1
|
Braik A, Serna-Duque JA, Nefzi A, Aroui S, Esteban MÁ. Potential therapeutic use of dermaseptin S4 from the frog Phyllomedusa sauvagii and its derivatives against bacterial pathogens in fish. J Appl Microbiol 2024; 135:lxae222. [PMID: 39187398 DOI: 10.1093/jambio/lxae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
AIM Dermaseptins are one of the main families of antimicrobial peptides (AMPs) derived from the skin secretions of Hylidae frogs. Among them, dermaseptin S4 (DS4) is characterized by its broad-spectrum of activity against bacteria, protozoa, and fungi. In this study, the physicochemical properties of the native peptide DS4 (1-28) and two derivatives [DS4 (1-28)a and DS4 (1-26)a] isolated from the skin of the frog Phyllomedusa sauvagii were investigated and their antimicrobial properties against two marine pathogenic bacteria (Vibrio harveyi and Vibrio anguillarum) were examined. METHODS AND RESULTS The results indicate that the peptide DS4 (1-26)a has high-antibacterial activity against the tested strains and low-hemolytic activity (<30% lysis at the highest tested concentration of 100 µg/mL) compared to the other two peptides tested. In addition, all three peptides affect the membrane and cell wall integrity of both pathogenic bacteria, causing leakage of cell contents, with DS4 (1-26)a having the most severe impact. These skills were corroborated by transmission electron microscopy and by the variation of cations in their binding sites due to the effects caused by the AMPs. CONCLUSIONS These results suggest that DS4 and its derivatives, in particular the truncated and amidated peptide DS4 (1-26)a could be effective in the treatment of infections caused by these marine pathogenic bacteria. Future studies are required to validate the use of DS4 in vivo for the prevention of bacterial diseases in fish.
Collapse
Affiliation(s)
- Afef Braik
- Research Unit of Analysis and Process Applied on The Environment- APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5019, Tunisia
| | - John Alberto Serna-Duque
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Immunobiology for Aquaculture Group, Murcia 30100, Spain
| | - Adel Nefzi
- Florida International University, Port St. Lucie, FL 34987, USA
| | - Sonia Aroui
- Laboratory of Biochemistry, Research Unit: UR 12ES08 "Cell Signaling and Pathologies", Faculty of Medicine of Monastir, University of Monastir, Monastir 5019, Tunisia
| | - María Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Immunobiology for Aquaculture Group, Murcia 30100, Spain
| |
Collapse
|
2
|
Antony A, Purayil AK, Olakkaran S, Dhannura S, Shekh S, Gowd KH, Gurushankara HP. Antimicrobial and antitumor properties of anuran peptide temporin-SHf induce apoptosis in A549 lung cancer cells. Amino Acids 2024; 56:12. [PMID: 38319435 PMCID: PMC10847208 DOI: 10.1007/s00726-023-03373-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/20/2023] [Indexed: 02/07/2024]
Abstract
Temporin-SHf is a linear, ultra-short, hydrophobic, α-helix, and phe-rich cationic antimicrobial peptide. The antitumor activities and mechanism of temporin-SHf-induced cancer cell death are unknown. The temporin-SHf was synthesized by solid-phase Fmoc chemistry and antimicrobial and antitumor activities were investigated. Temporin-SHf was microbiocidal, non-hemolytic, and cytotoxic to human cancer cells but not to non-tumorigenic cells. It affected the cancer cells' lysosomal integrity and caused cell membrane damage. The temporin-SHf inhibited A549 cancer cell proliferation and migration. It is anti-angiogenic and causes cancer cell death through apoptosis. The molecular mechanism of action of temporin-SHf confirmed that it kills cancer cells by triggering caspase-dependent apoptosis through an intrinsic mitochondrial pathway. Owing to its short length and broad spectrum of antitumor activity, temporin-SHf is a promising candidate for developing a new class of anticancer drugs.
Collapse
Affiliation(s)
- Anet Antony
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, 671 320, India
- Department of Zoology, University of Calicut, Malappuram, Kerala, 673 635, India
| | - Anupama Kizhakke Purayil
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, 671 320, India
- Department of Molecular Biology, Kannur University, Dr. Janakiammal Campus, Thalasserry, Palayad, Kerala, 670 661, India
| | - Shilpa Olakkaran
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, 671 320, India
- Department of Zoology, University of Calicut, Malappuram, Kerala, 673 635, India
| | - Shweta Dhannura
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, 585 367, India
| | - Shamasoddin Shekh
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, 585 367, India
| | - Konkallu Hanumae Gowd
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, 585 367, India
| | | |
Collapse
|
3
|
Qu B, Yuan J, Liu X, Zhang S, Ma X, Lu L. Anticancer activities of natural antimicrobial peptides from animals. Front Microbiol 2024; 14:1321386. [PMID: 38298540 PMCID: PMC10827920 DOI: 10.3389/fmicb.2023.1321386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Cancer is the most common cause of human death worldwide, posing a serious threat to human health and having a negative impact on the economy. In the past few decades, significant progress has been made in anticancer therapies, but traditional anticancer therapies, including radiation therapy, surgery, chemotherapy, molecular targeted therapy, immunotherapy and antibody-drug conjugates (ADCs), have serious side effects, low specificity, and the emergence of drug resistance. Therefore, there is an urgent need to develop new treatment methods to improve efficacy and reduce side effects. Antimicrobial peptides (AMPs) exist in the innate immune system of various organisms. As the most promising alternatives to traditional drugs for treating cancers, some AMPs also have been proven to possess anticancer activities, which are defined as anticancer peptides (ACPs). These peptides have the advantages of being able to specifically target cancer cells and have less toxicity to normal tissues. More and more studies have found that marine and terrestrial animals contain a large amount of ACPs. In this article, we introduced the animal derived AMPs with anti-cancer activity, and summarized the types of tumor cells inhibited by ACPs, the mechanisms by which they exert anti-tumor effects and clinical applications of ACPs.
