanding of the intricate cellular and molecular changes governing the complex interactions between cells within acne lesions is currently lacking. Herein, we analyzed early papules from six subjects with active acne vulgaris, utilizing single-cell and high-resolution spatial RNA sequencing. We observed significant changes in signaling pathways across seven different cell types when comparing lesional skin samples (LSS) to healthy skin samples (HSS). Using CellChat, we constructed an atlas of signaling pathways for the HSS, identifying key signal distributions and cell-specific genes within individual clusters. Further, our comparative analysis revealed changes in 49 signaling pathways across all cell clusters in the LSS- 4 exhibited decreased activity, whereas 45 were upregulated, suggesting that acne significantly alters cellular dynamics. We identified ten molecules, including GRN, IL-13RA1 and SDC1 that were consistently altered in all donors. Subsequently, we focused on the function of GRN and IL-13RA1 in TREM2 macrophages and keratinocytes as these cells participate in inflammation and hyperkeratinization in the early stages of acne development. We evaluated their function in TREM2 macrophages and the HaCaT cell line. We found that GRN increased the expression of proinflammatory cytokines and chemokines, including IL-18, CCL5, and CXCL2 in TREM2 macrophages. Additionally, the activation of IL-13RA1 by IL-13 in HaCaT cells promoted the dysregulation of genes associated with hyperkeratinization, including KRT17, KRT16, and FLG. These findings suggest that modulating the GRN-SORT1 and IL-13-IL-13RA1 signaling pathways could be a promising approach for developing new acne treatments.
Collapse
Affiliation(s)
- Min Deng
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Woodvine O Odhiambo
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Min Qin
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Thao Tam To
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Gregory M Brewer
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Alexander R Kheshvadjian
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Carol Cheng
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - George W Agak
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA.
| |
Collapse
|
4
|
Deng M, Odhiambo WO, Qin M, To TT, Brewer GM, Kheshvadjian AR, Cheng C, Agak GW. Analysis of Intracellular Communication Reveals Consistent Gene Changes Associated with Early-Stage Acne Skin. RESEARCH SQUARE 2024:rs.3.rs-4402048. [PMID: 38854033 PMCID: PMC11160929 DOI: 10.21203/rs.3.rs-4402048/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A comprehensive understanding of the intricate cellular and molecular changes governing the complex interactions between cells within acne lesions is currently lacking. Herein, we analyzed early papules from six subjects with active acne vulgaris, utilizing single-cell and high-resolution spatial RNA sequencing. We observed significant changes in signaling pathways across seven different cell types when comparing lesional skin samples (LSS) to healthy skin samples (HSS). Using CellChat, we constructed an atlas of signaling pathways for the HSS, identifying key signal distributions and cell-specific genes within individual clusters. Further, our comparative analysis revealed changes in 49 signaling pathways across all cell clusters in the LSS- 4 exhibited decreased activity, whereas 45 were upregulated, suggesting that acne significantly alters cellular dynamics. We identified ten molecules, including GRN, IL-13RA1 and SDC1 that were consistently altered in all donors. Subsequently, we focused on the function of GRN and IL-13RA1 in TREM2 macrophages and keratinocytes as these cells participate in inflammation and hyperkeratinization in the early stages of acne development. We evaluated their function in TREM2 macrophages and the HaCaT cell line. We found that GRN increased the expression of proinflammatory cytokines and chemokines, including IL-18, CCL5, and CXCL2 in TREM2 macrophages. Additionally, the activation of IL-13RA1 by IL-13 in HaCaT cells promoted the dysregulation of genes associated with hyperkeratinization, including KRT17, KRT16, and FLG. These findings suggest that modulating the GRN-SORT1 and IL-13-IL-13RA1 signaling pathways could be a promising approach for developing new acne treatments.
Collapse
Affiliation(s)
| | | | - Min Qin
- University of California (UCLA)
| | | | | | | | | | | |
Collapse
|
5
|
Daci D, Altrichter S, Grillet FM, Dib S, Mouna A, Suresh Kumar S, Terhorst-Molawi D, Maurer M, Günzel D, Scheffel J. Altered Sweat Composition Due to Changes in Tight Junction Expression of Sweat Glands in Cholinergic Urticaria Patients. Int J Mol Sci 2024; 25:4658. [PMID: 38731882 PMCID: PMC11083780 DOI: 10.3390/ijms25094658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
In cholinergic urticaria (CholU), small, itchy wheals are induced by exercise or passive warming and reduced sweating has been reported. Despite the described reduced muscarinic receptor expression, sweat duct obstruction, or sweat allergy, the underlying pathomechanisms are not well understood. To gain further insights, we collected skin biopsies before and after pulse-controlled ergometry and sweat after sauna provocation from CholU patients as well as healthy controls. CholU patients displayed partially severely reduced local sweating, yet total sweat volume was unaltered. However, sweat electrolyte composition was altered, with increased K+ concentration in CholU patients. Formalin-fixed, paraffin-embedded biopsies were stained to explore sweat leakage and tight junction protein expression. Dermcidin staining was not found outside the sweat glands. In the secretory coils of sweat glands, the distribution of claudin-3 and -10b as well as occludin was altered, but the zonula occludens-1 location was unchanged. In all, dermcidin and tight junction protein staining suggests an intact barrier with reduced sweat production capability in CholU patients. For future studies, an ex vivo skin model for quantification of sweat secretion was established, in which sweat secretion could be pharmacologically stimulated or blocked. This ex vivo model will be used to further investigate sweat gland function in CholU patients and decipher the underlying pathomechanism(s).
