1
|
Guo Y, Garber PA, Yang Y, Wang S, Zhou J. The Conservation Implications of the Gut Microbiome for Protecting the Critically Endangered Gray Snub-Nosed Monkey ( Rhinopithecus brelichi). Animals (Basel) 2024; 14:1917. [PMID: 38998029 PMCID: PMC11240530 DOI: 10.3390/ani14131917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
The gut microbiota plays a crucial role in regulating energy metabolism, facilitating nutrient absorption, and supporting immune function, thereby assisting the host in adapting to seasonal dietary changes. Here, we compare the gut microbiome composition of wild gray snub-nosed monkeys during winter (from October to December) and spring (from January to March) to understand differences in seasonal nutrient intake patterns. Snub-nosed monkeys are foregut fermenters and consume difficult-to-digest carbohydrates and lichen. To examine the digestive adaptations of gray snub-nosed monkeys, we collected 14 fresh fecal samples for DNA analysis during the winter and spring. Based on 16S rRNA sequencing, metagenomic sequencing, and functional metagenomic analyses, we identified that Firmicutes, Actinobacteria, Verrucomicrobia, and Bacteroidetes constitute a keystone bacterial group in the gut microbiota during winter and spring and are responsible for degrading cellulose. Moreover, the transition in dietary composition from winter to spring was accompanied by changes in gut microbiota composition, demonstrating adaptive responses to varying food sources and availability. In winter, the bacterial species of the genera Streptococcus were found in higher abundance. At the functional level, these bacteria are involved in fructose and mannose metabolism and galactose metabolism c-related pathways, which facilitate the breakdown of glycogen, starch, and fiber found in fruits, seeds, and mature leaves. During spring, there was an increased abundance of bacteria species from the Prevotella and Lactobacillus genera, which aid the digestion of protein-rich buds. Combined, these findings reveal how the gut microbiota adjusts to fluctuations in energy balance and nutrient intake across different seasons in this critically endangered species. Moreover, we also identified Pseudomonas in two samples; the presence of potential pathogens within the gut could pose a risk to other troop members. Our findings highlight the necessity of a conservation plan that focuses on protecting vegetation and implementing measures to prevent disease transmission for this critically endangered species.
Collapse
Affiliation(s)
- Yanqing Guo
- College of Life Sciences, Northwest University, Xi'an 710072, China
| | - Paul A Garber
- Program in Ecology, Evolution and Conservation Biology, Department of Anthropology, University of Illinois, Urbana, IL 61801, USA
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali 671000, China
| | - Yijun Yang
- College of Life Sciences, Northwest University, Xi'an 710072, China
| | - Siwei Wang
- School of Karst Science, Guizhou Normal University, Guiyang 550003, China
| | - Jiang Zhou
- School of Karst Science, Guizhou Normal University, Guiyang 550003, China
| |
Collapse
|
2
|
Chen J, Cai Y, Wang Z, Xu Z, Zhuang W, Liu D, Lv Y, Wang S, Xu J, Ying H. Solid-state fermentation of corn straw using synthetic microbiome to produce fermented feed: The feed quality and conversion mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171034. [PMID: 38369147 DOI: 10.1016/j.scitotenv.2024.171034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Straw is a typical biomass resource which can be converted into high nutritional value feed via microbial fermentation. The degradation and conversion of straw using a synthetic microbial community (SMC-8) was functionally investigated to characterise its nitrogen conversion and carbon metabolism. Four species of bacteria were found to utilise >20 % of the inorganic nitrogen within 15 h, and the ratio of the diameter of fungal transparent circles (D) to the diameter of the colony (d) of the four fungal species was >1. Solid-state fermentation of corn straw increased the total amino acid (AA) content by 41.69 %. The absolute digestibility of fermented corn straw dry weight (DW) and true protein was 34.34 % and 45.29 %, respectively. Comprehensive analysis of functional proteins revealed that Aspergillus niger, Trichoderma viride, Cladosporium cladosporioides, Bacillus subtilis and Acinetobacter johnsonii produce a complex enzyme system during corn straw fermentation, which plays a key role in the degradation of lignocellulose. This study provided a new insight in utilizing corn straw.