Collapse
Affiliation(s)
- Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| | - Jiangshui Yuan
- Department of Clinical Laboratory, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Xueli Liu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
- Medical Ethics Committee Office, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| | - Shicui Zhang
- College of Life and Geographic Sciences, Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi University, Kashi, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xuezhen Ma
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| |
Collapse
|
4
|
Zhang C, Zhong H, Li X, Xing Z, Liu J, Yu R, Deng X. Design, synthesis and bioactivity investigation of peptide-camptothecin conjugates as anticancer agents with a potential to overcome drug resistance. Int J Pharm 2023; 645:123402. [PMID: 37696345 DOI: 10.1016/j.ijpharm.2023.123402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Camptothecin (CPT) is a natural plant alkaloid from Camptotheca that exhibits a potent anticancer activity. However, its continued utilization is hindered by drawbacks such as low water solubility and restricted tumor selectivity. Cationic anticancer peptides (CAPs) are generally soluble in water, and exhibit favorable selectivity against malignant cells. In previous study, we have reported a CAP termed KM8-Aib present conspicuous selective anticancer effect. Thus, it is postulated conjugating KM8-Aib with CPT might be a plausible approach to improve the defects of CPT. A series of peptide-CPT conjugates were synthesized and subjected to biological evaluation. Among these compounds, Kb-CC07 displayed the highest selective activity against a set of cancer cell lines including drug-resistant cells, showing the IC50 values in the 0.11-1.01 μM range which is 1.9-22.6 times better than that of CPT, and a wide therapeutic index of 124.5 (vs 5.3 for CPT). The water solubility of Kb-CC07 was also improved by ∼ 100 fold compared with CPT. Further investigation unraveled that Kb-CC07 could effectively penetrate across plasma membranes and delivered more CPT molecules into cancer cells, overcoming the drug-resistance result from efflux drug transporters on tumor surface. In vivo experiments supported that Kb-CC07 has excellent in vivo antiproliferative activity against drug-resistant tumors over CPT (tumor growth inhibition of 98.2% and 37.5% for Kb-CC07 and CPT, respectively, at 5 μmol·kg-1), and prompts CPT accumulation in tumor tissue rather than normal organs, thus producing limited toxicities. To sum up, coupling therapeutic agents to CAPs would be a potential strategy to conquer the shortcomings of anticancer drugs. Additionally, Kb-CC07 is suggested to be a promising anticancer candidate deserving further investigation.
Collapse
Affiliation(s)
- Chenyu Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinic al Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; Department of Pharmacy, Guangzhou Chest Hospital, 62 Hengzhigang Road, Guangzhou 510095, China
| | - Honglan Zhong
- Department of Pharmacy, Guangzhou Chest Hospital, 62 Hengzhigang Road, Guangzhou 510095, China
| | - Xiang Li
- Department of Pharmacy, Guangzhou Chest Hospital, 62 Hengzhigang Road, Guangzhou 510095, China
| | - Zhenjian Xing
- Department of Pharmacy, Guangzhou Chest Hospital, 62 Hengzhigang Road, Guangzhou 510095, China
| | - Jiaqi Liu
- Analytical Applications Center, Shimadzu (China) Co., Ltd. Guangzhou Branch, 230 Gaotang Road, Guangzhou 510656, China
| | - Rui Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinic al Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Xin Deng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinic al Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
5
|
Pyrazole-Enriched Cationic Nanoparticles Induced Early- and Late-Stage Apoptosis in Neuroblastoma Cells at Sub-Micromolar Concentrations. Pharmaceuticals (Basel) 2023; 16:ph16030393. [PMID: 36986492 PMCID: PMC10056113 DOI: 10.3390/ph16030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Neuroblastoma (NB) is a severe form of tumor occurring mainly in young children and originating from nerve cells found in the abdomen or next to the spine. NB needs more effective and safer treatments, as the chance of survival against the aggressive form of this disease are very small. Moreover, when current treatments are successful, they are often responsible for unpleasant health problems which compromise the future and life of surviving children. As reported, cationic macromolecules have previously been found to be active against bacteria as membrane disruptors by interacting with the negative constituents of the surface of cancer cells, analogously inducing depolarization and permeabilization, provoking lethal damage to the cytoplasmic membrane, and cause loss of cytoplasmic content and consequently, cell death. Here, aiming to develop new curative options for counteracting NB cells, pyrazole-loaded cationic nanoparticles (NPs) (BBB4-G4K and CB1H-P7 NPs), recently reported as antibacterial agents, were assayed against IMR 32 and SHSY 5Y NB cell lines. Particularly, while BBB4-G4K NPs demonstrated low cytotoxicity against both NB cell lines, CB1H-P7 NPs were remarkably cytotoxic against both IMR 32 and SHSY 5Y cells (IC50 = 0.43–0.54 µM), causing both early-stage (66–85%) and late-stage apoptosis (52–65%). Interestingly, in the nano-formulation of CB1H using P7 NPs, the anticancer effects of CB1H and P7 were increased by 54–57 and 2.5–4-times, respectively against IMR 32 cells, and by 53–61 and 1.3–2 times against SHSY 5Y cells. Additionally, based on the IC50 values, CB1H-P7 was also 1-12-fold more potent than fenretinide, an experimental retinoid derivative in a phase III clinical trial, with remarkable antineoplastic and chemopreventive properties. Collectively, due to these results and their good selectivity for cancer cells (selectivity indices = 2.8–3.3), CB1H-P7 NPs represent an excellent template material for developing new treatment options against NB.
