1
|
Hensvold A, Horuluoglu B, Sahlström P, Thyagarajan R, Diaz Boada JS, Hansson M, Mathsson-Alm L, Gerstner C, Sippl N, Israelsson L, Wedin R, Steen J, Klareskog L, Réthi B, Catrina AI, Diaz-Gallo LM, Malmström V, Grönwall C. The human bone marrow plasma cell compartment in rheumatoid arthritis - Clonal relationships and anti-citrulline autoantibody producing cells. J Autoimmun 2023; 136:103022. [PMID: 37001434 DOI: 10.1016/j.jaut.2023.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/24/2023] [Accepted: 02/27/2023] [Indexed: 03/31/2023]
Abstract
A majority of circulating IgG is produced by plasma cells residing in the bone marrow (BM). Long-lived BM plasma cells constitute our humoral immune memory and are essential for infection-specific immunity. They may also provide a reservoir of potentially pathogenic autoantibodies, including rheumatoid arthritis (RA)-associated anti-citrullinated protein autoantibodies (ACPA). Here we investigated paired human BM plasma cell and peripheral blood (PB) B-cell repertoires in seropositive RA, four ACPA+ RA patients and one ACPA- using two different single-cell approaches, flow cytometry sorting, and transcriptomics, followed by recombinant antibody generation. Immunoglobulin (Ig) analysis of >900 paired heavy-light chains from BM plasma cells identified by either surface CD138 expression or transcriptome profiles (including gene expression of MZB1, JCHAIN and XBP1) demonstrated differences in IgG/A repertoires and N-linked glycosylation between patients. For three patients, we identified clonotypes shared between BM plasma cells and PB memory B cells. Notably, four individuals displayed plasma cells with identical heavy chains but different light chains, which may indicate receptor revision or clonal convergence. ACPA-producing BM plasma cells were identified in two ACPA+ patients. Three of 44 recombinantly expressed monoclonal antibodies from ACPA+ RA BM plasma cells were CCP2+, specifically binding to citrullinated peptides. Out of these, two clones reacted with citrullinated histone-4 and activated neutrophils. In conclusion, single-cell investigation of B-cell repertoires in RA bone marrow provided new understanding of human plasma cells clonal relationships and demonstrated pathogenically relevant disease-associated autoantibody expression in long-lived plasma cells.
Collapse
Affiliation(s)
- Aase Hensvold
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
| | - Begum Horuluoglu
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Sahlström
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Radha Thyagarajan
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Juan Sebastian Diaz Boada
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Monika Hansson
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Linda Mathsson-Alm
- Thermo Fisher Scientific, Uppsala, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Christina Gerstner
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Natalie Sippl
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Israelsson
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rikard Wedin
- Department of Trauma and Reparative Medicine, Karolinska University Hospital, and Department of Molecular Medicine and Surgery, Karolinska Institutet, Sweden
| | - Johanna Steen
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Klareskog
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Bence Réthi
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anca I Catrina
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
| | - Lina-Marcela Diaz-Gallo
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Vivianne Malmström
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Grönwall
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
2
|
Lightman SM, Peresie JL, Carlson LM, Holling GA, Honikel MM, Chavel CA, Nemeth MJ, Olejniczak SH, Lee KP. Indoleamine 2,3-dioxygenase 1 is essential for sustaining durable antibody responses. Immunity 2021; 54:2772-2783.e5. [PMID: 34788602 PMCID: PMC9323746 DOI: 10.1016/j.immuni.2021.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 07/09/2021] [Accepted: 10/06/2021] [Indexed: 01/28/2023]
Abstract
Humoral immunity is essential for protection against pathogens, emphasized by the prevention of 2-3 million deaths worldwide annually by childhood immunizations. Long-term protective immunity is dependent on the continual production of neutralizing antibodies by the subset of long-lived plasma cells (LLPCs). LLPCs are not intrinsically long-lived, but require interaction with LLPC niche stromal cells for survival. However, it remains unclear which and how these interactions sustain LLPC survival and long-term humoral immunity. We now have found that the immunosuppressive enzyme indoleamine 2,3- dioxygenase 1 (IDO1) is required to sustain antibody responses and LLPC survival. Activation of IDO1 occurs upon the engagement of CD80/CD86 on the niche dendritic cells by CD28 on LLPC. Kynurenine, the product of IDO1 catabolism, activates the aryl hydrocarbon receptor in LLPC, reinforcing CD28 expression and survival signaling. These findings expand the immune function of IDO1 and uncover a novel pathway for sustaining LLPC survival and humoral immunity.