Collapse
Affiliation(s)
- Jinmeng Chen
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Zhengzhong Xu
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Wei Zhuang
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Dong Liu
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China.
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Hanjie Ying
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
3
|
Wang J, Xu J, Lu M, Shangguan Y, Liu X. Mechanism of dielectric barrier plasma technology to improve the quantity and quality of short chain fatty acids in anaerobic fermentation of cyanobacteria. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:65-76. [PMID: 36347162 DOI: 10.1016/j.wasman.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/01/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The recycling of high value carbon resources from cyanobacteria has become a research hotspot. This work investigated the possibility of dielectric barrier discharge (DBD) plasma pretreatment to improve the anaerobic fermentation performance of cyanobacteria. The maximum accumulations of short-chain fatty acids (SCFAs) and acetic acid in DBD group were 3.30 and 1.49 times of that in control group. The physical effects of DBD plasma and the oxidative stress response of cyanobacteria cells could improve the solubilization of cyanobacteria polymer. The destruction of humus by DBD plasma can reduce the negative impact of humus on the early stage of anaerobic fermentation, thus facilitating the rapid start of anaerobic fermentation. The contents of Bacteroidetes, Firmicutes and Chloroflexi in DBD group were higher than those in control group, while the content of Proteobacteria was on the contrary, which was conducive to the hydrolysis and acidification process. The decrease of Methanosaeta sp. and Methanosarcina sp. abundance in DBD group might be another reason for the increase of acetic acid ratio. Under the joint action of plasma chemical oxidation and microbial degradation, the degradation effect of microcystin-LR in the anaerobic fermentation supernatant of DBD group was better than that of the control group, which was conducive to the recycling of cyanobacteria anaerobic fermentation supernatant. Therefore, DBD pretreatment was conductive to recycling valuable carbon source from cyanobacteria and can be further developed as a potential new pretreatment technology.
Collapse
Affiliation(s)
- Jie Wang
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China
| | - Junli Xu
- School of Ecology and Environment, Yellow River Conservancy Technical Institute, No. 1 Dongjing Road, Kaifeng, 475004, Henan Province, China
| | - Ming Lu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yuyi Shangguan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China.
| |
Collapse
|
4
|
Kim HH, Saha S, Hwang JH, Hosen MA, Ahn YT, Park YK, Khan MA, Jeon BH. Integrative biohydrogen- and biomethane-producing bioprocesses for comprehensive production of biohythane. BIORESOURCE TECHNOLOGY 2022; 365:128145. [PMID: 36257521 DOI: 10.1016/j.biortech.2022.128145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The production of biohythane, a combination of energy-dense hydrogen and methane, from the anaerobic digestion of low-cost organic wastes has attracted attention as a potential candidate for the transition to a sustainable circular economy. Substantial research has been initiated to upscale the process engineering to establish a hythane-based economy by addressing major challenges associated with the process and product upgrading. This review provides an overview of the feasibility of biohythane production in various anaerobic digestion systems (single-stage, dual-stage) and possible technologies to upgrade biohythane to hydrogen-enriched renewable natural gas. The main goal of this review is to promote research in biohythane production technology by outlining critical needs, including meta-omics and metabolic engineering approaches for the advancements in biohythane production technology.