Collapse
|
6
|
Zaman R, Islam RA, Chowdhury EH. Evolving therapeutic proteins to precisely kill cancer cells. J Control Release 2022; 351:779-804. [DOI: 10.1016/j.jconrel.2022.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
|
7
|
Nogueira TAC, Kaefer IL, Sartim MA, Pucca MB, Sachett J, Barros AL, Júnior MBA, Baía-da-Silva DC, Bernarde PS, Koolen HHF, Monteiro WM. The Amazonian kambô frog Phyllomedusa bicolor (Amphibia: Phyllomedusidae): Current knowledge on biology, phylogeography, toxinology, ethnopharmacology and medical aspects. Front Pharmacol 2022; 13:997318. [PMID: 36278168 PMCID: PMC9582840 DOI: 10.3389/fphar.2022.997318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Phyllomedusa bicolor (Phyllomedusidae), popularly known as the kambô in Brazil, is a tree frog that is widely distributed in South American countries and is known for producing a skin secretion that is rich in bioactive peptides, which are often used in indigenous rituals. The biological effects of the skin secretion were observed in the first studies with indigenous communities. Over the last six decades, researchers have been studying the chemical composition in detail, as well as the potential pharmacological applications of its constituents. For this reason, indigenous communities and health agents fear the misuse of the kambô, or the inappropriate use of the species, which can result in health complications or even death of users. This article seeks to provide a transdisciplinary review that integrates knowledge regarding the biology of P. bicolor, ethnoknowledge about the ritual of the kambô, and the chemistry and pharmacology of the skin secretion of this species, in addition to medical aspects of the indiscriminate use of the kambô. Furthermore, this review seeks to shed light on perspectives on the future of research related to the kambô.
Collapse
Affiliation(s)
- Thais A. C. Nogueira
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Igor Luis Kaefer
- Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Marco A. Sartim
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Departamento de Pós-Graduação, Universidade Nilton Lins, Manaus, Amazonas, Brazil
| | - Manuela B. Pucca
- Curso de Medicina, Universidade Federal de Roraima, Boa Vista, Roraima, Brazil
| | - Jacqueline Sachett
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Departamento de Ensino e Pesquisa, Fundação Alfredo da Matta, Manaus, Amazonas, Brazil
| | - André L. Barros
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Moysés B. A. Júnior
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Itacoatiara, Amazonas, Brazil
| | - Djane C. Baía-da-Silva
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Paulo S. Bernarde
- Laboratório de Herpetologia, Campus Floresta, Universidade Federal do Acre, Cruzeiro do Sul, Acre, Brazil
| | - Hector H. F. Koolen
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Wuelton M. Monteiro
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|
8
|
Recent Advances in Multifunctional Antimicrobial Peptides as Immunomodulatory and Anticancer Therapy: Chromogranin A-Derived Peptides and Dermaseptins as Endogenous versus Exogenous Actors. Pharmaceutics 2022; 14:pharmaceutics14102014. [PMID: 36297449 PMCID: PMC9608009 DOI: 10.3390/pharmaceutics14102014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) are produced by all living organisms exhibiting antimicrobial activities and representing the first line of innate defense against pathogens. In this context, AMPs are suggested as an alternative to classical antibiotics. However, several researchers reported their involvement in different processes defining them as Multifunctional AMPs (MF-AMPs). Interestingly, these agents act as the endogenous responses of the human organism against several dangerous stimuli. Still, they are identified in other organisms and evaluated for their anticancer therapy. Chromogranin A (CgA) is a glyco-phosphoprotein discovered for the first time in the adrenal medulla but also produced in several cells. CgA can generate different derived AMPs influencing numerous physiological processes. Dermaseptins (DRSs) are a family of α-helical-shaped polycationic peptides isolated from the skin secretions of several leaf frogs from the Phyllomedusidae family. Several DRSs were identified as AMPs and, until now, more than 65 DRSs have been classified. Recently, these exogenous molecules were characterized for their anticancer activity. In this review, we summarize the role of these two classes of MF-AMPs as an example of endogenous molecules for CgA-derived peptides, able to modulate inflammation but also as exogenous molecules for DRSs, exerting anticancer activities.