Collapse
Affiliation(s)
- Denisa Daci
- Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (D.D.); (S.D.); (A.M.); (S.S.K.); (D.G.)
| | - Sabine Altrichter
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany (D.T.-M.); (M.M.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Departement of Dermatology and Venerology, Kepler University Hospital, 4020 Linz, Austria
- Center for Medical Research, Johannes Kepler University, 4021 Linz, Austria
| | - François Marie Grillet
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany (D.T.-M.); (M.M.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Selma Dib
- Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (D.D.); (S.D.); (A.M.); (S.S.K.); (D.G.)
| | - Ahmad Mouna
- Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (D.D.); (S.D.); (A.M.); (S.S.K.); (D.G.)
| | - Sukashree Suresh Kumar
- Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (D.D.); (S.D.); (A.M.); (S.S.K.); (D.G.)
| | - Dorothea Terhorst-Molawi
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany (D.T.-M.); (M.M.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Marcus Maurer
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany (D.T.-M.); (M.M.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (D.D.); (S.D.); (A.M.); (S.S.K.); (D.G.)
| | - Jörg Scheffel
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany (D.T.-M.); (M.M.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| |
Collapse
|
6
|
Zhao H, Chen Z, Kang X, Yang B, Luo P, Li H, He Q. The frontline of alternatives to animal testing: novel in vitro skin model application in drug development and evaluation. Toxicol Sci 2023; 196:152-169. [PMID: 37702017 DOI: 10.1093/toxsci/kfad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
The FDA Modernization Act 2.0 has brought nonclinical drug evaluation into a new era. In vitro models are widely used and play an important role in modern drug development and evaluation, including early candidate drug screening and preclinical drug efficacy and toxicity assessment. Driven by regulatory steering and facilitated by well-defined physiology, novel in vitro skin models are emerging rapidly, becoming the most advanced area in alternative testing research. The revolutionary technologies bring us many in vitro skin models, either laboratory-developed or commercially available, which were all built to emulate the structure of the natural skin to recapitulate the skin's physiological function and particular skin pathology. During the model development, how to achieve balance among complexity, accessibility, capability, and cost-effectiveness remains the core challenge for researchers. This review attempts to introduce the existing in vitro skin models, align them on different dimensions, such as structural complexity, functional maturity, and screening throughput, and provide an update on their current application in various scenarios within the scope of chemical testing and drug development, including testing in genotoxicity, phototoxicity, skin sensitization, corrosion/irritation. Overall, the review will summarize a general strategy for in vitro skin model to enhance future model invention, application, and translation in drug development and evaluation.
Collapse
Affiliation(s)
- He Zhao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaozeng Chen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Xingchen Kang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Hui Li
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| |
Collapse
|
7
|
Min J, Tu J, Xu C, Lukas H, Shin S, Yang Y, Solomon SA, Mukasa D, Gao W. Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chem Rev 2023; 123:5049-5138. [PMID: 36971504 PMCID: PMC10406569 DOI: 10.1021/acs.chemrev.2c00823] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Wearable sensors hold great potential in empowering personalized health monitoring, predictive analytics, and timely intervention toward personalized healthcare. Advances in flexible electronics, materials science, and electrochemistry have spurred the development of wearable sweat sensors that enable the continuous and noninvasive screening of analytes indicative of health status. Existing major challenges in wearable sensors include: improving the sweat extraction and sweat sensing capabilities, improving the form factor of the wearable device for minimal discomfort and reliable measurements when worn, and understanding the clinical value of sweat analytes toward biomarker discovery. This review provides a comprehensive review of wearable sweat sensors and outlines state-of-the-art technologies and research that strive to bridge these gaps. The physiology of sweat, materials, biosensing mechanisms and advances, and approaches for sweat induction and sampling are introduced. Additionally, design considerations for the system-level development of wearable sweat sensing devices, spanning from strategies for prolonged sweat extraction to efficient powering of wearables, are discussed. Furthermore, the applications, data analytics, commercialization efforts, challenges, and prospects of wearable sweat sensors for precision medicine are discussed.
Collapse
Affiliation(s)
- Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Jiaobing Tu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Soyoung Shin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Samuel A. Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Daniel Mukasa
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
8
|
Cholon DM, Gentzsch M. Established and novel human translational models to advance cystic fibrosis research, drug discovery, and optimize CFTR-targeting therapeutics. Curr Opin Pharmacol 2022; 64:102210. [DOI: 10.1016/j.coph.2022.102210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
|
9
|
Welzel J, Grüdl S, Banowski B, Stark H, Sättler A, Welss T. A novel cell line from human eccrine sweat gland duct cells for investigating sweating physiology. Int J Cosmet Sci 2022; 44:216-231. [PMID: 35262932 DOI: 10.1111/ics.12769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Human eccrine sweat glands represent vital components of the skin involved in regulating body temperature. Especially the eccrine duct, which opens directly into the skin surface and releases the aqueous sweat, constitutes the first contact point with topically applied substances. For scientific investigations and to understand the underlying sweating mechanism on a cellular level defined cellular material is beneficial. We, therefore, strived to generate a cell line derived from human eccrine sweat gland duct cells for identifying new mechanisms in sweating control, as such a standardize cell line is currently lacking. MATERIAL AND METHODS Isolated primary human eccrine sweat gland duct cells were transduced with simian virus 40 large T antigen (SV40T) by lentiviral transduction. Successfully SV40T-transduced clones were selected by single cell cloning with one clone, named 1D10, being particularly described in this work. RESULTS In performed cellular investigations, SV40T-transduced duct-derived cells exhibited an extended lifespan with stable population doubling times suggesting its immortality. Besides, 1D10 clonal cell culture demonstrated similarities with parental, primary duct cells regarding gene expression of selected sweat gland-related markers. When combined with primary coil cells in a hanging drop co-culture, those transduced duct-derived cells showed some duct cell-like features. Further, a certain degree of cellular communication and a specific reaction towards substance application was observed. CONCLUSION Generated and herein described cell line derived from isolated human eccrine sweat gland duct cells is, based on the presented scientific findings, considered as immortal. Besides, this cell line shows some similarity with primary duct cells, although alterations from native glands were detected, among which is loss of expression of CFTR. Provided some further investigations, presented SV40T-transduced duct-cell derived cell line seems a suited surrogate of primary eccrine duct cells.