Collapse
Affiliation(s)
- Hoo Hugo Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Shouvik Saha
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jae-Hoon Hwang
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816-2450, USA
| | - Md Aoulad Hosen
- Department of Microbiology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Yong-Tae Ahn
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
5
|
Diversity of gut methanogens and functional enzymes associated with methane metabolism in smallholder dairy cattle. Arch Microbiol 2022; 204:608. [PMID: 36075991 DOI: 10.1007/s00203-022-03187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/02/2022]
Abstract
Methane is a greenhouse gas with disastrous consequences when released to intolerable levels. Ruminants produce methane during gut fermentation releasing it through belching and/or flatulence. To better understand the diversity of methanogens and functional enzymes associated with methane metabolism in dairy cows, 48 samples; 6 rumen fluid and 42 dung samples were collected from Kenyan and Tanzanian farms and were analyzed using shotgun metagenomic approach. Statistical analysis for species frequency, relative abundance, percentages, and P values were undertaken using MS Excel and IBM SPSS statistics 20. The results showed archaea from 5 phyla, 9 classes, 16 orders, 25 families, 59 genera, and 87 species. Gut sites significantly contributed to the presence and distribution of various methanogens (P < 0.01). The class Methanomicrobia was abundant in the rumen samples (~ 39%) and dung (~ 44%). The most abundant (~ 17%) methanogen species identified was Methanocorpusculum labreanum. However, some taxonomic class data were unclassified (~ 6% in the rumen and ~ 4% in the dung). Five functional enzymes: Glycine/Serine hydroxymethyltransferase, Formylmethanofuran-tetrahydromethanopterin N-formyltransferase, Formate dehydrogenase, anaerobic carbon monoxide dehydrogenase, and catalase-peroxidase associated with methane metabolism were identified. KEGG functional metabolic analysis for the enzymes identified during this study was significant (P < 0.05) for five metabolism processes. The methanogen species abundances from this study in numbers/kind can be utilized exclusively or jointly as indirect selection criteria for methane mitigation. When targeting functional genes of the microbes/animal for better performance, the concern not to affect the host animal's functionality should be undertaken. Future studies should consider taxonomically categorizing unclassified species.
Collapse
|
6
|
Bioconversion of Lignocellulosic Biomass into Value Added Products under Anaerobic Conditions: Insight into Proteomic Studies. Int J Mol Sci 2021; 22:ijms222212249. [PMID: 34830131 PMCID: PMC8624197 DOI: 10.3390/ijms222212249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 01/14/2023] Open
Abstract
Production of biofuels and other value-added products from lignocellulose breakdown requires the coordinated metabolic activity of varied microorganisms. The increasing global demand for biofuels encourages the development and optimization of production strategies. Optimization in turn requires a thorough understanding of the microbial mechanisms and metabolic pathways behind the formation of each product of interest. Hydrolysis of lignocellulosic biomass is a bottleneck in its industrial use and often affects yield efficiency. The accessibility of the biomass to the microorganisms is the key to the release of sugars that are then taken up as substrates and subsequently transformed into the desired products. While the effects of different metabolic intermediates in the overall production of biofuel and other relevant products have been studied, the role of proteins and their activity under anaerobic conditions has not been widely explored. Shifts in enzyme production may inform the state of the microorganisms involved; thus, acquiring insights into the protein production and enzyme activity could be an effective resource to optimize production strategies. The application of proteomic analysis is currently a promising strategy in this area. This review deals on the aspects of enzymes and proteomics of bioprocesses of biofuels production using lignocellulosic biomass as substrate.
Collapse
|
7
|
Kumar A, Mukhia S, Kumar R. Industrial applications of cold-adapted enzymes: challenges, innovations and future perspective. 3 Biotech 2021; 11:426. [PMID: 34567931 DOI: 10.1007/s13205-021-02929-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Extreme cold environments are potential reservoirs of microorganisms producing unique and novel enzymes in response to environmental stress conditions. Such cold-adapted enzymes prove to be valuable tools in industrial biotechnology to meet the increasing demand for efficient biocatalysts. The inherent properties like high catalytic activity at low temperature, high specific activity and low activation energy make the cold-adapted enzymes well suited for application in various industries. The interest in this group of enzymes is expanding as they are the preferred alternatives to harsh chemical synthesis owing to their biodegradable and non-toxic nature. Irrespective of the multitude of applications, the use of cold-adapted enzymes at the industrial level is still limited. The current review presents the unique adaptive features and the role of cold-adapted enzymes in major industries like food, detergents, molecular biology and bioremediation. The review highlights the significance of omics technology i.e., metagenomics, metatranscriptomics and metaproteomics in enzyme bioprospection from extreme environments. It further points out the challenges in using cold-adapted enzymes at the industrial level and the innovations associated with novel enzyme prospection strategies. Documentations on cold-adapted enzymes and their applications are abundant; however, reports on the role of omics tools in exploring cold-adapted enzymes are still scarce. So, the review covers the aspect concerning the novel techniques for enzyme discovery from nature.