Collapse
|
9
|
Hazime N, Belguesmia Y, Barras A, Amiche M, Boukherroub R, Drider D. Enhanced Antibacterial Activity of Dermaseptin through Its Immobilization on Alginate Nanoparticles-Effects of Menthol and Lactic Acid on Its Potentialization. Antibiotics (Basel) 2022; 11:antibiotics11060787. [PMID: 35740193 PMCID: PMC9220408 DOI: 10.3390/antibiotics11060787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022] Open
Abstract
Dermaseptin B2 (DRS-B2) is an antimicrobial peptide secreted by Phyllomedusa bicolor, which is an Amazonian tree frog. Here, we show that the adsorption of DRS-B2 on alginate nanoparticles (Alg NPs) results in a formulation (Alg NPs + DRS-B2) with a remarkable antibacterial activity against Escherichia coli ATCC 8739 and E. coli 184 strains, which are sensitive and resistant, respectively, to colistin. The antibacterial activity, obtained with this new formulation, is higher than that obtained with DRS-B2 alone. Of note, the addition of lactic acid or menthol to this new formulation augments its antibacterial activity against the aforementioned Gram-negative bacilli. The safety of DRS-B2, and also that of the new formulation supplemented or not with a small molecule such as lactic acid or menthol has been proven on the human erythrocytes and the eukaryotic cell line types HT29 (human) and IPEC-1 (animal). Similarly, their stability was determined under the conditions mimicking the gastrointestinal tract with different conditions: pH, temperature, and the presence of digestive enzymes. Based on all the obtained data, we assume that these new formulations are promising and could be suggested, after in vivo approval and completing regulation aspects, as alternatives to antibiotics to fight infections caused by Gram-negative bacilli such as E. coli.
Collapse
Affiliation(s)
- Noura Hazime
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France; (N.H.); (A.B.); (R.B.)
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France;
| | - Yanath Belguesmia
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France;
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France; (N.H.); (A.B.); (R.B.)
| | - Mohamed Amiche
- Laboratoire de Biogenèse des Signaux Peptidiques (BioSiPe), Institut de Biologie Paris-Seine, Sorbonne Université—CNRS, F-75252 Paris, France;
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France; (N.H.); (A.B.); (R.B.)
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France;
- Correspondence:
| |
Collapse
|
10
|
Jafari A, Babajani A, Sarrami Forooshani R, Yazdani M, Rezaei-Tavirani M. Clinical Applications and Anticancer Effects of Antimicrobial Peptides: From Bench to Bedside. Front Oncol 2022; 12:819563. [PMID: 35280755 PMCID: PMC8904739 DOI: 10.3389/fonc.2022.819563] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a multifaceted global health issue and one of the leading causes of death worldwide. In recent years, medical science has achieved great advances in the diagnosis and treatment of cancer. Despite the numerous advantages of conventional cancer therapies, there are major drawbacks including severe side effects, toxicities, and drug resistance. Therefore, the urgency of developing new drugs with low cytotoxicity and treatment resistance is increasing. Antimicrobial peptides (AMPs) have attracted attention as a novel therapeutic strategy for the treatment of various cancers, targeting tumor cells with less toxicity to normal tissues. In this review, we present the structure, biological function, and underlying mechanisms of AMPs. The recent experimental studies and clinical trials on anticancer peptides in different cancer types as well as the challenges of their clinical application have also been discussed.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Amirhesam Babajani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Sarrami Forooshani
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Mohsen Yazdani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Thompson C, Williams ML. Review of the physiological effects of Phyllomedusa bicolor skin secretion peptides on humans receiving Kambô. TOXICOLOGY RESEARCH AND APPLICATION 2022. [DOI: 10.1177/23978473221085746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Kambô is an Amazonian ritual which includes the application of the defensive secretion of the Phyllomedusa bicolor frog to superficial burns made on the skin of human participants. The secretion, which contains a range of biologically active linear peptides, induces a short purgative experience that is extensively reported by participants to leave them with positive physical, emotional and spiritual after-effects. Various peptides identified in the secretion exert analgesic, vascular, and gastric effects in vivo, and antimicrobial and anti-cancer effects, among others, in vitro. While there has been some investigation into the physiological effects of various individual peptides isolated from the P. bicolor secretion, very little is known about the putative synergistic effects of concurrent administration of the complete substance through the transdermal methods used traditionally in the Kambô ritual. In this review and commentary, the authors summarize the existing biological information from animal research on peptides from the P. bicolor secretion, then consider the evidence in the context of Kambô administration to humans. The presented information suggests that specific peptides are likely to contribute to analogous physiological effects of Kambô in humans. The possibility that beyond their physiological action, the experiential or phenomenological component of these effects may have therapeutic applications is discussed, concluding with a consideration of the feasibility of human clinical research.
Collapse
Affiliation(s)
| | - Martin L Williams
- Turner Institute of Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Thompson C, Malcolm B, Tegzes J. Use of Phyllomedusa bicolour secretion during kambô ritual: observational responses, dosage, and risk of adverse events. TOXICOLOGY COMMUNICATIONS 2022. [DOI: 10.1080/24734306.2021.2006524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
| | - Benjamin Malcolm
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | | |
Collapse
|
13
|
Antitumor Activity and Mechanism of Action of Hormonotoxin, an LHRH Analog Conjugated to Dermaseptin-B2, a Multifunctional Antimicrobial Peptide. Int J Mol Sci 2021; 22:ijms222111303. [PMID: 34768734 PMCID: PMC8582938 DOI: 10.3390/ijms222111303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is the most common cancer in men. For patients with advanced or metastatic prostate cancer, available treatments can slow down its progression but cannot cure it. The development of innovative drugs resulting from the exploration of biodiversity could open new therapeutic alternatives. Dermaseptin-B2, a natural multifunctional antimicrobial peptide isolated from Amazonian frog skin, has been reported to possess antitumor activity. To improve its pharmacological properties and to decrease its peripheral toxicity and lethality we developed a hormonotoxin molecule composed of dermaseptin-B2 combined with d-Lys6-LHRH to target the LHRH receptor. This hormonotoxin has a significant antiproliferative effect on the PC3 tumor cell line, with an IC50 value close to that of dermaseptin-B2. Its antitumor activity has been confirmed in vivo in a xenograft mouse model with PC3 tumors and appears to be better tolerated than dermaseptin-B2. Biophysical experiments showed that the addition of LHRH to dermaseptin-B2 did not alter its secondary structure or biological activity. The combination of different experimental approaches indicated that this hormonotoxin induces cell death by an apoptotic mechanism instead of necrosis, as observed for dermaseptin-B2. These results could explain the lower toxicity observed for this hormonotoxin compared to dermaseptin-B2 and may represent a promising targeting approach for cancer therapy.
