1
|
Parajuli B, Koizumi S. Unexpected role of microglia and P2Y 12 in the induction of and emergence from anesthesia. Purinergic Signal 2024; 20:573-575. [PMID: 38724707 PMCID: PMC11554972 DOI: 10.1007/s11302-024-10014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 11/13/2024] Open
Affiliation(s)
- Bijay Parajuli
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
- GLIA Center, University of Yamanashi, Yamanashi, 409-3898, Japan.
| |
Collapse
|
2
|
Granzotto A, McQuade A, Chadarevian JP, Davtyan H, Sensi SL, Parker I, Blurton-Jones M, Smith IF. ER and SOCE Ca 2+ signals are not required for directed cell migration in human iPSC-derived microglia. Cell Calcium 2024; 123:102923. [PMID: 38970922 DOI: 10.1016/j.ceca.2024.102923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 07/08/2024]
Abstract
The central nervous system (CNS) is constantly surveilled by microglia, highly motile and dynamic cells deputed to act as the first line of immune defense in the brain and spinal cord. Alterations in the homeostasis of the CNS are detected by microglia that respond by extending their processes or - following major injuries - by migrating toward the affected area. Understanding the mechanisms controlling directed cell migration of microglia is crucial to dissect their responses to neuroinflammation and injury. We used a combination of pharmacological and genetic approaches to explore the involvement of calcium (Ca2+) signaling in the directed migration of human induced pluripotent stem cell (iPSC)-derived microglia challenged with a purinergic stimulus. This approach mimics cues originating from injury of the CNS. Unexpectedly, simultaneous imaging of microglia migration and intracellular Ca2+ changes revealed that this phenomenon does not require Ca2+ signals generated from the endoplasmic reticulum (ER) and store-operated Ca2+ entry (SOCE) pathways. Instead, we find evidence that human microglial chemotaxis to purinergic signals is mediated by cyclic AMP in a Ca2+-independent manner. These results challenge prevailing notions, with important implications in neurological conditions characterized by perturbation in Ca2+ homeostasis.
Collapse
Affiliation(s)
- Alberto Granzotto
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States; Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, University G d'Annunzio of Chieti-Pescara, Chieti, Italy.
| | - Amanda McQuade
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, United States; Department of Neurobiology and Behavior, University of California, Irvine, CA, United States; Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, United States
| | - Jean Paul Chadarevian
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, United States; Department of Neurobiology and Behavior, University of California, Irvine, CA, United States
| | - Hayk Davtyan
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, United States
| | - Stefano L Sensi
- Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, University G d'Annunzio of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Ian Parker
- Department of Neurobiology and Behavior, University of California, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, CA, United States
| | - Mathew Blurton-Jones
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, United States; Department of Neurobiology and Behavior, University of California, Irvine, CA, United States; Institute for Immunology, University of California, Irvine, CA, United States
| | - Ian F Smith
- Department of Neurobiology and Behavior, University of California, Irvine, CA, United States
| |
Collapse
|
3
|
Wallis GJ, Bell LA, Wagner JN, Buxton L, Balachandar L, Wilcox KS. Reactive microglia fail to respond to environmental damage signals in a viral-induced mouse model of temporal lobe epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583768. [PMID: 38558969 PMCID: PMC10979929 DOI: 10.1101/2024.03.06.583768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Microglia are highly adaptable innate immune cells that rapidly respond to damage signals in the brain through adoption of a reactive phenotype and production of defensive inflammatory cytokines. Microglia express a distinct transcriptome, encoding receptors that allow them to dynamically respond to pathogens, damage signals, and cellular debris. Expression of one such receptor, the microglia-specific purinergic receptor P2ry12, is known to be downregulated in reactive microglia. Here, we explore the microglial response to purinergic damage signals in reactive microglia in the TMEV mouse model of viral brain infection and temporal lobe epilepsy. Using two-photon calcium imaging in acute hippocampal brain slices, we found that the ability of microglia to detect damage signals, engage calcium signaling pathways, and chemoattract towards laser-induced tissue damage was dramatically reduced during the peak period of seizures, cytokine production, and infection. Using combined RNAscope in situ hybridization and immunohistochemistry, we found that during this same stage of heightened infection and seizures, microglial P2ry12 expression was reduced, while the pro-inflammatory cytokine TNF-a expression was upregulated in microglia, suggesting that the depressed ability of microglia to respond to new damage signals via P2ry12 occurs during the time when local elevated cytokine production contributes to seizure generation following infection. Therefore, changes in microglial purinergic receptors during infection likely limit the ability of reactive microglia to respond to new threats in the CNS and locally contain the scale of the innate immune response in the brain.
Collapse
Affiliation(s)
- Glenna J. Wallis
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
| | - Laura A. Bell
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, 80904
| | - John N. Wagner
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
| | - Lauren Buxton
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
| | - Lakshmini Balachandar
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
| | - Karen S. Wilcox
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, 80904
| |
Collapse
|
4
|
Wei HR, Tang L, Yang XL, Chen CM, Li LX, Mao Y, Wang D, Kang F, Qun S, Zhang Z, Cao P, Jin Y. A microglial activation cascade across cortical regions underlies secondary mechanical hypersensitivity to amputation. Cell Rep 2024; 43:113804. [PMID: 38368612 DOI: 10.1016/j.celrep.2024.113804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/03/2023] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
Neural mechanisms underlying amputation-related secondary pain are unclear. Using in vivo two-photon imaging, three-dimensional reconstruction, and fiber photometry recording, we show that a microglial activation cascade from the primary somatosensory cortex of forelimb (S1FL) to the primary somatosensory cortex of hindlimb (S1HL) mediates the disinhibition and subsequent hyperexcitation of glutamatergic neurons in the S1HL (S1HLGlu), which then drives secondary mechanical hypersensitivity development in ipsilateral hindpaws of mice with forepaw amputation. Forepaw amputation induces rapid S1FL microglial activation that further activates S1HL microglia via the CCL2-CCR2 signaling pathway. Increased engulfment of GABAergic presynapses by activated microglia stimulates S1HLGlu neuronal activity, ultimately leading to secondary mechanical hypersensitivity of hindpaws. It is widely believed direct neuronal projection drives interactions between distinct brain regions to prime specific behaviors. Our study reveals microglial interactions spanning different subregions of the somatosensory cortex to drive a maladaptive neuronal response underlying secondary mechanical hypersensitivity at non-injured sites.