Collapse
Affiliation(s)
- Anil Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002 India
| | - Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur, Himachal Pradesh 176 061 India
| |
Collapse
|
8
|
Arizzi M, Morra S, Gilardi G, Pugliese M, Gullino ML, Valetti F. Improving sustainable hydrogen production from green waste: [FeFe]-hydrogenases quantitative gene expression RT-qPCR analysis in presence of autochthonous consortia. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:182. [PMID: 34530890 PMCID: PMC8444407 DOI: 10.1186/s13068-021-02028-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 08/28/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Bio-hydrogen production via dark fermentation of low-value waste is a potent and simple mean of recovering energy, maximising the harvesting of reducing equivalents to produce the cleanest fuel amongst renewables. Following several position papers from companies and public bodies, the hydrogen economy is regaining interest, especially in combination with circular economy and the environmental benefits of short local supply chains, aiming at zero net emission of greenhouse gases (GHG). The biomasses attracting the largest interest are agricultural and urban green wastes (pruning of trees, collected leaves, grass clippings from public parks and boulevards), which are usually employed in compost production, with some concerns over the GHG emission during the process. Here, an alternative application of green wastes, low-value compost and intermediate products (partially composted but unsuitable for completing the process) is studied, pointing at the autochthonous microbial consortium as an already selected source of implementation for biomass degradation and hydrogen production. The biocatalysts investigated as mainly relevant for hydrogen production were the [FeFe]-hydrogenases expressed in Clostridia, given their very high turnover rates. RESULTS Bio-hydrogen accumulation was related to the modulation of gene expression of multiple [FeFe]-hydrogenases from two strains (Clostridium beijerinckii AM2 and Clostridium tyrobutyricum AM6) isolated from the same waste. Reverse Transcriptase quantitative PCR (RT-qPCR) was applied over a period of 288 h and the RT-qPCR results showed that C. beijerinckii AM2 prevailed over C. tyrobutyricum AM6 and a high expression modulation of the 6 different [FeFe]-hydrogenase genes of C. beijerinckii in the first 23 h was observed, sustaining cumulative hydrogen production of 0.6 to 1.2 ml H2/g VS (volatile solids). These results are promising in terms of hydrogen yields, given that no pre-treatment was applied, and suggested a complex cellular regulation, linking the performance of dark fermentation with key functional genes involved in bio-H2 production in presence of the autochthonous consortium, with different roles, time, and mode of expression of the involved hydrogenases. CONCLUSIONS An applicative outcome of the hydrogenases genes quantitative expression analysis can be foreseen in optimising (on the basis of the acquired functional data) hydrogen production from a nutrient-poor green waste and/or low added value compost, in a perspective of circular bioeconomy.
Collapse
Affiliation(s)
- M Arizzi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
- Acea Engineering Laboratories Research Innovation SpA, Roma, Italy
| | - S Morra
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
- Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - G Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - M Pugliese
- Centre of Competence for Innovation in Agro-Environmental Field (Agroinnova) and DiSAFA, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
- AgriNewTech Srl, Via Livorno 60, 10140, Torino, Italy
| | - M L Gullino
- Centre of Competence for Innovation in Agro-Environmental Field (Agroinnova) and DiSAFA, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
- AgriNewTech Srl, Via Livorno 60, 10140, Torino, Italy
| | - F Valetti
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy.