Collapse
|
14
|
Buri MV, Sperandio LP, de Souza KFS, Antunes F, Rezende MM, Melo CM, Pinhal MAS, Barros CC, Fernig DG, Yates EA, Ide JS, Smaili SS, Riske KA, Nader HB, Luis Dos Santos Tersariol I, Lima MA, Judice WAS, Miranda A, Paredes-Gamero EJ. Endocytosis and the Participation of Glycosaminoglycans Are Important to the Mechanism of Cell Death Induced by β-Hairpin Antimicrobial Peptides. ACS APPLIED BIO MATERIALS 2021; 4:6488-6501. [PMID: 35006908 DOI: 10.1021/acsabm.1c00390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cytotoxic mode of action of four antimicrobial peptides (AMPs) (gomesin, tachyplesin, protegrin, and polyphemusin) against a HeLa cell tumor model is discussed. A study of cell death by AMP stimulation revealed some similarities, including annexin-V externalization, reduction of mitochondrial potential, insensitivity against inhibitors of cell death, and membrane permeabilization. Evaluation of signaling proteins and gene expression that control cell death revealed wide variation in the responses to AMPs. However, the ability to cross cell membranes emerged as an important characteristic of AMP-dependent cell death, where endocytosis mediated by dynamin is a common mechanism. Furthermore, the affinity between AMPs and glycosaminoglycans (GAGs) and GAG participation in the cytotoxicity of AMPs were verified. The results show that, despite their primary and secondary structure homology, these peptides present different modes of action, but endocytosis and GAG participation are an important and common mechanism of cytotoxicity for β-hairpin peptides.
Collapse
Affiliation(s)
- Marcus Vinicius Buri
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Letícia Paulino Sperandio
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi Das Cruzes, Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi Das Cruzes 08780-911, São Paulo, Brazil.,Departamento de Farmacologia, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Kamylla F S de Souza
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Fernanda Antunes
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Marina Mastelaro Rezende
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Carina Mucciolo Melo
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Maria A S Pinhal
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil.,Departmento de Bioquímica, Faculdade de Medicina Do ABC, Santo André 09060-870, Brazil
| | - Carlos C Barros
- Departamento de Nutrição, Universidade Federal de Pelotas, R. Gomes Carneiro, No1, Pelotas 96010-610, Rio Grande do Sul, Brazil
| | - David G Fernig
- Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Edwin A Yates
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil.,Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Jaime S Ide
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519, United States
| | - Soraya S Smaili
- Departamento de Farmacologia, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Karin A Riske
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Helena B Nader
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | | | - Marcelo Andrade Lima
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Wagner A S Judice
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi Das Cruzes, Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi Das Cruzes 08780-911, São Paulo, Brazil
| | - Antonio Miranda
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil
| | - Edgar J Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo 04044-020, São Paulo, Brazil.,Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso Do Sul, Campo Grande 79070-900, Mato Grosso do Sul, Brazil
| |
Collapse
|
15
|
How to Transform an Exceptional Case Report Into a Therapy: Following the Frog Out of the Box. Hemasphere 2021; 5:e629. [PMID: 34386709 PMCID: PMC8354625 DOI: 10.1097/hs9.0000000000000629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/02/2021] [Indexed: 11/26/2022] Open
|
16
|
Vitale I, Yamazaki T, Wennerberg E, Sveinbjørnsson B, Rekdal Ø, Demaria S, Galluzzi L. Targeting Cancer Heterogeneity with Immune Responses Driven by Oncolytic Peptides. Trends Cancer 2021; 7:557-572. [PMID: 33446447 DOI: 10.1016/j.trecan.2020.12.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Accumulating preclinical and clinical evidence indicates that high degrees of heterogeneity among malignant cells constitute a considerable obstacle to the success of cancer therapy. This calls for the development of approaches that operate - or enable established treatments to operate - despite such intratumoral heterogeneity (ITH). In this context, oncolytic peptides stand out as promising therapeutic tools based on their ability to drive immunogenic cell death associated with robust anticancer immune responses independently of ITH. We review the main molecular and immunological pathways engaged by oncolytic peptides, and discuss potential approaches to combine these agents with modern immunotherapeutics in support of superior tumor-targeting immunity and efficacy in patients with cancer.