Collapse
Affiliation(s)
| | | | | | - Holger Stark
- ²Department of Pharmacy, Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | | | | |
Collapse
|
10
|
Grubb ML, Caliari SR. Fabrication approaches for high-throughput and biomimetic disease modeling. Acta Biomater 2021; 132:52-82. [PMID: 33716174 PMCID: PMC8433272 DOI: 10.1016/j.actbio.2021.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022]
Abstract
There is often a tradeoff between in vitro disease modeling platforms that capture pathophysiologic complexity and those that are amenable to high-throughput fabrication and analysis. However, this divide is closing through the application of a handful of fabrication approaches-parallel fabrication, automation, and flow-driven assembly-to design sophisticated cellular and biomaterial systems. The purpose of this review is to highlight methods for the fabrication of high-throughput biomaterial-based platforms and showcase examples that demonstrate their utility over a range of throughput and complexity. We conclude with a discussion of future considerations for the continued development of higher-throughput in vitro platforms that capture the appropriate level of biological complexity for the desired application. STATEMENT OF SIGNIFICANCE: There is a pressing need for new biomedical tools to study and understand disease. These platforms should mimic the complex properties of the body while also permitting investigation of many combinations of cells, extracellular cues, and/or therapeutics in high-throughput. This review summarizes emerging strategies to fabricate biomimetic disease models that bridge the gap between complex tissue-mimicking microenvironments and high-throughput screens for personalized medicine.
Collapse
Affiliation(s)
- Mackenzie L Grubb
- Department of Biomedical Engineering, University of Virginia, Unites States
| | - Steven R Caliari
- Department of Biomedical Engineering, University of Virginia, Unites States; Department of Chemical Engineering, University of Virginia, Unites States.
| |
Collapse
|
11
|
Boero E, Mnich ME, Manetti AGO, Soldaini E, Grimaldi L, Bagnoli F. Human Three-Dimensional Models for Studying Skin Pathogens. Curr Top Microbiol Immunol 2021; 430:3-27. [PMID: 32601967 DOI: 10.1007/82_2020_219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Skin is the most exposed surface of the human body, separating the microbe-rich external environment, from the sterile inner part. When skin is breached or its homeostasis is perturbed, bacterial, fungal and viral pathogens can cause local infections or use the skin as an entry site to spread to other organs. In the last decades, it has become clear that skin provides niches for permanent microbial colonization, and it actively interacts with microorganisms. This crosstalk promotes skin homeostasis and immune maturation, preventing expansion of harmful organisms. Skin commensals, however, are often found to be skin most prevalent and dangerous pathogens. Despite the medical interest, mechanisms of colonization and invasion for most skin pathogens are poorly understood. This limitation is due to the lack of reliable skin models. Indeed, animal models do not adequately mimic neither the anatomy nor the immune response of human skin. Human 3D skin models overcome these limitations and can provide new insights into the molecular mechanisms of microbial pathogenesis. Herein, we address the strengths and weaknesses of different types of human skin models and we review the main findings obtained using these models to study skin pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Luca Grimaldi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | |
Collapse
|
12
|
Diosdi A, Hirling D, Kovacs M, Toth T, Harmati M, Koos K, Buzas K, Piccinini F, Horvath P. A quantitative metric for the comparative evaluation of optical clearing protocols for 3D multicellular spheroids. Comput Struct Biotechnol J 2021; 19:1233-1243. [PMID: 33717421 PMCID: PMC7907228 DOI: 10.1016/j.csbj.2021.01.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022] Open
Abstract
3D multicellular spheroids quickly emerged as in vitro models because they represent the in vivo tumor environment better than standard 2D cell cultures. However, with current microscopy technologies, it is difficult to visualize individual cells in the deeper layers of 3D samples mainly because of limited light penetration and scattering. To overcome this problem several optical clearing methods have been proposed but defining the most appropriate clearing approach is an open issue due to the lack of a gold standard metric. Here, we propose a guideline for 3D light microscopy imaging to achieve single-cell resolution. The guideline includes a validation experiment focusing on five optical clearing protocols. We review and compare seven quality metrics which quantitatively characterize the imaging quality of spheroids. As a test environment, we have created and shared a large 3D dataset including approximately hundred fluorescently stained and optically cleared spheroids. Based on the results we introduce the use of a novel quality metric as a promising method to serve as a gold standard, applicable to compare optical clearing protocols, and decide on the most suitable one for a particular experiment.