| |
Collapse
|
9
|
Rizo J, Guillén D, Díaz-Ruiz G, Wacher C, Encarnación S, Sánchez S, Rodríguez-Sanoja R. Metaproteomic Insights Into the Microbial Community in Pozol. Front Nutr 2021; 8:714814. [PMID: 34490328 DOI: 10.3389/fnut.2021.714814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/05/2021] [Indexed: 01/11/2023] Open
Abstract
Pozol is an acidic, refreshing, and non-alcoholic traditional Mayan beverage made with nixtamalized corn dough that is fermented spontaneously. The extensive analysis of the microbiology, biochemistry and metaproteomics of pozol allowed the construction of a comprehensive image of the fermentation system. The main changes in both the substrate and the microbiota occurred in the first 9 h of fermentation. The increase in microorganisms correlated with the drop in pH and with the decrease in the contents of carbohydrates, lipids, and nitrogen, which shows that this stage has the highest metabolic activity. Bacterial proteins were mainly represented by those of lactic acid bacteria, and among them, the proteins from genus Streptococcus was overwhelmingly the most abundant. Yeast proteins were present in all the analyzed samples, while proteins from filamentous fungi increased up to 48 h. The metaproteomic approach allowed us to identify several previously unknown enzyme complexes in the system. Additionally, enzymes for hydrolysis of starch, hemicellulose and cellulose were found, indicating that all these substrates can be used as a carbon source by the microbiota. Finally, enzymes related to the production of essential intermediates involved in the synthesis of organic acids, acetoin, butanediol, fatty acids and amino acids important for the generation of compounds that contribute to the sensorial quality of pozol, were found.
Collapse
Affiliation(s)
- Jocelin Rizo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel Guillén
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Díaz-Ruiz
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carmen Wacher
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sergio Encarnación
- Departamento de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Romina Rodríguez-Sanoja
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
10
|
Hashemi S, Hashemi SE, Lien KM, Lamb JJ. Molecular Microbial Community Analysis as an Analysis Tool for Optimal Biogas Production. Microorganisms 2021; 9:microorganisms9061162. [PMID: 34071282 PMCID: PMC8226781 DOI: 10.3390/microorganisms9061162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
The microbial diversity in anaerobic digestion (AD) is important because it affects process robustness. High-throughput sequencing offers high-resolution data regarding the microbial diversity and robustness of biological systems including AD; however, to understand the dynamics of microbial processes, knowing the microbial diversity is not adequate alone. Advanced meta-omic techniques have been established to determine the activity and interactions among organisms in biological processes like AD. Results of these methods can be used to identify biomarkers for AD states. This can aid a better understanding of system dynamics and be applied to producing comprehensive models for AD. The paper provides valuable knowledge regarding the possibility of integration of molecular methods in AD. Although meta-genomic methods are not suitable for on-line use due to long operating time and high costs, they provide extensive insight into the microbial phylogeny in AD. Meta-proteomics can also be explored in the demonstration projects for failure prediction. However, for these methods to be fully realised in AD, a biomarker database needs to be developed.
Collapse
Affiliation(s)
- Seyedbehnam Hashemi
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
| | - Sayed Ebrahim Hashemi
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
| | - Kristian M. Lien
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
| | - Jacob J. Lamb
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
- Department of Electronic Systems, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
- Correspondence:
| |
Collapse
|
11
|
Heyer R, Schallert K, Büdel A, Zoun R, Dorl S, Behne A, Kohrs F, Püttker S, Siewert C, Muth T, Saake G, Reichl U, Benndorf D. A Robust and Universal Metaproteomics Workflow for Research Studies and Routine Diagnostics Within 24 h Using Phenol Extraction, FASP Digest, and the MetaProteomeAnalyzer. Front Microbiol 2019; 10:1883. [PMID: 31474963 PMCID: PMC6707425 DOI: 10.3389/fmicb.2019.01883] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/30/2019] [Indexed: 01/29/2023] Open
Abstract
The investigation of microbial proteins by mass spectrometry (metaproteomics) is a key technology for simultaneously assessing the taxonomic composition and the functionality of microbial communities in medical, environmental, and biotechnological applications. We present an improved metaproteomics workflow using an updated sample preparation and a new version of the MetaProteomeAnalyzer software for data analysis. High resolution by multidimensional separation (GeLC, MudPIT) was sacrificed to aim at fast analysis of a broad range of different samples in less than 24 h. The improved workflow generated at least two times as many protein identifications than our previous workflow, and a drastic increase of taxonomic and functional annotations. Improvements of all aspects of the workflow, particularly the speed, are first steps toward potential routine clinical diagnostics (i.e., fecal samples) and analysis of technical and environmental samples. The MetaProteomeAnalyzer is provided to the scientific community as a central remote server solution at www.mpa.ovgu.de.