Collapse
Affiliation(s)
- Hong-Rui Wei
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Lan Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xin-Lu Yang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Department of Anesthesiology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, China
| | - Chang-Mao Chen
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Le-Xian Li
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yu Mao
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Di Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Fang Kang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Sen Qun
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Peng Cao
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Yan Jin
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
5
|
Zhao S, Wang L, Liang Y, Zheng J, Umpierre AD, Wu LJ. Chemogenetic activation of microglial Gi signaling decreases microglial surveillance and impairs neuronal synchronization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579861. [PMID: 38405754 PMCID: PMC10888941 DOI: 10.1101/2024.02.12.579861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Microglia actively survey the brain and dynamically interact with neurons to maintain brain homeostasis. Microglial Gi-protein coupled receptors (Gi-GPCRs) play a critical role in microglia-neuron communications. However, the impact of temporally activating microglial Gi signaling on microglial dynamics and neuronal activity in the homeostatic brain remains largely unknown. In this study, we employed Gi-based Designer Receptors Exclusively Activated by Designer Drugs (Gi-DREADD) to selectively and temporally modulate microglial Gi signaling pathway. By integrating this chemogenetic approach with in vivo two-photon imaging, we observed that exogenous activation of microglial Gi signaling transiently inhibited microglial process dynamics, reduced neuronal activity, and impaired neuronal synchronization. These altered neuronal functions were associated with a decrease in interactions between microglia and neuron somata. Altogether, this study demonstrates that acute, exogenous activation of microglial Gi signaling can regulate neuronal circuit function, offering a potential pharmacological target for neuromodulation through microglia.
Collapse
|
6
|
Ma C, Li B, Silverman D, Ding X, Li A, Xiao C, Huang G, Worden K, Muroy S, Chen W, Xu Z, Tso CF, Huang Y, Zhang Y, Luo Q, Saijo K, Dan Y. Microglia regulate sleep through calcium-dependent modulation of norepinephrine transmission. Nat Neurosci 2024; 27:249-258. [PMID: 38238430 PMCID: PMC10849959 DOI: 10.1038/s41593-023-01548-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 12/08/2023] [Indexed: 02/09/2024]
Abstract
Sleep interacts reciprocally with immune system activity, but its specific relationship with microglia-the resident immune cells in the brain-remains poorly understood. Here, we show in mice that microglia can regulate sleep through a mechanism involving Gi-coupled GPCRs, intracellular Ca2+ signaling and suppression of norepinephrine transmission. Chemogenetic activation of microglia Gi signaling strongly promoted sleep, whereas pharmacological blockade of Gi-coupled P2Y12 receptors decreased sleep. Two-photon imaging in the cortex showed that P2Y12-Gi activation elevated microglia intracellular Ca2+, and blockade of this Ca2+ elevation largely abolished the Gi-induced sleep increase. Microglia Ca2+ level also increased at natural wake-to-sleep transitions, caused partly by reduced norepinephrine levels. Furthermore, imaging of norepinephrine with its biosensor in the cortex showed that microglia P2Y12-Gi activation significantly reduced norepinephrine levels, partly by increasing the adenosine concentration. These findings indicate that microglia can regulate sleep through reciprocal interactions with norepinephrine transmission.
Collapse
Affiliation(s)
- Chenyan Ma
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Bing Li
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Daniel Silverman
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Xinlu Ding
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Anan Li
- Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainmatics, JITRI, Suzhou, China
| | - Chi Xiao
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Ganghua Huang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Kurtresha Worden
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Sandra Muroy
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Wei Chen
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
| | - Zhengchao Xu
- Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Chak Foon Tso
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- , Sunnyvale, CA, USA
| | - Yixuan Huang
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Yufan Zhang
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Qingming Luo
- Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainmatics, JITRI, Suzhou, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Kaoru Saijo
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
7
|
Granzotto A, McQuade A, Chadarevian JP, Davtyan H, Sensi SL, Parker I, Blurton-Jones M, Smith I. ER and SOCE Ca 2+ signals are not required for directed cell migration in human microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576126. [PMID: 38293075 PMCID: PMC10827168 DOI: 10.1101/2024.01.18.576126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The central nervous system (CNS) is constantly surveilled by microglia, highly motile and dynamic cells deputed to act as the first line of immune defense in the brain and spinal cord. Alterations in the homeostasis of the CNS are detected by microglia that respond by migrating toward the affected area. Understanding the mechanisms controlling directed cell migration of microglia is crucial to dissect their responses to neuroinflammation and injury. We used a combination of pharmacological and genetic approaches to explore the involvement of calcium (Ca2+) signaling in the directed migration of induced pluripotent stem cell (iPSC)-derived microglia challenged with a purinergic stimulus. This approach mimics cues originating from injury of the CNS. Unexpectedly, simultaneous imaging of microglia migration and intracellular Ca2+ changes revealed that this phenomenon does not require Ca2+ signals generated from the endoplasmic reticulum (ER) and store-operated Ca2+ entry (SOCE) pathways. Instead, we find evidence that human microglial chemotaxis to purinergic signals is mediated by cyclic AMP in a Ca2+-independent manner. These results challenge prevailing notions, with important implications in neurological conditions characterized by perturbation in Ca2+ homeostasis.
Collapse
Affiliation(s)
- Alberto Granzotto
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States
- Center for Advanced Sciences and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University G d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Amanda McQuade
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, United States
| | - Jean Paul Chadarevian
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
| | - Hayk Davtyan
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, United States
| | - Stefano L. Sensi
- Center for Advanced Sciences and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University G d’Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. d’Annunzio” University, Chieti-Pescara, Italy
| | - Ian Parker
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, United States
| | - Mathew Blurton-Jones
- UCI Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
- Institute for Immunology, University of California, Irvine, Irvine, United States
| | - Ian Smith
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
| |
Collapse
|
8
|
Khan R, Ritzel RM. Maestros of anesthesia. eLife 2024; 13:e95064. [PMID: 38236208 PMCID: PMC10796144 DOI: 10.7554/elife.95064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Microglia regulate anesthesia by altering the activity of neurons in specific regions of the brain via a purinergic receptor.