Collapse
Affiliation(s)
- Akos Diosdi
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), H-6726 Szeged, Hungary
- Doctoral School of Biology, University of Szeged, H-6726 Szeged, Hungary
| | - Dominik Hirling
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), H-6726 Szeged, Hungary
- Doctoral School of Computer Science, University of Szeged, H-6701 Szeged, Hungary
| | - Maria Kovacs
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), H-6726 Szeged, Hungary
| | - Timea Toth
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), H-6726 Szeged, Hungary
- Doctoral School of Biology, University of Szeged, H-6726 Szeged, Hungary
| | - Maria Harmati
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), H-6726 Szeged, Hungary
| | - Krisztian Koos
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), H-6726 Szeged, Hungary
| | - Krisztina Buzas
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), H-6726 Szeged, Hungary
- Department of Immunology, Faculty of Medicine, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary
| | - Filippo Piccinini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via Piero Maroncelli 40, I-47014 Meldola, FC, Italy
| | - Peter Horvath
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), H-6726 Szeged, Hungary
- Institute for Molecular Medicine Finland, University of Helsinki, FI-00014 Helsinki, Finland
- Single-Cell Technologies Ltd., H-6726 Szeged, Hungary
| |
Collapse
|
13
|
Agrawal G, Ramesh A, Aishwarya P, Sally J, Ravi M. Devices and techniques used to obtain and analyze three-dimensional cell cultures. Biotechnol Prog 2021; 37:e3126. [PMID: 33460298 DOI: 10.1002/btpr.3126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
Abstract
Cell cultures are indispensable for both basic and applied research. Advancements in cell culture and analysis increase their utility for basic research and translational applications. A marked development in this direction is advent of three-dimensional (3D) cultures. The extent of advancement in 3D cell culture methods over the past decade has warranted referring to a single cell type being cultured as an aggregate or spheroid using simple scaffolds as "traditional." In recent years, the development of "next-generation" devices has enabled cultured cells to mimic their natural environments much better than the traditional 3D culture systems. Automated platforms like chip-based devices, magnetic- and acoustics-based assembly devices, di-electrophoresis (DEP), micro pocket cultures (MPoC), and 3D bio-printing provide a dynamic environment compared to the rather static conditions of the traditional simple scaffold-based 3D cultures. Chip-based technologies, which are centered on principles of microfluidics, are revolutionizing the ways in which cell culture and analysis can be compacted into table-top instruments. A parallel evolution in analytical devices enabled efficient assessment of various complex physiological and pathological endpoints. This is augmented by concurrent development of software enabling rapid large-scale automated data acquisition and analysis like image cytometry, elastography, optical coherence tomography, surface-enhanced Raman scattering (SERS), and biosensors. The techniques and devices utilized for the purpose of 3D cell culture and subsequent analysis depend primarily on the requirement of the study. We present here an in-depth account of the devices for obtaining and analyzing 3D cell cultures.
Collapse
Affiliation(s)
- Gatika Agrawal
- Department of Human Genetics, Faculty of Biomedical Science, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Anuradha Ramesh
- Department of Human Genetics, Faculty of Biomedical Science, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Pargaonkar Aishwarya
- Department of Human Genetics, Faculty of Biomedical Science, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Jennifer Sally
- Department of Human Genetics, Faculty of Biomedical Science, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Maddaly Ravi
- Department of Human Genetics, Faculty of Biomedical Science, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
14
|
Welzel J, Grüdl S, Welss T, Claas M, Sättler A, Förster T, Banowski B. Quantitative ion determination in eccrine sweat gland cells correlates to sweat reduction of antiperspirant actives. Int J Cosmet Sci 2021; 43:181-190. [PMID: 33259130 DOI: 10.1111/ics.12679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/06/2020] [Accepted: 11/25/2020] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Axillary wetness represents an unwanted effect of the physiologically vital sweating mechanism, especially when it becomes excessive. Cosmetic products reducing sweat secretion rely on aluminium salts as the active ingredient acting by physically blocking the sweat gland. Driven by the interest to better understand the sweat mechanism and to develop alternative technologies against excessive sweating a search for an effective testing approach started as up to now, cost- and time-consuming in vivo studies represent the standard procedure for testing and identifying these alternatives. MATERIAL AND METHODS The herein described in vitro test system is based on the measurement of intracellular changes of the ion equilibrium in cultured eccrine sweat gland cells. Subsequently, in vivo studies on the back of volunteers were conducted to verify the sweat-reducing effect of in vitro newly discovered substance. RESULTS In this study, we describe an effective cell-based in vitro method as a potent tool for a more targeted screening of alternatives to aluminium salts. Testing the commonly used aluminium chlorohydrate as one example of an aluminium-based active in this screening procedure, we discovered a distinct influence on the ion equilibrium: Intracellular levels of sodium ions were decreased while those of chloride increased. Screening of various substances revealed a polyethyleneimine, adjusted to pH 3.5 with hydrochloric acid, to evoke the same alterations in the ion equilibrium as aluminium chlorohydrate. Subsequent in vivo studies showed its substantial antiperspirant action and confirmed the high efficiency of the polyethyleneimine solution in vivo. Further, specific investigations connecting the chloride content of the tested substances with the resulting sweat reduction pointed towards a substantial impact of the chloride ions on sweating. CONCLUSION The newly described in vitro cell-based screening method represents an effective means for identifying new antiperspirant actives and suggests an additional biological mechanism of action of sweat-reducing ingredients which is directed towards unbalancing of the ion equilibrium inside eccrine sweat gland cells.
Collapse
Affiliation(s)
- J Welzel
- Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - S Grüdl
- Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - T Welss
- Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - M Claas
- Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - A Sättler
- Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - T Förster
- Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - B Banowski
- Henkel AG & Co. KGaA, Düsseldorf, Germany
| |
Collapse
|
15
|
Influence of ClearT and ClearT2 Agitation Conditions in the Fluorescence Imaging of 3D Spheroids. Int J Mol Sci 2020; 22:ijms22010266. [PMID: 33383886 PMCID: PMC7796078 DOI: 10.3390/ijms22010266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 11/16/2022] Open
Abstract
3D tumor spheroids have arisen in the last years as potent tools for the in vitro screening of novel anticancer therapeutics. Nevertheless, to increase the reproducibility and predictability of the data originated from the spheroids it is still necessary to develop or optimize the techniques used for spheroids’ physical and biomolecular characterization. Fluorescence microscopy, such as confocal laser scanning microscopy (CLSM), is a tool commonly used by researchers to characterize spheroids structure and the antitumoral effect of novel therapeutics. However, its application in spheroids’ analysis is hindered by the limited light penetration in thick samples. For this purpose, optical clearing solutions have been explored to increase the spheroids’ transparency by reducing the light scattering. In this study, the influence of agitation conditions (i.e., static, horizontal agitation, and rotatory agitation) on the ClearT and ClearT2 methods’ clearing efficacy and tumor spheroids’ imaging by CLSM was characterized. The obtained results demonstrate that the ClearT method results in the improved imaging of the spheroids interior, whereas the ClearT2 resulted in an increased propidium iodide mean fluorescence intensity as well as a higher signal depth in the Z-axis. Additionally, for both methods, the best clearing results were obtained for the spheroids treated under the rotatory agitation. In general, this work provides new insights on the ClearT and ClearT2 clearing methodologies and their utilization for improving the reproducibility of the data obtained through the CLSM, such as the analysis of the cell death in response to therapeutics administration.