Collapse
Affiliation(s)
- Ilio Vitale
- Italian Institute for Genomic Medicine (IIGM), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCSS) Candiolo, Torino, Italy; Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-IRCCS, Candiolo, Italy
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Erik Wennerberg
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Baldur Sveinbjørnsson
- Lytix Biopharma, Oslo, Norway; Department of Medical Biology, University of Tromsø, Tromsø, Norway; Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Øystein Rekdal
- Lytix Biopharma, Oslo, Norway; Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Université de Paris, Paris, France.
| |
Collapse
|
17
|
Bioinformatic Analysis of 1000 Amphibian Antimicrobial Peptides Uncovers Multiple Length-Dependent Correlations for Peptide Design and Prediction. Antibiotics (Basel) 2020; 9:antibiotics9080491. [PMID: 32784626 PMCID: PMC7459754 DOI: 10.3390/antibiotics9080491] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
Amphibians are widely distributed on different continents, except for the polar regions. They are important sources for the isolation, purification and characterization of natural compounds, including peptides with various functions. Innate immune antimicrobial peptides (AMPs) play a critical role in warding off invading pathogens, such as bacteria, fungi, parasites, and viruses. They may also have other biological functions such as endotoxin neutralization, chemotaxis, anti-inflammation, and wound healing. This article documents a bioinformatic analysis of over 1000 amphibian antimicrobial peptides registered in the Antimicrobial Peptide Database (APD) in the past 18 years. These anuran peptides were discovered in Africa, Asia, Australia, Europe, and America from 1985 to 2019. Genomic and peptidomic studies accelerated the discovery pace and underscored the necessity in establishing criteria for peptide entry into the APD. A total of 99.9% of the anuran antimicrobial peptides are less than 50 amino acids with an average length of 24 and a net charge of +2.5. Interestingly, the various amphibian peptide families (e.g., temporins, brevinins, esculentins) can be connected through multiple length-dependent relationships. With an increase in length, peptide net charge increases, while the hydrophobic content decreases. In addition, glycine, leucine, lysine, and proline all show linear correlations with peptide length. These correlations improve our understanding of amphibian peptides and may be useful for prediction and design of new linear peptides with potential applications in treating infectious diseases, cancer and diabetes.
Collapse
|
18
|
A Novel Antimicrobial Peptide (Kassinatuerin-3) Isolated from the Skin Secretion of the African Frog, Kassina senegalensis. BIOLOGY 2020; 9:biology9070148. [PMID: 32630734 PMCID: PMC7408539 DOI: 10.3390/biology9070148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 01/05/2023]
Abstract
Amphibian skin secretions are remarkable sources of novel bioactive peptides. Among these, antimicrobial peptides have demonstrated an outstanding efficacy in killing microorganisms via a general membranolytic mechanism, which may offer the prospect of solving specific target-driven antibiotic resistance. Here, the discovery of a novel defensive peptide is described from the skin secretion of the African frog, Kassina senegalensis. Named kassinatuerin-3, it was identified through a combination of “shot-gun” cloning and MS/MS fragmentation sequencing. Subsequently, a synthetic replicate was subjected to biofunctional evaluation. The results indicated that kassinatuerin-3 possessed antimicrobial activity against Gram-positive bacteria but no effect against Gram-negative bacteria. Additionally, it was active in biofilm eradication on S. aureus and MRSA and in the antiproliferation of selected cancer cell lines. Moreover, it had a very mild hemolytic effect, which demonstrated a high therapeutic index for kassinatuerin-3. Collectively, although kassinatuerin-3 did not demonstrate remarkable bioactivities compared with other natural or synthetic antimicrobial peptides (AMPs), it offered a new insight into the design of antimicrobial derivatives.
Collapse
|
19
|
Tornesello AL, Borrelli A, Buonaguro L, Buonaguro FM, Tornesello ML. Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities. Molecules 2020; 25:E2850. [PMID: 32575664 PMCID: PMC7356147 DOI: 10.3390/molecules25122850] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides (AMPs), or host defense peptides, are small cationic or amphipathic molecules produced by prokaryotic and eukaryotic organisms that play a key role in the innate immune defense against viruses, bacteria and fungi. AMPs have either antimicrobial or anticancer activities. Indeed, cationic AMPs are able to disrupt microbial cell membranes by interacting with negatively charged phospholipids. Moreover, several peptides are capable to trigger cytotoxicity of human cancer cells by binding to negatively charged phosphatidylserine moieties which are selectively exposed on the outer surface of cancer cell plasma membranes. In addition, some AMPs, such as LTX-315, have shown to induce release of tumor antigens and potent damage associated molecular patterns by causing alterations in the intracellular organelles of cancer cells. Given the recognized medical need of novel anticancer drugs, AMPs could represent a potential source of effective therapeutic agents, either alone or in combination with other small molecules, in oncology. In this review we summarize and describe the properties and the mode of action of AMPs as well as the strategies to increase their selectivity toward specific cancer cells.
Collapse
Affiliation(s)
- Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy; (F.M.B.); (M.L.T.)
| | - Antonella Borrelli
- Innovative Immunological Models, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy;
| | - Luigi Buonaguro
- Innovative Immunological Models, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy;
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy; (F.M.B.); (M.L.T.)