Collapse
Affiliation(s)
- Romeesa Khan
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical SciencesHoustonUnited States
- Department of Neurology, McGovern Medical School, University of TexasHoustonUnited States
| | - Rodney M Ritzel
- Department of Neurology, McGovern Medical School, University of TexasHoustonUnited States
| |
Collapse
|
9
|
Fu S, Tian X, Peng C, Zhang D, Zhou L, Yuan Y, He J, Guo L, Qiu Y, Ye C, Liu Y, Zong B. Baicalin inhibited PANX-1/P2Y6 signaling pathway activation in porcine aortic vascular endothelial cells infected by Glaesserella parasuis. Heliyon 2024; 10:e23632. [PMID: 38187335 PMCID: PMC10770501 DOI: 10.1016/j.heliyon.2023.e23632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Glaesserella parasuis can induce endothelial barrier damage in piglets, although the mechanism by which this pathogen triggers inflammatory damage remains unclear. Baicalin possesses anti-inflammatory and anti-oxidant activities. However, whether baicalin can relieve endothelial barrier damage caused by Glaesserella parasuis infection has not yet been studied. Hence, we evaluated the ability of baicalin to counteract the changes induced by Glaesserella parasuis in porcine aortic vascular endothelial cells. The results showed that Glaesserella parasuis could upregulate the expression of pannexin 1 channel protein and promote the release of adenosine triphosphate, adenosine diphosphate, adenosine 3'-monophosphate, uridine triphosphate, uridine diphosphate, and uridine monophosphate in porcine aortic vascular endothelial cells. The expression level of purinergic receptor P2Y6 was upregulated in porcine aortic vascular endothelial cells triggered by Glaesserella parasuis. In addition, Glaesserella parasuis could activate phospholipase C-protein kinase C and myosin light chain kinase-myosin light chain signaling pathways in porcine aortic vascular endothelial cells. Baicalin could inhibit pannexin 1 channel protein expression, reduce adenosine triphosphate, adenosine diphosphate, adenosine 3'-monophosphate, uridine triphosphate, uridine diphosphate, and uridine monophosphate release, and attenuate the expression level of P2Y6 in porcine aortic vascular endothelial cells induced by Glaesserella parasuis. Baicalin could also reduce the activation of phospholipase C-protein kinase C and myosin light chain kinase-myosin light chain signaling pathways in porcine aortic vascular endothelial cells triggered by Glaesserella parasuis. Our study report that Glaesserella parasuis could promote pannexin 1 channel protein expression, induce nucleosides substance release, and P2Y6 expression in porcine aortic vascular endothelial cells and baicalin could inhibit the expression levels of pannexin 1, nucleosides substance, and P2Y6 in the porcine aortic vascular endothelial cells induced by Glaesserella parasuis, which might be served as some targets for treatment of inflammation disease caused by Glaesserella parasuis.
Collapse
Affiliation(s)
- Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Xinyue Tian
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Chun Peng
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Dan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Linglu Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Yuzhen Yuan
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Jing He
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| | - Bingbing Zong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, PR China
| |
Collapse
|
10
|
He Y, Liu T, He Q, Ke W, Li X, Du J, Deng S, Shu Z, Wu J, Yang B, Wang Y, Mao Y, Rao Y, Shu Y, Peng B. Microglia facilitate and stabilize the response to general anesthesia via modulating the neuronal network in a brain region-specific manner. eLife 2023; 12:RP92252. [PMID: 38131301 PMCID: PMC10746144 DOI: 10.7554/elife.92252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
General anesthesia leads to a loss of consciousness and an unrousable state in patients. Although general anesthetics are widely used in clinical practice, their underlying mechanisms remain elusive. The potential involvement of nonneuronal cells is unknown. Microglia are important immune cells in the central nervous system (CNS) that play critical roles in CNS function and dysfunction. We unintentionally observed delayed anesthesia induction and early anesthesia emergence in microglia-depleted mice. We found that microglial depletion differentially regulates neuronal activities by suppressing the neuronal network of anesthesia-activated brain regions and activating emergence-activated brain regions. Thus, microglia facilitate and stabilize the anesthesia status. This influence is not mediated by dendritic spine plasticity. Instead, it relies on the activation of microglial P2Y12 and subsequent calcium influx, which facilitates the general anesthesia response. Together, we elucidate the regulatory role of microglia in general anesthesia, extending our knowledge of how nonneuronal cells modulate neuronal activities.
Collapse
Affiliation(s)
- Yang He
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Taohui Liu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Quansheng He
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Wei Ke
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Xiaoyu Li
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Jinjin Du
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
- School of Basic Medical Sciences, Jinzhou Medical UniversityJinzhouChina
| | - Suixin Deng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Zhenfeng Shu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Jialin Wu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Baozhi Yang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
- School of Basic Medical Sciences, Jinzhou Medical UniversityJinzhouChina
| | - Yuqing Wang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
- School of Basic Medical Sciences, Jinzhou Medical UniversityJinzhouChina
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Yanxia Rao
- Department of Neurology, Zhongshan Hospital, Department of Laboratory Animal Science, MOE Frontiers Center for Brain Science, Fudan UniversityShanghaiChina
| | - Yousheng Shu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Bo Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
- Co-Innovation Center of Neurodegeneration, Nantong UniversityNantongChina
| |
Collapse
|
11
|
Ming LG, Hu DX, Zuo C, Zhang WJ. G protein-coupled P2Y12 receptor is involved in the progression of neuropathic pain. Biomed Pharmacother 2023; 162:114713. [PMID: 37084563 DOI: 10.1016/j.biopha.2023.114713] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
The pathological mechanism of neuropathic pain is complex, which seriously affects the physical and mental health of patients, and its treatment is also difficult. The role of G protein-coupled P2Y12 receptor in pain has been widely recognized and affirmed. After nerve injury, stimulated cells can release large amounts of nucleotides into the extracellular matrix, act on P2Y12 receptor. Activated P2Y12 receptor activates intracellular signal transduction and is involved in the development of pain. P2Y12 receptor activation can sensitize primary sensory neurons and receive sensory information. By transmitting the integrated information through the dorsal root of the spinal cord to the secondary neurons of the posterior horn of the spinal cord. The integrated information is then transmitted to the higher center through the ascending conduction tract to produce pain. Moreover, activation of P2Y12 receptor can mediate immune cells to release pro-inflammatory factors, increase damage to nerve cells, and aggravate pain. While inhibits the activation of P2Y12 receptor can effectively relieve pain. Therefore, in this article, we described P2Y12 receptor antagonists and their pharmacological properties. In addition, we explored the potential link between P2Y12 receptor and the nervous system, discussed the intrinsic link of P2Y12 receptor and neuropathic pain and as a potential pharmacological target for pain suppression.
Collapse
Affiliation(s)
- Li-Guo Ming
- Department of Gastrointestinal surgery, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Cheng Zuo
- Department of Gastrointestinal surgery, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
12
|
Qiao C, Liu Z, Qie S. The Implications of Microglial Regulation in Neuroplasticity-Dependent Stroke Recovery. Biomolecules 2023; 13:biom13030571. [PMID: 36979506 PMCID: PMC10046452 DOI: 10.3390/biom13030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Stroke causes varying degrees of neurological deficits, leading to corresponding dysfunctions. There are different therapeutic principles for each stage of pathological development. Neuroprotection is the main treatment in the acute phase, and functional recovery becomes primary in the subacute and chronic phases. Neuroplasticity is considered the basis of functional restoration and neurological rehabilitation after stroke, including the remodeling of dendrites and dendritic spines, axonal sprouting, myelin regeneration, synapse shaping, and neurogenesis. Spatiotemporal development affects the spontaneous rewiring of neural circuits and brain networks. Microglia are resident immune cells in the brain that contribute to homeostasis under physiological conditions. Microglia are activated immediately after stroke, and phenotypic polarization changes and phagocytic function are crucial for regulating focal and global brain inflammation and neurological recovery. We have previously shown that the development of neuroplasticity is spatiotemporally consistent with microglial activation, suggesting that microglia may have a profound impact on neuroplasticity after stroke and may be a key therapeutic target for post-stroke rehabilitation. In this review, we explore the impact of neuroplasticity on post-stroke restoration as well as the functions and mechanisms of microglial activation, polarization, and phagocytosis. This is followed by a summary of microglia-targeted rehabilitative interventions that influence neuroplasticity and promote stroke recovery.