Collapse
|
16
|
Zurina IM, Gorkun AA, Dzhussoeva EV, Kolokoltsova TD, Markov DD, Kosheleva NV, Morozov SG, Saburina IN. Human Melanocyte-Derived Spheroids: A Precise Test System for Drug Screening and a Multicellular Unit for Tissue Engineering. Front Bioeng Biotechnol 2020; 8:540. [PMID: 32582665 PMCID: PMC7287162 DOI: 10.3389/fbioe.2020.00540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Pigmentation is the result of melanin synthesis, which takes place in melanocytes, and its further distribution. A dysregulation in melanocytes' functionality can result in the loss of pigmentation, the appearance of pigment spots and melanoma development. Tissue engineering and the screening of new skin-lightening drugs require the development of simple and reproducible in vitro models with maintained functional activity. The aim of the study was to obtain and characterize spheroids from normal human melanocytes as a three-dimensional multicellular structure and as a test system for skin-lightening drug screening. Melanocytes are known to lose their ability to synthesize melanin in monolayer culture. When transferred under non-adhesive conditions in agarose multi-well plates, melanocytes aggregated and formed spheroids. As a result, the amount of melanin elevated almost two times within seven days. MelanoDerm™ (MatTek) skin equivalents were used as a comparison system. Cells in spheroids expressed transcription factors that regulate melanogenesis: MITF and Sox10, the marker of developed melanosomes-gp100, as well as tyrosinase (TYR)-the melanogenesis enzyme and melanocortin receptor 1 (MC1R)-the main receptor regulating melanin synthesis. Expression was maintained during 3D culturing. Thus, it can be stated that spheroids maintain melanocytes' functional activity compared to that in the multi-layered MelanoDerm™ skin equivalents. Culturing both spheroids and MelanoDerm™ for seven days in the presence of the skin-lightening agent fucoxanthin resulted in a more significant lowering of melanin levels in spheroids. Significant down-regulation of gp100, MITF, and Sox10 transcription factors, as well as 10-fold down-regulation of TYR expression, was observed in spheroids by day 7 in the presence of fucoxanthin, thus inhibiting the maturation of melanosomes and the synthesis of melanin. MelanoDerm™ samples were characterized by significant down-regulation of only MITF, Sox10 indicating that spheroids formed a more sensitive system allowed for quantitative assays. Collectively, these data illustrate that normal melanocytes can assemble themselves into spheroids-the viable structures that are able to accumulate melanin and maintain the initial functional activity of melanocytes. These spheroids can be used as a more affordable and easy-to-use test system than commercial skin equivalents for drug screening.
Collapse
Affiliation(s)
- Irina M Zurina
- Laboratory of Cell Biology and Developmental Pathology, FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia.,Department of Modern Biomaterials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,FSBEI FPE Russian Medical Academy of Continuous Professional Education of the Russian Ministry of Healthcare, Moscow, Russia
| | - Anastasiya A Gorkun
- Laboratory of Cell Biology and Developmental Pathology, FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia.,Department of Modern Biomaterials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,FSBEI FPE Russian Medical Academy of Continuous Professional Education of the Russian Ministry of Healthcare, Moscow, Russia
| | - Ekaterina V Dzhussoeva
- Laboratory of Cell Biology and Developmental Pathology, FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Tamara D Kolokoltsova
- Laboratory of Cell Biology and Developmental Pathology, FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia.,FSBEI FPE Russian Medical Academy of Continuous Professional Education of the Russian Ministry of Healthcare, Moscow, Russia
| | - Dmitriy D Markov
- Institute of Molecular Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - Nastasia V Kosheleva
- Laboratory of Cell Biology and Developmental Pathology, FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia.,FSBEI FPE Russian Medical Academy of Continuous Professional Education of the Russian Ministry of Healthcare, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey G Morozov
- Laboratory of Cell Biology and Developmental Pathology, FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Irina N Saburina
- Laboratory of Cell Biology and Developmental Pathology, FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia.,FSBEI FPE Russian Medical Academy of Continuous Professional Education of the Russian Ministry of Healthcare, Moscow, Russia
| |
Collapse
|
17
|
[Use of 2D and 3D cell cultures in dermatology]. Hautarzt 2020; 71:91-100. [PMID: 31965205 DOI: 10.1007/s00105-019-04537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The skin is a complex organ that performs a number of vital functions, including forming a physical barrier that protects our body from the penetration of pathogens and irritants and from excessive transepidermal water loss. In addition to its passive properties, the skin is also actively involved in the immune process. A complex structure of different cell types and structures allows the skin to fulfil these functions. In vitro research often faces the problem that simple 2D cell cultures are not able to adequately map these functions. Here 3D skin models offer a possible solution. In recent years, there has been significant development in this field; the reproducibility of the method as well as the physiological structure and tissue architecture of the 3D skin models have been improved. Depending on the research question, protocols for 3D skin models have been published, ranging from simple multilayer epidermis models to highly complex vascularized 3D full skin models.