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy; (F.M.B.); (M.L.T.)
| |
Collapse
|
20
|
Tan J, Tay J, Hedrick J, Yang YY. Synthetic macromolecules as therapeutics that overcome resistance in cancer and microbial infection. Biomaterials 2020; 252:120078. [PMID: 32417653 DOI: 10.1016/j.biomaterials.2020.120078] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Synthetic macromolecular antimicrobials have shown efficacy in the treatment of multidrug resistant (MDR) pathogens. These synthetic macromolecules, inspired by Nature's antimicrobial peptides (AMPs), mitigate resistance by disrupting microbial cell membrane or targeting multiple intracellular proteins or genes. Unlike AMPs, these polymers are less prone to degradation by proteases and are easier to synthesize on a large scale. Recently, various studies have revealed that cancer cell membrane, like that of microbes, is negatively charged, and AMPs can be used as anticancer agents. Nevertheless, efforts in developing polymers as anticancer agents has remained limited. This review highlights the recent advancement in the development of synthetic biodegradable antimicrobial polymers (e.g. polycarbonates, polyesters and polypeptides) and anticancer macromolecules including peptides and polymers. Additionally, strategies to improve their in vivo bioavailability and selectivity towards bacteria and cancer cells are examined. Lastly, future perspectives, including use of artificial intelligence or machine learning, in the development of antimicrobial and anticancer macromolecules are discussed.
Collapse
Affiliation(s)
- Jason Tan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Joyce Tay
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - James Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA, 95120, United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore.
| |
Collapse
|
21
|
Bartels EJH, Dekker D, Amiche M. Dermaseptins, Multifunctional Antimicrobial Peptides: A Review of Their Pharmacology, Effectivity, Mechanism of Action, and Possible Future Directions. Front Pharmacol 2019; 10:1421. [PMID: 31849670 PMCID: PMC6901996 DOI: 10.3389/fphar.2019.01421] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
Dermaseptins are a group of α-helical shaped polycationic peptides isolated from the Hylid frogs, with antimicrobial effects against bacteria, parasites, protozoa, viruses in vitro. Besides, anti-tumor effects have been demonstrated. However, few animal experiments and no clinical trials have been conducted thus far. This review summarizes the current knowledge on the pharmacology, ethno pharmacology, effectivity against infectious pathogens and tumors cells and the mechanism of action of the Dermaseptins. Future research should focus on further clarification of the mechanisms of action, the effectivity of Dermaseptins against several cancer cell lines and their applicability in humans.
Collapse
Affiliation(s)
| | - Douwe Dekker
- Dutch Poisons Information Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mohamed Amiche
- Mondor Institute of Biomedical Research, INSERM U955 Team 7, School of Medicine, University Paris Est Créteil, Créteil, France
| |
Collapse
|
22
|
Liu Y, Du Q, Ma C, Xi X, Wang L, Zhou M, Burrows JF, Chen T, Wang H. Structure-activity relationship of an antimicrobial peptide, Phylloseptin-PHa: balance of hydrophobicity and charge determines the selectivity of bioactivities. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:447-458. [PMID: 30774309 PMCID: PMC6350648 DOI: 10.2147/dddt.s191072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Antimicrobial peptides (AMPs) from the skin secretions of amphibians are now considered as a potential alternative to conventional antibiotics. Phylloseptins are a family of AMPs identified in the skin secretions of Phyllomedusinae tree frogs which exhibit highly conserved structural characteristics. This study examines the structure–activity relationship of the newly discovered phylloseptin, Phylloseptin-PHa (PSPHa) from Pithecopus hypochondrialis. Materials and methods PSPHa and modified analogs were produced by solid phase synthesis and purified by reverse-phase HPLC. Rationally designed modified analogs incorporating changes in significant physicochemical parameters such as hydrophobicity, hydrophobic moment and net charge were investigated to determine their influence on secondary structure, antimicrobial activity, membrane permeabilization and cytotoxicity. Results Overall, we found that when rationally designing AMPs by altering their primary structure it is important to keep a balance between hydrophobicity and charge. Conclusion This study provides new insights which will help in the future development of AMPs as alternatives to conventional antibiotics for the treatment of Staphylococcus aureus and methicillin-resistant S. aureus infections.
Collapse
Affiliation(s)
- Yuzhang Liu
- School of Pharmacy, China Medical University, Shenyang 110001, Liaoning, China, .,Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Qiang Du
- School of Pharmacy, China Medical University, Shenyang 110001, Liaoning, China,
| | - Chengbang Ma
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Xinping Xi
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Lei Wang
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Mei Zhou
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - James F Burrows
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Tianbao Chen
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Hui Wang
- School of Pharmacy, China Medical University, Shenyang 110001, Liaoning, China,
| |
Collapse
|
23
|
Wang S, Wu H, Chen F, Zhang Y, Zhang Y, Sun B. The antitumor activity of 4,4′-bipyridinium amphiphiles. RSC Adv 2019; 9:33023-33028. [PMID: 35529125 PMCID: PMC9073189 DOI: 10.1039/c9ra06172j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
The cell growth inhibition and apoptosis induction of 4,4′-bipyridinium amphiphiles.