Collapse
Affiliation(s)
- Chenye Qiao
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Shuyan Qie
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| |
Collapse
|
13
|
Chun BJ, Aryal SP, Varughese P, Sun B, Bruno JA, Richards CI, Bachstetter AD, Kekenes-Huskey PM. Purinoreceptors and ectonucleotidases control ATP-induced calcium waveforms and calcium-dependent responses in microglia: Roles of P2 receptors and CD39 in ATP-stimulated microglia. Front Physiol 2023; 13:1037417. [PMID: 36699679 PMCID: PMC9868579 DOI: 10.3389/fphys.2022.1037417] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Adenosine triphosphate (ATP) and its metabolites drive microglia migration and cytokine production by activating P2X- and P2Y- class purinergic receptors. Purinergic receptor activation gives rise to diverse intracellular calcium (Ca2+ signals, or waveforms, that differ in amplitude, duration, and frequency. Whether and how these characteristics of diverse waveforms influence microglia function is not well-established. We developed a computational model trained with data from published primary murine microglia studies. We simulate how purinoreceptors influence Ca2+ signaling and migration, as well as, how purinoreceptor expression modifies these processes. Our simulation confirmed that P2 receptors encode the amplitude and duration of the ATP-induced Ca2+ waveforms. Our simulations also implicate CD39, an ectonucleotidase that rapidly degrades ATP, as a regulator of purinergic receptor-induced Ca2+ responses. Namely, it was necessary to account for CD39 metabolism of ATP to align the model's predicted purinoreceptor responses with published experimental data. In addition, our modeling results indicate that small Ca2+ transients accompany migration, while large and sustained transients are needed for cytokine responses. Lastly, as a proof-of-principal, we predict Ca2+ transients and cell membrane displacements in a BV2 microglia cell line using published P2 receptor mRNA data to illustrate how our computer model may be extrapolated to other microglia subtypes. These findings provide important insights into how differences in purinergic receptor expression influence microglial responses to ATP.
Collapse
Affiliation(s)
- Byeong J. Chun
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, IL, United States,*Correspondence: Byeong J. Chun, ; Peter M. Kekenes-Huskey,
| | - Surya P. Aryal
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - Peter Varughese
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, IL, United States
| | - Bin Sun
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, IL, United States
| | - Joshua A. Bruno
- Department of Physics, Loyola University Chicago, Chicago, IL, United States
| | - Chris I. Richards
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | | | - Peter M. Kekenes-Huskey
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, IL, United States,*Correspondence: Byeong J. Chun, ; Peter M. Kekenes-Huskey,
| |
Collapse
|
14
|
Chen Y, Tang L. The crosstalk between parenchymal cells and macrophages: A keeper of tissue homeostasis. Front Immunol 2022; 13:1050188. [PMID: 36505488 PMCID: PMC9732730 DOI: 10.3389/fimmu.2022.1050188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Non-parenchymal cells (NPCs) and parenchymal cells (PCs) collectively perform tissue-specific functions. PCs play significant roles and continuously adjust the intrinsic functions and metabolism of organs. Tissue-resident macrophages (TRMs) are crucial members of native NPCs in tissues and are essential for immune defense, tissue repair and development, and homeostasis maintenance. As a plastic-phenotypic and prevalent cluster of NPCs, TRMs dynamically assist PCs in functioning by producing cytokines, inflammatory and anti-inflammatory signals, growth factors, and proteolytic enzymes. Furthermore, the PCs of tissues modulate the functional activity and polarization of TRMs. Dysregulation of the PC-TRM crosstalk axis profoundly impacts many essential physiological functions, including synaptogenesis, gastrointestinal motility and secretion, cardiac pulsation, gas exchange, blood filtration, and metabolic homeostasis. This review focuses on the PC-TRM crosstalk in mammalian vital tissues, along with their interactions with tissue homeostasis maintenance and disorders. Thus, this review highlights the fundamental biological significance of the regulatory network of PC-TRM in tissue homeostasis.
Collapse
|
15
|
Alberto AVP, Ferreira NCDS, Bonavita AGC, Nihei OK, de Farias FP, Bisaggio RDC, de Albuquerque C, Savino W, Coutinho‐Silva R, Persechini PM, Alves LA. Physiologic roles of P2 receptors in leukocytes. J Leukoc Biol 2022; 112:983-1012. [PMID: 35837975 PMCID: PMC9796137 DOI: 10.1002/jlb.2ru0421-226rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Since their discovery in the 1970s, purinergic receptors have been shown to play key roles in a wide variety of biologic systems and cell types. In the immune system, purinergic receptors participate in innate immunity and in the modulation of the adaptive immune response. In particular, P2 receptors, which respond to extracellular nucleotides, are widely expressed on leukocytes, causing the release of cytokines and chemokines and the formation of inflammatory mediators, and inducing phagocytosis, degranulation, and cell death. The activity of these receptors is regulated by ectonucleotidases-expressed in these same cell types-which regulate the availability of nucleotides in the extracellular environment. In this article, we review the characteristics of the main purinergic receptor subtypes present in the immune system, focusing on the P2 family. In addition, we describe the physiologic roles of the P2 receptors already identified in leukocytes and how they can positively or negatively modulate the development of infectious diseases, inflammation, and pain.