Collapse
Affiliation(s)
- Robert Heyer
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Kay Schallert
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Anja Büdel
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Roman Zoun
- Database Research Group, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sebastian Dorl
- Bioinformatics Research Group, University of Applied Sciences Upper Austria, Hagenberg, Austria
| | | | - Fabian Kohrs
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sebastian Püttker
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Corina Siewert
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Magdeburg, Germany
| | - Thilo Muth
- Bioinformatics Unit (MF 1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, Berlin, Germany
| | - Gunter Saake
- Database Research Group, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Magdeburg, Germany
| | - Dirk Benndorf
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Magdeburg, Germany
| |
Collapse
|
12
|
Heyer R, Schallert K, Siewert C, Kohrs F, Greve J, Maus I, Klang J, Klocke M, Heiermann M, Hoffmann M, Püttker S, Calusinska M, Zoun R, Saake G, Benndorf D, Reichl U. Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas plants. MICROBIOME 2019; 7:69. [PMID: 31029164 PMCID: PMC6486700 DOI: 10.1186/s40168-019-0673-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 03/26/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND In biogas plants, complex microbial communities produce methane and carbon dioxide by anaerobic digestion of biomass. For the characterization of the microbial functional networks, samples of 11 reactors were analyzed using a high-resolution metaproteomics pipeline. RESULTS Examined methanogenesis archaeal communities were either mixotrophic or strictly hydrogenotrophic in syntrophy with bacterial acetate oxidizers. Mapping of identified metaproteins with process steps described by the Anaerobic Digestion Model 1 confirmed its main assumptions and also proposed some extensions such as syntrophic acetate oxidation or fermentation of alcohols. Results indicate that the microbial communities were shaped by syntrophy as well as competition and phage-host interactions causing cell lysis. For the families Bacillaceae, Enterobacteriaceae, and Clostridiaceae, the number of phages exceeded up to 20-fold the number of host cells. CONCLUSION Phage-induced cell lysis might slow down the conversion of substrates to biogas, though, it could support the growth of auxotrophic microbes by cycling of nutrients.
Collapse
Affiliation(s)
- R. Heyer
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - K. Schallert
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - C. Siewert
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - F. Kohrs
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - J. Greve
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - I. Maus
- Center for Biotechnology (CeBiTec), University Bielefeld, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - J. Klang
- Department Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - M. Klocke
- Department Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - M. Heiermann
- Department Technology Assessment and Substance Cycles, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - M. Hoffmann
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - S. Püttker
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - M. Calusinska
- Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - R. Zoun
- Otto von Guericke University, Institute for Databases and Software Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - G. Saake
- Otto von Guericke University, Institute for Databases and Software Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - D. Benndorf
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - U. Reichl
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstraße 1, 39106 Magdeburg, Germany
| |
Collapse
|
13
|
Feng L, Chen Y, Chen X, Duan X, Xie J, Chen Y. Anaerobic accumulation of short-chain fatty acids from algae enhanced by damaging cell structure and promoting hydrolase activity. BIORESOURCE TECHNOLOGY 2018; 250:777-783. [PMID: 29245128 DOI: 10.1016/j.biortech.2017.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/02/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
Short-chain fatty acid (SCFAs) produced from harvested algae by anaerobic fermentation with uncontrolled pH was limited due to the solid cell structure of algae. This study, therefore, was undertaken to enhance the generation of SCFAs from algae by controlling the fermentation pH. pH influenced not only the total SCFAs production, but the percentage of individual SCFA. The maximal yield of SCFAs occurred at pH 10.0 and fermentation time of 6 d (3161 mg COD/L), which mainly contained acetic and iso-valeric acids and was nearly eight times that at uncontrolled pH (392 mg COD/L). Mechanism exploration revealed at alkaline pH, especially at pH 10.0, not only the cell structure of algae was damaged effectively, but also activities and relative quantification of hydrolases as well as the abundance of microorganisms responsible for organics hydrolysis and SCFAs production were improved. Also, the released microcystins from algae were removed efficiently during alkaline anaerobic fermentation.
Collapse
Affiliation(s)
- Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yunzhi Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xutao Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jing Xie
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|