Collapse
Affiliation(s)
- Senlin Wang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- PR China
| | - Hongshuai Wu
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- PR China
| | - Fanghui Chen
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- PR China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- PR China
| | - Yuchen Zhang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- PR China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- PR China
| |
Collapse
|
24
|
Zhu H, Ding X, Li W, Lu T, Ma C, Xi X, Wang L, Zhou M, Burden R, Chen T. Discovery of two skin-derived dermaseptins and design of a TAT-fusion analogue with broad-spectrum antimicrobial activity and low cytotoxicity on healthy cells. PeerJ 2018; 6:e5635. [PMID: 30258724 PMCID: PMC6151122 DOI: 10.7717/peerj.5635] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/24/2018] [Indexed: 12/05/2022] Open
Abstract
Two novel peptides belonging to the dermaseptin family, namely DRS-CA-1 and DRS-DU-1, were encoded from cDNA libraries derived from the skin secretions of Phyllomedusa camba and Callimedusa (Phyllomedusa) duellmani. Both natural peptides are highly-conserved and exhibited high potency against wild-type Gram-positive, Gram-negative bacteria, yeast and antibiotic-resistant bacteria (MRSA and Pseudomonas aeruginosa) (MICs 4–8 µM) with no obvious hemolytic activity. Collectively these results suggest that both peptides may have potential as novel antibiotics. Additionally, DRS-DU-1 exhibited selective cytotoxicity to tumor cells. The truncated analogue, DP-1 and TAT-fused DP-1 (namely DP-2) were subsequently synthesised. It showed that DP-1 had low antimicrobial activity, no hemolytic and cytotoxicity to tumor cells. However, DP-2 possessed strong antimicrobial activity and the similar selective, no obvious hemolytic activity and cytotoxicity on normal human cells, but enhanced cytotoxicity to tumor cells of DRS-DU-1. These findings indicate that the N-terminus of the dermaseptins may contribute to their bioactivity, and that addition of the TAT peptide can improve biological activity. The results provide a new insight for designing novel peptide-based antimicrobial or anticancer agents with low hemolytic activity and cytotoxicity.
Collapse
Affiliation(s)
- Haohao Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,School of Pharmacy, The Queen's University Belfast, Belfast, United Kingdom
| | - Xiyan Ding
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,School of Pharmacy, The Queen's University Belfast, Belfast, United Kingdom
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengbang Ma
- School of Pharmacy, The Queen's University Belfast, Belfast, United Kingdom
| | - Xinping Xi
- School of Pharmacy, The Queen's University Belfast, Belfast, United Kingdom
| | - Lei Wang
- School of Pharmacy, The Queen's University Belfast, Belfast, United Kingdom
| | - Mei Zhou
- School of Pharmacy, The Queen's University Belfast, Belfast, United Kingdom
| | - Roberta Burden
- School of Pharmacy, The Queen's University Belfast, Belfast, United Kingdom
| | - Tianbao Chen
- School of Pharmacy, The Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
25
|
Tan Y, Chen X, Ma C, Xi X, Wang L, Zhou M, Burrows JF, Kwok HF, Chen T. Biological Activities of Cationicity-Enhanced and Hydrophobicity-Optimized Analogues of an Antimicrobial Peptide, Dermaseptin-PS3, from the Skin Secretion of Phyllomedusa sauvagii. Toxins (Basel) 2018; 10:toxins10080320. [PMID: 30087268 PMCID: PMC6115755 DOI: 10.3390/toxins10080320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/28/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022] Open
Abstract
The skin secretions of the subfamily Phyllomedusinae have long been known to contain a number of compounds with antimicrobial potential. Herein, a biosynthetic dermaseptin-precursor cDNA was obtained from a Phyllomedusa sauvagii skin secretion-derived cDNA library, and thereafter, the presence of the mature peptide, namely dermaseptin-PS3 (DPS3), was confirmed by LC–MS/MS. Moreover, this naturally occurring peptide was utilized to design two analogues, K5, 17-DPS3 (introducing two lysine residues at positions 5 and 17 to replace acidic amino acids) and L10, 11-DPS3 (replacing two neutral amino acids with the hydrophobic amino acid, leucine), improving its cationicity on the polar/unipolar face and hydrophobicity in a highly conserved sequence motif, respectively. The results in regard to the two analogues show that either increasing cationicity, or hydrophobicity, enhance the antimicrobial activity. Also, the latter analogue had an enhanced anticancer activity, with pretreatment of H157 cells with 1 µM L10, 11-DPS3 decreasing viability by approximately 78%, even though this concentration of peptide exhibited no haemolytic effect. However, it must be noted that in comparison to the initial peptide, both analogues demonstrate higher membrane-rupturing capacity towards mammalian red blood cells.
Collapse
Affiliation(s)
- Yining Tan
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Xinping Xi
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - James F Burrows
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
26
|
PSN-PC: A Novel Antimicrobial and Anti-Biofilm Peptide from the Skin Secretion of Phyllomedusa-camba with Cytotoxicity on Human Lung Cancer Cell. Molecules 2017; 22:molecules22111896. [PMID: 29112170 PMCID: PMC6150266 DOI: 10.3390/molecules22111896] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 11/17/2022] Open
Abstract
Peptides derived from amphibian skin secretion are promising drug prototypes for combating widespread infection. In this study, a novel peptide belonging to the phylloseptin family of antimicrobial peptides was isolated from the skin secretion of the Phyllomedusa camba, namely phylloseptin-PC (PSN-PC). The biosynthetic precursor was obtained by molecular cloning and the mature peptide sequence was confirmed through tandem mass spectrometry (MS/MS) fragmentation sequencing in the skin secretion. The synthetic replicate exhibited a broad spectrum antimicrobial activity against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus,Escherichia coli, Pseudomonas aeruginosa, Candida albicans at concentrations of 2, 2, 8, 32 and 2 µM, respectively. It also showed the capability of eliminating S. aureus biofilm with a minimal biofilm eradication concentration of 8 µM. The haemolysis of this peptide was not significant at low concentrations but had a considerable increase at high concentrations. Additionally, this peptide showed an anti-proliferation effect on the non-small cell lung cancer cell line (NCI-H157), with low cytotoxicity on the human microvascular endothelial cell line (HMEC-1). The discovery of the novel peptide may provide useful clues for new drug discoveries.
Collapse
|