Collapse
Affiliation(s)
- Anael Viana Pinto Alberto
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| | | | | | - Oscar Kenji Nihei
- Center of Education and LetterState University of the West of ParanáFoz do IguaçuPRBrazil
| | | | - Rodrigo da Cunha Bisaggio
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Federal Institute of Education, Science, and Technology of Rio de JaneiroRio de JaneiroRJBrazil
| | | | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Brazilian National Institute of Science and Technology on NeuroimmunomodulationRio de Janeiro Research Network on NeuroinflammationRio de JaneiroRJBrazil
| | - Robson Coutinho‐Silva
- Laboratory of Immunophysiology, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Pedro Muanis Persechini
- Laboratory of Immunobiophysics, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| |
Collapse
|
16
|
Mahmoudi A, Moadab F, Safdarian E, Navashenaq JG, Rezaee M, Gheibihayat SM. MicroRNAs and Efferocytosis: Implications for Diagnosis and Therapy. Mini Rev Med Chem 2022; 22:2641-2660. [PMID: 35362375 DOI: 10.2174/1389557522666220330150937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/24/2021] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
About 10-100 billion cells are generated in the human body in a day, and accordingly, 10-100 billion cells predominantly die for maintaining homeostasis. Dead cells generated by apoptosis are also rapidly engulfed by macrophages (Mθs) to be degraded. In case of the inefficient engulfment of apoptotic cells (ACs) via Mθs, they experience secondary necrosis and thus release intracellular materials, which display damage-associated molecular patterns (DAMPs) and result in diseases. Over the last decades, researchers have also reflected on the significant contribution of microRNAs (miRNAs) to autoimmune diseases through the regulation of Mθs functions. Moreover, miRNAs have shown intricate involvement with completely adjusting basic Mθs functions, such as phagocytosis, inflammation, efferocytosis, tumor promotion, and tissue repair. In this review, the mechanism of efferocytosis containing "Find-Me", "Eat-Me", and "Digest-Me" signals is summarized and the biogenesis of miRNAs is briefly described. Finally, the role of miRNAs in efferocytosis is discussed. It is concluded that miRNAs represent promising treatments and diagnostic targets in impaired phagocytic clearance, which leads to different diseases.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of medical biotechnology and nanotechnology, faculty of medicine, Mashhad University of Medical science, Iran
| | - Fatemeh Moadab
- Medical student, Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Esmat Safdarian
- Legal Medicine Research Center, Legal Medicine Organization, Tehran Iran
| | | | - Mehdi Rezaee
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran;
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
17
|
Zhou X, Dai W, Qin Y, Qi S, Zhang Y, Tian W, Gu X, Zheng B, Xiao J, Yu W, Chen X, Su D. Electroacupuncture relieves neuropathic pain by inhibiting degradation of the ecto-nucleotidase PAP in the dorsal root ganglions of CCI mice. Eur J Pain 2022; 26:991-1005. [PMID: 35138669 DOI: 10.1002/ejp.1923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Although electroacupuncture is widely used in chronic pain management, it is quite controversial due to its unclear mechanism. We hypothesised that EA alleviates pain by inhibiting degradation of the ecto-nucleotidase prostatic acid phosphatase (PAP) and facilitating ATP dephosphorylation in dorsal root ganglions (DRGs). METHODS We applied EA in male C57 mice subjected to chronic constriction injury (CCI) and assessed extracellular ATP and 5'-nucleotidease expression in DRGs. Specifically, we used a luminescence assay, quantitative reverse transcriptase-polymerase chain reaction, western blotting, immunohistochemistry and nociceptive-related behavioural changes to gather data, and we tested for effects after PAP expression was inhibited with an adeno-associated virus (AAV). Moreover, membrane PAP degradation was investigated in cultured DRG neurons and the inhibitory effects of EA on this degradation were assessed using immunoprecipitation. RESULTS EA treatment alleviated CCI surgery induced mechanical pain hypersensitivity. Furthermore, extracellular ATP decreased significantly in both the DRGs and dorsal horn of EA-treated mice. PAP protein but not mRNA increased in L4-L5 DRGs, and inhibition of PAP expression via AAV microinjection reversed the analgesic effect of EA. Membrane PAP degradation occurred through a clathrin-mediated endocytosis pathway in cultured DRG neurons; EA treatment inhibited the phosphorylation of adaptor protein complex 2, which subsequently reduced the endocytosis of membrane PAP. CONCLUSIONS EA treatment alleviated peripheral nerve injury-induced mechanical pain hypersensitivity in mice by inhibiting membrane PAP degradation via reduced endocytosis and subsequently promote ATP dephosphorylation in DRGs.
Collapse
Affiliation(s)
- Xiaoxin Zhou
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Wanbing Dai
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Yi Qin
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Siyi Qi
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Yizhe Zhang
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Weitian Tian
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Xiyao Gu
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Beijie Zheng
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Jie Xiao
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Weifeng Yu
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Xuemei Chen
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Diansan Su
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| |
Collapse
|
18
|
Aramideh JA, Vidal-Itriago A, Morsch M, Graeber MB. Cytokine Signalling at the Microglial Penta-Partite Synapse. Int J Mol Sci 2021; 22:ijms222413186. [PMID: 34947983 PMCID: PMC8708012 DOI: 10.3390/ijms222413186] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/28/2022] Open
Abstract
Microglial cell processes form part of a subset of synaptic contacts that have been dubbed microglial tetra-partite or quad-partite synapses. Since tetrapartite may also refer to the presence of extracellular matrix components, we propose the more precise term microglial penta-partite synapse for synapses that show a microglial cell process in close physical proximity to neuronal and astrocytic synaptic constituents. Microglial cells are now recognised as key players in central nervous system (CNS) synaptic changes. When synaptic plasticity involving microglial penta-partite synapses occurs, microglia may utilise their cytokine arsenal to facilitate the generation of new synapses, eliminate those that are not needed anymore, or modify the molecular and structural properties of the remaining synaptic contacts. In addition, microglia–synapse contacts may develop de novo under pathological conditions. Microglial penta-partite synapses have received comparatively little attention as unique sites in the CNS where microglial cells, cytokines and other factors they release have a direct influence on the connections between neurons and their function. It concerns our understanding of the penta-partite synapse where the confusion created by the term “neuroinflammation” is most counterproductive. The mere presence of activated microglia or the release of their cytokines may occur independent of inflammation, and penta-partite synapses are not usually active in a neuroimmunological sense. Clarification of these details is the main purpose of this review, specifically highlighting the relationship between microglia, synapses, and the cytokines that can be released by microglial cells in health and disease.
Collapse
Affiliation(s)
- Jason Abbas Aramideh
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Andres Vidal-Itriago
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.V.-I.); (M.M.)
| | - Marco Morsch
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.V.-I.); (M.M.)
| | - Manuel B. Graeber
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence:
| |
Collapse
|
19
|
Cao J, Gan H, Xiao H, Chen H, Jian D, Jian D, Zhai X. Key protein-coding genes related to microglia in immune regulation and inflammatory response induced by epilepsy. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:9563-9578. [PMID: 34814358 DOI: 10.3934/mbe.2021469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Several studies have shown a link between immunity, inflammatory processes, and epilepsy. Active neuroinflammation and marked immune cell infiltration occur in epilepsy of diverse etiologies. Microglia, as the first line of defense in the central nervous system, are the main effectors of neuroinflammatory processes. Discovery of new biomarkers associated with microglia activation after epileptogenesis indicates that targeting specific molecules may help control seizures. In this research, we used a combination of several bioinformatics approaches, including RNA sequencing, to explore differentially expressed genes (DEGs) in epileptic lesions and control samples, and to construct a protein-protein interaction (PPI) network for DEGs, which was examined utilizing plug-ins in Cytoscape software. Finally, we aimed to identify 10 hub genes in immune and inflammation-related sub-networks, which were subsequently validated in real-time quantitative polymerase chain reaction analysis in a mouse model of kainic acid-induced epilepsy. The expression patterns of nine genes were consistent with sequencing outcomes. Meanwhile, several genes, including CX3CR1, CX3CL1, GPR183, FPR1, P2RY13, P2RY12 and LPAR5, were associated with microglial activation and migration, providing novel candidate targets for immunotherapy in epilepsy and laying the foundation for further research.