Collapse
|
18
|
Bovell DL. The evolution of eccrine sweat gland research towards developing a model for human sweat gland function. Exp Dermatol 2019; 27:544-550. [PMID: 29626846 DOI: 10.1111/exd.13556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2018] [Indexed: 12/30/2022]
Abstract
For several decades now, researchers, professional bodies, governments, and journals such as the journal of Experimental Dermatology have worked to reduce the number of animals used in experimentation. This review centres on investigations into how human sweat glands produce sweat and how that research has evolved over the years. It is hoped that this review will show that as methodologies advanced, sweat gland research has come to rely less and less on a variety of animal models as investigative tools and information is being primarily obtained through human and mouse material, with a view to further reductions in using animal models.
Collapse
Affiliation(s)
- Douglas L Bovell
- Department of Medical Education, Weill Cornell Medicine - Qatar, Doha, Qatar
| |
Collapse
|
19
|
Diao J, Liu J, Wang S, Chang M, Wang X, Guo B, Yu Q, Yan F, Su Y, Wang Y. Sweat gland organoids contribute to cutaneous wound healing and sweat gland regeneration. Cell Death Dis 2019; 10:238. [PMID: 30858357 PMCID: PMC6411741 DOI: 10.1038/s41419-019-1485-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 02/01/2023]
Abstract
Sweat glands perform a vital thermoregulatory function in mammals. Like other skin components, they originate from epidermal progenitors. However, they have low regenerative potential in response to injury. We have established a sweat gland culture and expansion method using 3D organoids cultures. The epithelial cells derived from sweat glands in dermis of adult mouse paw pads were embedded into Matrigel and formed sweat gland organoids (SGOs). These organoids maintained remarkable stem cell features and demonstrated differentiation capacity to give rise to either sweat gland cells (SGCs) or epidermal cells. Moreover, the bipotent SGO-derived cells could be induced into stratified epidermis structures at the air−liquid interface culture in a medium tailored for skin epidermal cells in vitro. The SGCs embedded in Matrigel tailored for sweat glands formed epithelial organoids, which expressed sweat-gland-specific markers, such as cytokeratin (CK) 18 and CK19, aquaporin (AQP) 5 and αATP. More importantly, they had potential of regeneration of epidermis and sweat gland when they were transplanted into the mouse back wound and claw pad with sweat gland injury, respectively. In summary, we established and optimized culture conditions for effective generation of mouse SGOs. These cells are candidates to restore impaired sweat gland tissue as well as to improve cutaneous skin regeneration.
Collapse
Affiliation(s)
- Jinmei Diao
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Juan Liu
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Shuyong Wang
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Mingyang Chang
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Xuan Wang
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Baolin Guo
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Qunfang Yu
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Fang Yan
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Yuxin Su
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Yunfang Wang
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China.
| |
Collapse
|
20
|
Li S, Zheng X, Nie Y, Chen W, Liu Z, Tao Y, Hu X, Hu Y, Qiao H, Qi Q, Pei Q, Cai D, Yu M, Mou C. Defining Key Genes Regulating Morphogenesis of Apocrine Sweat Gland in Sheepskin. Front Genet 2019; 9:739. [PMID: 30761184 PMCID: PMC6363705 DOI: 10.3389/fgene.2018.00739] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/22/2018] [Indexed: 01/04/2023] Open
Abstract
The apocrine sweat gland is a unique skin appendage in humans compared to mouse and chicken models. The absence of apocrine sweat glands in chicken and murine skin largely restrains further understanding of the complexity of human skin biology and skin diseases, like hircismus. Sheep may serve as an additional system for skin appendage investigation owing to the distributions and histological similarities between the apocrine sweat glands of sheep trunk skin and human armpit skin. To understand the molecular mechanisms underlying morphogenesis of apocrine sweat glands in sheepskin, transcriptome analyses were conducted to reveal 1631 differentially expressed genes that were mainly enriched in three functional groups (cellular component, molecular function and biological process), particularly in gland, epithelial, hair follicle and skin development. There were 7 Gene Ontology (GO) terms enriched in epithelial cell migration and morphogenesis of branching epithelium that were potentially correlated with the wool follicle peg elongation. An additional 5 GO terms were enriched in gland morphogenesis (20 genes), gland development (42 genes), salivary gland morphogenesis and development (8 genes), branching involved in salivary gland morphogenesis (6 genes) and mammary gland epithelial cell differentiation (4 genes). The enriched gland-related genes and two Kyoto Encyclopedia of Genes and Genomes pathway genes (WNT and TGF-β) were potentially involved in the induction of apocrine sweat glands. Genes named BMPR1A, BMP7, SMAD4, TGFB3, WIF1, and WNT10B were selected to validate transcript expression by qRT-PCR. Immunohistochemistry was performed to localize markers for hair follicle (SOX2), skin fibroblast (PDGFRB), stem cells (SOX9) and BMP signaling (SMAD5) in sheepskin. SOX2 and PDGFRB were absent in apocrine sweat glands. SOX9 and SMAD5 were both observed in precursor cells of apocrine sweat glands and later in gland ducts. These results combined with the upregulation of BMP signaling genes indicate that apocrine sweat glands were originated from outer root sheath of primary wool follicle and positively regulated by BMP signaling. This report established the primary network regulating early development of apocrine sweat glands in sheepskin and will facilitate the further understanding of histology and pathology of apocrine sweat glands in human and companion animal skin.
Collapse
Affiliation(s)
- Shaomei Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinting Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yangfan Nie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenshuo Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhiwei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yingfeng Tao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuewen Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong Hu
- Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Haisheng Qiao
- Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Quanqing Qi
- Sanjiaocheng Sheep Breeding Farm, Haibei, China
| | | | - Danzhuoma Cai
- Animal Husbandry and Veterinary Station, Haixi, China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyan Mou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
21
|
Li H, Chen L, Zhang M, Xie S, Zhang C. Detection of fluid secretion of three-dimensional reconstructed eccrine sweat glands by magnetic resonance imaging. Exp Dermatol 2019; 28:53-58. [PMID: 30390354 DOI: 10.1111/exd.13833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 02/05/2023]
Abstract
We previously showed three-dimensional (3D) reconstructed eccrine sweat glands have similar structures as native eccrine sweat glands, but whether the 3D reconstructed sweat glands appropriately secrete fluid is still unknown. In this study, Matrigel-embedded human eccrine sweat gland cells or Matrigel alone were implanted into the groin subcutis of the nude mice. Ten weeks post-implantation, images of the subcutaneously formed plugs, as well as footpads of rats, pre- and post-pilocarpine/normal saline (NS) injection were acquired using a fat-suppressed proton density-weighted magnetic resonance imaging (MRI) sequence at 7.0 T, and the regions of interest (ROIs) in plugs and rat footpads were analysed and graphed. A significant increase in the ROI mean proton intensity occurred in both 3D reconstructed and native eccrine sweat glands after pilocarpine injection. The mean proton intensity had no noticeable changes in ROIs of Matrigel plugs between pre- and post-pilocarpine injection, and in ROIs of rat footpads between pre- and post-NS injection. In conclusion, the 3D reconstructed sweat glands possess fluid secretion, which is detectable by fat-suppressed proton density-weighted MRI.
Collapse
Affiliation(s)
- Haihong Li
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Liyun Chen
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Mingjun Zhang
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Sitian Xie
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Cuiping Zhang
- Wound Healing and Cell Biology Laboratory, The First Affiliated Hospital, General Hospital of the Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
22
|
Randall MJ, Jüngel A, Rimann M, Wuertz-Kozak K. Advances in the Biofabrication of 3D Skin in vitro: Healthy and Pathological Models. Front Bioeng Biotechnol 2018; 6:154. [PMID: 30430109 PMCID: PMC6220074 DOI: 10.3389/fbioe.2018.00154] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/05/2018] [Indexed: 12/27/2022] Open
Abstract
The relevance for in vitro three-dimensional (3D) tissue culture of skin has been present for almost a century. From using skin biopsies in organ culture, to vascularized organotypic full-thickness reconstructed human skin equivalents, in vitro tissue regeneration of 3D skin has reached a golden era. However, the reconstruction of 3D skin still has room to grow and develop. The need for reproducible methodology, physiological structures and tissue architecture, and perfusable vasculature are only recently becoming a reality, though the addition of more complex structures such as glands and tactile corpuscles require advanced technologies. In this review, we will discuss the current methodology for biofabrication of 3D skin models and highlight the advantages and disadvantages of the existing systems as well as emphasize how new techniques can aid in the production of a truly physiologically relevant skin construct for preclinical innovation.
Collapse
Affiliation(s)
- Matthew J Randall
- Department of Health Science and Technology, Institute for Biomechanics, ETH Zürich, Zurich, Switzerland
| | - Astrid Jüngel
- Center of Experimental Rheumatology, University Clinic of Rheumatology, Balgrist University Hospital, University Hospital Zurich, Zurich, Switzerland
| | - Markus Rimann
- Competence Center TEDD, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Waedenswil, Switzerland.,Center for Cell Biology & Tissue Engineering, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Waedenswil, Switzerland
| | - Karin Wuertz-Kozak
- Department of Health Science and Technology, Institute for Biomechanics, ETH Zürich, Zurich, Switzerland.,Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (AU), Munich, Germany.,Department of Health Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
23
|
Nunes AS, Costa EC, Barros AS, de Melo-Diogo D, Correia IJ. Establishment of 2D Cell Cultures Derived From 3D MCF-7 Spheroids Displaying a Doxorubicin Resistant Profile. Biotechnol J 2018; 14:e1800268. [PMID: 30242980 DOI: 10.1002/biot.201800268] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/14/2018] [Indexed: 01/09/2023]
Abstract
In vitro 3D cancer spheroids generally exhibit a drug resistance profile similar to that found in solid tumors. Due to this property, these models are an appealing for anticancer compounds screening. Nevertheless, the techniques and methods aimed for drug discovery are mostly standardized for cells cultured in 2D. The development of 2D cell culture models displaying a drug resistant profile is required to mimic the in vivo tumors, while the equipment, techniques, and methodologies established for conventional 2D cell cultures can continue to be employed in compound screening. In this work, the response of 3D-derived MCF-7 cells subsequently cultured in 2D in medium supplemented with glutathione (GSH) (antioxidant agent found in high levels in breast cancer tissues and a promoter of cancer cells resistance) to Doxorubicin (DOX) is evaluated. These cells demonstrated a resistance toward DOX closer to that displayed by 3D spheroids, which is higher than that exhibited by standard 2D cell cultures. In fact, the 50% inhibitory concentration (IC50 ) of DOX in 3D-derived MCF-7 cell cultures supplemented with GSH is about eight-times higher than that obtained for conventional 2D cell cultures (cultured without GSH), and is only about two-times lower than that attained for 3D MCF-7 spheroids (cultured without GSH). Further investigation revealed that this improved resistance of 3D-derived MCF-7 cells may result from their increased P-glycoprotein (P-gp) activity and reduced production of intracellular reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Ana S Nunes
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Elisabete C Costa
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Andreia S Barros
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal.,CIEPQF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, Polo II, 3030-790, Coimbra, Portugal
| |
Collapse
|
24
|
Sun M, Puri S, Parfitt GJ, Mutoji N, Coulson-Thomas VJ. Hyaluronan Regulates Eyelid and Meibomian Gland Morphogenesis. Invest Ophthalmol Vis Sci 2018; 59:3713-3727. [PMID: 30046813 PMCID: PMC6059170 DOI: 10.1167/iovs.18-24292] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022] Open
Abstract
Purpose The Meibomian gland (MG) produces the lipid layer of the tear film, and changes to the MG that lead to a decrease or alteration in lipid quality/content may lead to MG dysfunction, a major cause of evaporative dry eye disease with prevalence ranging from 39% to 50%. Little is known about the developmental cues that regulate MG morphogenesis and homeostasis. Our study investigates the role of hyaluronan (HA), a major extracellular matrix component, in eyelid formation and MG development and function. Methods Hyaluronan synthase (Has) knockout mice were used to determine the role of HA in the eyelid and MG. Eyelids were obtained during different developmental stages and MG morphology was analyzed. Tet-off H2B-GFP/K5tTA mice and 5-ethynyl-2'-deoxyurdine (EdU) incorporation were used to determine the role of HA in maintaining slow-cycling and proliferating cells within the MG, respectively. Data were confirmed using an in vitro proliferation assay, differentiation assay and spheroid cultures. Results Has knockout mice present precocious MG development, and adult mice present MG hyperplasia and dysmorphic MGs and eyelids, with hyperplastic growths arising from the palpebral conjunctiva. Our data show that a highly organized HA network encompasses the MG, and basal cells are embedded within this HA matrix, which supports the proliferating cells. Spheroid cultures showed that HA promotes acini formation. Conclusions HA plays an important role in MG and eyelid development. Our findings suggest that Has knockout mice have abnormal HA synthesis, which in turn leads to precocious and exacerbated MG morphogenesis culminating in dysmorphic eyelids and MGs.