Collapse
Affiliation(s)
- Jing Cao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400010, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400010, China
| | - Hui Gan
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400010, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400010, China
| | - Han Xiao
- Ministry of Education Key Laboratory of Child Development and Disorders, Childrenӳ Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing 400010, China
| | - Hui Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, Childrenӳ Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing 400010, China
| | - Dan Jian
- Ministry of Education Key Laboratory of Child Development and Disorders, Childrenӳ Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing 400010, China
| | - Dan Jian
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400010, China
- Department of Pathology, Chongqing Medical University, Chongqing 400010, China
| | - Xuan Zhai
- Ministry of Education Key Laboratory of Child Development and Disorders, Childrenӳ Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing 400010, China
| |
Collapse
|
20
|
Xia P, Logiacco F, Huang Y, Kettenmann H, Semtner M. Histamine triggers microglial responses indirectly via astrocytes and purinergic signaling. Glia 2021; 69:2291-2304. [PMID: 34080730 DOI: 10.1002/glia.24039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
Histamine is a monoaminergic neurotransmitter which is released within the entire brain from ascending axons originating in the tuberomammillary nucleus in a sleep state-dependent fashion. Besides the modulation of neuronal firing patterns, brain histamine levels are also thought to modulate functions of glial cells. Microglia are the innate immune cells and professional phagocytes of the central nervous system, and histamine was previously shown to have multiple effects on microglial functions in health and disease. Isolated microglia respond only to agonists of the Hrh2 subtype of histamine receptors (Hrh), and the expression of that isoform is confirmed by a metadata analysis of microglia transcriptomes. When we studied the effect of the histamine receptor isoforms in cortical and thalamic microglia by in situ live cell Ca2+ imaging using a novel, microglia-specific indicator mouse line, microglial cells respond to external histamine application mainly in a Hrh1-, and to a lower extent also in a Hrh2-dependent manner. The Hrh1 response was sensitive to blockers of purinergic P2ry12 receptors, and since Hrh1 expression was predominantly found in astrocytes, we suggest that the Hrh1 response in microglia is mediated by astrocyte ATP release and activation of P2ry12 receptors in microglia. Histamine also stimulates microglial phagocytic activity via Hrh1- and P2ry12-mediated signaling. Taken together, we provide evidence that histamine acts indirectly on microglial Ca2+ levels and phagocytic activity via astrocyte histamine receptor-controlled purinergic signaling.
Collapse
Affiliation(s)
- Pengfei Xia
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité-Universitätsmedizin, Berlin, Germany
| | - Francesca Logiacco
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Yimin Huang
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité-Universitätsmedizin, Berlin, Germany
| | - Helmut Kettenmann
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Marcus Semtner
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
21
|
Das R, Chinnathambi S. Microglial remodeling of actin network by Tau oligomers, via G protein-coupled purinergic receptor, P2Y12R-driven chemotaxis. Traffic 2021; 22:153-170. [PMID: 33527700 DOI: 10.1111/tra.12784] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/05/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is associated with age-related neurodegeneration, synaptic deformation and chronic inflammation mediated by microglia and infiltrated macrophages in the brain. Tau oligomers can be released from damaged neurons via various mechanisms such as exosomes, neurotransmitter, membrane leakage etc. Microglia sense the extracellular Tau through several cell-surface receptors and mediate chemotaxis and phagocytosis. The purinergic receptor P2Y12R recently gained interest in neurodegeneration for neuro-glial communication and microglial chemotaxis towards the site of plaque deposition. To understand the effect of extracellular Tau oligomers in microglial migration, the P2Y12R-mediated actin remodeling, reorientation of tubulin network and rate of migration were studied in the presence of ATP. The extracellular Tau species directly interacted with P2Y12R and also induced this purinoceptor expression in microglia. Microglial P2Y12R colocalized with remodeled membrane-associated actin network as a component of migration in response to Tau oligomers. As an inducer of P2Y12R, ATP facilitated the localization of P2Y12R in lamellipodia and filopodia during accelerated microglial migration. The direct interaction of extracellular Tau oligomers with microglial P2Y12R would facilitate the signal transduction in both way, directional chemotaxis and receptor-mediated phagocytosis. These unprecedented findings emphasize that microglia can modulate the membrane-associated actin structure and incorporate P2Y12R to perceive the axis and rate of chemotaxis in Tauopathy.
Collapse
Affiliation(s)
- Rashmi Das
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
22
|
Umpierre AD, Wu LJ. How microglia sense and regulate neuronal activity. Glia 2020; 69:1637-1653. [PMID: 33369790 DOI: 10.1002/glia.23961] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Microglia are innate immune cells of the central nervous system that sense extracellular cues. Brain injuries, inflammation, and pathology evoke dynamic structural responses in microglia, altering their morphology and motility. The dynamic motility of microglia is hypothesized to be a critical first step in sensing local alterations and engaging in pattern-specific responses. Alongside their pathological responses, microglia also sense and regulate neuronal activity. In this review, we consider the extracellular molecules, receptors, and mechanisms that allow microglia to sense neuronal activity changes under both hypoactivity and hyperactivity. We also highlight emerging in vivo evidence that microglia regulate neuronal activity, ranging from physiological to pathophysiological conditions. In addition, we discuss the emerging role of calcium signaling in microglial responses to the extracellular environment. The dynamic function of microglia in monitoring and influencing neuronal activity may be critical for brain homeostasis and circuit modification in health and disease.
Collapse
Affiliation(s)
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA.,Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
23
|
Yu T, Lin Y, Xu Y, Dou Y, Wang F, Quan H, Zhao Y, Liu X. Repressor Element 1 Silencing Transcription Factor (REST) Governs Microglia-Like BV2 Cell Migration via Progranulin (PGRN). Neural Plast 2020; 2020:8855822. [PMID: 33299399 PMCID: PMC7710409 DOI: 10.1155/2020/8855822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/26/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022] Open
Abstract
Microglia activation contributes to Alzheimer's disease (AD) etiology, and microglia migration is a fundamental function during microglia activation. The repressor element-1 silencing transcription factor (REST), a powerful transcriptional factor, was found to play a neuroprotective role in AD. Despite its possible role in disease progression, little is known about whether REST participates in microglia migration. In this study, we aimed to explore the function of REST and its molecular basis during microglia migration under Aβ 1-42-treated pathological conditions. When treated by Aβ 1-42 REST was upregulated through JAK2/STAT3 signal pathway in BV2 cells. And transwell coculture system was used to evaluate cell migration function of microglia-like BV2. Small interfering RNA (siRNA) targeting progranulin (PGRN) were delivered into BV2 cells, and results showed that PGRN functions to promote BV2 migration. REST expression was inhibited by sh-RNA, which induced BV2 cell migration obviously. On the contrary, REST was overexpressed by REST recombinant plasmid transfection, which repressed BV2 cell migration, indicating that REST may act as a repressor of cell migration. To more comprehensively examine the molecular basis, we analyzed the promoter sequence of PGRN and found that it has the potential binding site of REST. Moreover, knocking-down of REST can increase the expression of PGRN, which confirms the inhibiting effect of REST on PGRN expression. Further detection of double luciferase reporter gene also confirmed the inhibition of REST on the activity of PGRN promoter, indicating that REST may be an inhibitory transcription factor of PGRN which governs microglia-like BV2 cell migration. In conclusion, the present study demonstrates that transcription factor REST may act as a repressor of microglia migration through PGRN.
Collapse
Affiliation(s)
- Tongya Yu
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Yingying Lin
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Yuzhen Xu
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Yunxiao Dou
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Feihong Wang
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Hui Quan
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Yanxin Zhao
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Xueyuan Liu
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| |
Collapse
|
24
|
Das R, Chinnathambi S. Actin-mediated Microglial Chemotaxis via G-Protein Coupled Purinergic Receptor in Alzheimer's Disease. Neuroscience 2020; 448:325-336. [PMID: 32941933 DOI: 10.1016/j.neuroscience.2020.09.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease mainly associated with aging, oxidative stress and genetic mutations. There are two pathological proteins involved in AD; Amyloid-β peptide and microtubule-associated protein Tau (MAPT). The β- and γ-secretase enzyme cleaves the Amyloid precursor protein, which results in the formation of extracellular plaques in brain. While, Tau undergoes hyperphosphorylation and other post-translational modifications (PTMs), which eventually generates Tau oligomers, and intracellular neurofibrillary tangles (NFTs) in neurons. Moreover, the brain-resident glia and infiltrated macrophages elevate the level of CNS inflammation, which trigger the oxidative damage of neuronal circuits by reactive oxygen species (ROS) and Nitric oxide (NO). Microglia is the primary immune cell in the CNS, which is continuously surveilling the neuronal synapses and pathogen invasion. Microglia in the resting state is called 'Ramified', which possess long surveilling extensions with a small cell body. But, upon activation, microglia retracts the cellular extensions and transform into round migratory cells, called as 'Amoeboid' state. Activated microglia undergoes actin remodeling by forming lamellipodia and filopodia, which directs the migratory axis while podosomes formed are involved in extracellular matrix degradation for invasion. Protein-aggregates in malfunctioning synapses and in CNS milieu can be detected by microglia, which results in its activation and migration. Subsequently, the phagocytosis of synapses leads to the inflammatory burst and memory loss. The extracellular nucleotides released from damaged neurons and the cytokine-chemokine gradients allow the neighboring microglia and macrophages to migrate-infiltrate at the site of neuronal-damage. The ionotropic (P2XR) and metabotropic (P2YR) purinergic receptor recognize extracellular ATP/ADP, which propagates through the intracellular calcium signaling, chemotaxis, phagocytosis and inflammation. The P2Y receptors give 'find me' or 'eat me' signals to microglia to either migrate or phagocytose cellular debris. Further, the actin cytoskeleton helps microglia to mediate directed chemotaxis and neuronal repair during neurodegeneration. Hence, we aim to emphasize the connection between purinergic signaling and actin-driven mechanical movements of microglia for migration and inflammation in AD.
Collapse
Affiliation(s)
- Rashmi Das
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008 Pune, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008 Pune, India.
| |
Collapse
|
25
|
Venkateswarlu K, Suman G, Dhyani V, Swain S, Giri L, Samavedi S. Three‐dimensional imaging and quantification of real‐time cytosolic calcium oscillations in microglial cells cultured on electrospun matrices using laser scanning confocal microscopy. Biotechnol Bioeng 2020; 117:3108-3123. [DOI: 10.1002/bit.27465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/24/2020] [Accepted: 06/16/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Kojja Venkateswarlu
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Sangareddy Telangana India
| | - Gare Suman
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Sangareddy Telangana India
| | - Vaibhav Dhyani
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Sangareddy Telangana India
| | - Sarpras Swain
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Sangareddy Telangana India
| | - Lopamudra Giri
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Sangareddy Telangana India
| | - Satyavrata Samavedi
- Department of Chemical Engineering Indian Institute of Technology Hyderabad Sangareddy Telangana India
| |
Collapse
|
26
|
Xing F, Qu S, Liu J, Yang J, Hu F, Drevenšek-Olenik I, Pan L, Xu J. Intercellular Bridge Mediates Ca 2+ Signals between Micropatterned Cells via IP 3 and Ca 2+ Diffusion. Biophys J 2020; 118:1196-1204. [PMID: 32023438 DOI: 10.1016/j.bpj.2020.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/06/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
Intercellular bridges are plasma continuities formed at the end of the cytokinesis process that facilitate intercellular mass transport between the two daughter cells. However, it remains largely unknown how the intercellular bridge mediates Ca2+ communication between postmitotic cells. In this work, we utilize BV-2 microglial cells planted on dumbbell-shaped micropatterned assemblies to resolve spatiotemporal characteristics of Ca2+ signal transfer over the intercellular bridges. With the use of such micropatterns, considerably longer and more regular intercellular bridges can be obtained than in conventional cell cultures. The initial Ca2+ signal is evoked by mechanical stimulation of one of the daughter cells. A considerable time delay is observed between the arrivals of passive Ca2+ diffusion and endogenous Ca2+ response in the intercellular-bridge-connected cell, indicating two different pathways of the Ca2+ communication. Extracellular Ca2+ and the paracrine pathway have practically no effect on the endogenous Ca2+ response, demonstrated by application of Ca2+-free medium, exogenous ATP, and P2Y13 receptor antagonist. In contrast, the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin and inositol trisphosphate (IP3) receptor blocker 2-aminoethyl diphenylborate significantly inhibit the endogenous Ca2+ increase, which signifies involvement of IP3-sensitive calcium store release. Notably, passive Ca2+ diffusion into the connected cell can clearly be detected when IP3-sensitive calcium store release is abolished by 2-aminoethyl diphenylborate. Those observations prove that both passive Ca2+ diffusion and IP3-mediated endogenous Ca2+ response contribute to the Ca2+ increase in intercellular-bridge-connected cells. Moreover, a simulation model agreed well with the experimental observations.