Collapse
Affiliation(s)
- Mingxia Sun
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Sudan Puri
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Geraint J. Parfitt
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, Wales, United Kingdom
- School of Optometry and Vision Sciences, Cardiff University, Wales, United Kingdom
| | - Nadine Mutoji
- College of Optometry, University of Houston, Houston, Texas, United States
| | | |
Collapse
|
25
|
Costa EC, Moreira AF, de Melo-Diogo D, Correia IJ. Polyethylene glycol molecular weight influences the ClearT2 optical clearing method for spheroids imaging by confocal laser scanning microscopy. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-11. [PMID: 29752799 DOI: 10.1117/1.jbo.23.5.055003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
Some fluorescence microscopy techniques, such as confocal laser scanning microscopy (CLSM), have a limited penetration depth. Consequently, the visualization and imaging of three-dimensional (3-D) cell cultures, such as spheroids, using these methods can be a significant challenge. Therefore, to improve the imaging of 3-D tissues, optical clearing methods have been optimized to render transparency to the opaque spheroids. The influence of the polyethylene glycol (PEG) molecular weight (MW) used in the ClearT2 method for the imaging of propidium iodide (PI)-stained spheroids was investigated. The results demonstrated that the ClearT2 clearing method contributes to spheroids transparency and to the preservation of PI fluorescence intensity for all the PEG MW used (4000, 8000, and 10,000 Da). Furthermore, the ClearT2 method performed using PEG 4000 Da allowed a better PI signal penetration depth and cross-section depth. Overall, the optimization of PEG MW can improve the imaging of intact spheroids by CLSM. Furthermore, this work may also contribute to increase the application of 3-D cell culture models by the pharmaceutical industry for the high-throughput screening of therapeutics.
Collapse
Affiliation(s)
- Elisabete C Costa
- Universidade da Beira Interior, Centro de Investigação em Ciⓔncias da Saúde-Health Sciences Research, Portugal
| | - André F Moreira
- Universidade da Beira Interior, Centro de Investigação em Ciⓔncias da Saúde-Health Sciences Research, Portugal
| | - Duarte de Melo-Diogo
- Universidade da Beira Interior, Centro de Investigação em Ciⓔncias da Saúde-Health Sciences Research, Portugal
| | - Ilídio J Correia
- Universidade da Beira Interior, Centro de Investigação em Ciⓔncias da Saúde-Health Sciences Research, Portugal
- Universidade de Coimbra, Centro de Investigação em Engenharia dos Processos Químicos e dos Produtos, Portugal
| |
Collapse
|
26
|
Jimenez F, Alam M, Hernandez I, Poblet E, Hardman JA, Paus R. An efficient method for eccrine gland isolation from human scalp. Exp Dermatol 2018; 27:678-681. [DOI: 10.1111/exd.13505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Francisco Jimenez
- Mediteknia Hair Transplant Clinic and Hair Lab; Las Palmas de Gran Canaria Canary Islands Spain
- Universidad Fernando Pessoa Canarias; Gran Canaria Spain
- Medical Pathology Group; IUIBS; Universidad de Las Palmas Gran Canaria; Gran Canaria Spain
| | - Majid Alam
- Mediteknia Hair Transplant Clinic and Hair Lab; Las Palmas de Gran Canaria Canary Islands Spain
- Universidad Fernando Pessoa Canarias; Gran Canaria Spain
- Monasterium Laboratory; Münster Germany
| | - Irene Hernandez
- Mediteknia Hair Transplant Clinic and Hair Lab; Las Palmas de Gran Canaria Canary Islands Spain
| | - Enrique Poblet
- Reina Sofia University General Hospital; University of Murcia; Murcia Spain
| | - Jonathan A. Hardman
- The Centre for Dermatology Research; MAHSC; University of Manchester; Manchester UK
- National Institutes of Health Biomedical Research Center; Manchester UK
| | - Ralf Paus
- The Centre for Dermatology Research; MAHSC; University of Manchester; Manchester UK
- National Institutes of Health Biomedical Research Center; Manchester UK
- Department of Dermatology; Miller School of Medicine; University of Miami; Miami FL
| |
Collapse
|