Collapse
Affiliation(s)
- Fulin Xing
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, China
| | - Songyue Qu
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, China
| | - Junfang Liu
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, China
| | - Jianyu Yang
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, China
| | - Fen Hu
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, China
| | - Irena Drevenšek-Olenik
- Faculty of Mathematics and Physics, University of Ljubljana, and J. Stefan Institute, Ljubljana, Slovenia
| | - Leiting Pan
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, China.
| | - Jingjun Xu
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
27
|
Linden J, Koch-Nolte F, Dahl G. Purine Release, Metabolism, and Signaling in the Inflammatory Response. Annu Rev Immunol 2019; 37:325-347. [PMID: 30676821 DOI: 10.1146/annurev-immunol-051116-052406] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ATP, NAD+, and nucleic acids are abundant purines that, in addition to having critical intracellular functions, have evolved extracellular roles as danger signals released in response to cell lysis, apoptosis, degranulation, or membrane pore formation. In general ATP and NAD+ have excitatory and adenosine has anti-inflammatory effects on immune cells. This review focuses on recent advances in our understanding of purine release mechanisms, ectoenzymes that metabolize purines (CD38, CD39, CD73, ENPP1, and ENPP2/autotaxin), and signaling by key P2 purinergic receptors (P2X7, P2Y2, and P2Y12). In addition to metabolizing ATP or NAD+, some purinergic ectoenzymes metabolize other inflammatory modulators, notably lysophosphatidic acid and cyclic GMP-AMP (cGAMP). Also discussed are extracellular signaling effects of NAD+ mediated by ADP-ribosylation, and epigenetic effects of intracellular adenosine mediated by modification of S-adenosylmethionine-dependent DNA methylation.
Collapse
Affiliation(s)
- Joel Linden
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California 92037, USA; .,Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, USA
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany;
| | - Gerhard Dahl
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33136, USA;
| |
Collapse
|
28
|
Calovi S, Mut-Arbona P, Sperlágh B. Microglia and the Purinergic Signaling System. Neuroscience 2018; 405:137-147. [PMID: 30582977 DOI: 10.1016/j.neuroscience.2018.12.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023]
Abstract
Microglia are the main resident immune-competent cell type of the central nervous system (CNS); these cells are highly sensitive to subtle changes in the chemical environment of the brain. Microglia are activated during diverse conditions, such as apoptosis, trauma, inflammation, and infection. The specific activities of microglia result from the confluence of environmental stimuli and the cellular state. It is likely that several signaling systems with different biological functions operate in competition and/or synergy, thus regulating similar microglial behaviors. The purinergic system is one of the fundamental signaling systems that establish microglial behavior in a wide spectrum of conditions. Adenosine tri-phosphate (ATP) belongs to the purinergic signaling system, which includes P2X, P2Y, and P1 receptors, as well as other proteins participating in ATP secretion and extracellular ATP degradation, and molecules that recognize purines as a ligand. In this review, we focus on the latest pre-clinical and basic purinergic system and microglial research, with particular attention to data collected in vivo and ex vivo. This chapter is divided into sections related to microglial ATP release, ATP degradation, and ATP-related actions mediated by P2X and P2Y receptor activation.
Collapse
Affiliation(s)
- Stefano Calovi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - Paula Mut-Arbona
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
29
|
Interleukin 4 modulates microglia homeostasis and attenuates the early slowly progressive phase of amyotrophic lateral sclerosis. Cell Death Dis 2018; 9:250. [PMID: 29445154 PMCID: PMC5833860 DOI: 10.1038/s41419-018-0288-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/28/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022]
Abstract
Microglia activation is a commonly pathological hallmark of neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), a devastating disorder characterized by a selective motor neurons degeneration. Whether such activation might represent a causal event rather than a secondary epiphenomenon remains elusive. Here, we show that CNS-delivery of IL-4—via a lentiviral-mediated gene therapy strategy—skews microglia to proliferate, inducing these cells to adopt the phenotype of slowly proliferating cells. Transcriptome analysis revealed that IL-4-treated microglia express a broad number of genes normally encoded by embryonic microglia. Since embryonic microglia sustain CNS development, we then hypothesized that turning adult microglia to acquire such phenotype via IL-4 might be an efficient in vivo strategy to sustain motor neuron survival in ALS. IL-4 gene therapy in SOD1G93A mice resulted in a general amelioration of clinical outcomes during the early slowly progressive phase of the disease. However, such approach did not revert neurodegenerative processes occurring in the late and fast progressing phase of the disease.
Collapse
|
30
|
Xing F, Zhang P, Jiang P, Chen Z, Yang J, Hu F, Drevenšek-Olenik I, Zhang X, Pan L, Xu J. Spatiotemporal Characteristics of Intercellular Calcium Wave Communication in Micropatterned Assemblies of Single Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2937-2945. [PMID: 29283550 DOI: 10.1021/acsami.7b15759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Micropatterned substrates offer a unique possibility to define and control spatial organization of biological cells at the microscale, which greatly facilitates investigations of the cell-to-cell communication in vitro. Here, we developed a simple micropatterning strategy to resolve various spatiotemporal characteristics of intercellular calcium wave (ICW) communication among isolated BV-2 microglial cells. By using a single-ring assembly, we found that the direction of the initial transmitter secretion was strongly correlated with the site of the cell at which the mechanical stimulus triggering the ICWs was imposed. By using multiring assemblies, we observed that the response ratio of the same outmost cells 160 μm away from the center increased from 0% in the single-ring assembly to 9.6% in the four-ring assembly. This revealed that cells located in the interring acted as regenerative amplifiers for the ICWs generated by the central cell. By using a special oval-type micropattern, we found that calcium mobilization in lamellipodia of a fusiform BV-2 microglia cell occurred 2.9 times faster than that in the middle part of the cell, demonstrating a higher region-specific sensitivity of lamellipodia to the transmitter. Taken together, our micropatterning strategy opened up new experimental prospects to study ICWs and revealed novel spatiotemporal characteristics of ICW communication including stimulation site-dependent secretion, regenerative propagation, and region-specific cell sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Irena Drevenšek-Olenik
- Faculty of Mathematics and Physics, University of Ljubljana, and J. Stefan Institute , Ljubljana SI1000, Slovenia
| | | | | | - Jingjun Xu
- Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, Shanxi 030006, China
| |
Collapse
|