Collapse
Affiliation(s)
- Shivana M. Lightman
- Department of Immunology, Roswell Park Cancer Institute; Buffalo, NY 14203, USA
| | - Jennifer L. Peresie
- Department of Immunology, Roswell Park Cancer Institute; Buffalo, NY 14203, USA
| | - Louise M. Carlson
- Department of Immunology, Roswell Park Cancer Institute; Buffalo, NY 14203, USA
| | - G. Aaron Holling
- Department of Immunology, Roswell Park Cancer Institute; Buffalo, NY 14203, USA
| | | | - Colin A. Chavel
- Department of Immunology, Roswell Park Cancer Institute; Buffalo, NY 14203, USA
| | - Michael J Nemeth
- Department of Immunology, Roswell Park Cancer Institute; Buffalo, NY 14203, USA
| | - Scott H. Olejniczak
- Department of Immunology, Roswell Park Cancer Institute; Buffalo, NY 14203, USA
| | - Kelvin P. Lee
- Department of Immunology, Roswell Park Cancer Institute; Buffalo, NY 14203, USA
| |
Collapse
|
3
|
Aggarwal C, Saini K, Reddy ES, Singla M, Nayak K, Chawla YM, Maheshwari D, Singh P, Sharma P, Bhatnagar P, Kumar S, Gottimukkala K, Panda H, Gunisetty S, Davis CW, Kissick HT, Kabra SK, Lodha R, Medigeshi GR, Ahmed R, Murali-Krishna K, Chandele A. Immunophenotyping and Transcriptional Profiling of Human Plasmablasts in Dengue. J Virol 2021; 95:e0061021. [PMID: 34523972 PMCID: PMC8577383 DOI: 10.1128/jvi.00610-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/11/2021] [Indexed: 12/07/2022] Open
Abstract
Plasmablasts represent a specialized class of antibody-secreting effector B cells that transiently appear in blood circulation following infection or vaccination. The expansion of these cells generally tends to be massive in patients with systemic infections such as dengue or Ebola that cause hemorrhagic fever. To gain a detailed understanding of human plasmablast responses beyond antibody expression, here, we performed immunophenotyping and RNA sequencing (RNA-seq) analysis of the plasmablasts from dengue febrile children in India. We found that plasmablasts expressed several adhesion molecules and chemokines or chemokine receptors that are involved in endothelial interactions or homing to inflamed tissues, including skin, mucosa, and intestine, and upregulated the expression of several cytokine genes that are involved in leukocyte extravasation and angiogenesis. These plasmablasts also upregulated the expression of receptors for several B-cell prosurvival cytokines that are known to be induced robustly in systemic viral infections such as dengue, some of which generally tend to be relatively higher in patients manifesting hemorrhage and/or shock than in patients with mild febrile infection. These findings improve our understanding of human plasmablast responses during the acute febrile phase of systemic dengue infection. IMPORTANCE Dengue is globally spreading, with over 100 million clinical cases annually, with symptoms ranging from mild self-limiting febrile illness to more severe and sometimes life-threatening dengue hemorrhagic fever or shock, especially among children. The pathophysiology of dengue is complex and remains poorly understood despite many advances indicating a key role for antibody-dependent enhancement of infection. While serum antibodies have been extensively studied, the characteristics of the early cellular factories responsible for antibody production, i.e., plasmablasts, are only beginning to emerge. This study provides a comprehensive understanding of the transcriptional profiles of human plasmablasts from dengue patients.
Collapse
Affiliation(s)
- Charu Aggarwal
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Keshav Saini
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Mohit Singla
- Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Kaustuv Nayak
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Yadya M. Chawla
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Deepti Maheshwari
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Prabhat Singh
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Pragati Sharma
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Biotechnology, School of Chemical and Life Sciences, New Delhi, India
| | - Priya Bhatnagar
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- TERI School of Advanced Studies, New Delhi, India
| | - Sanjeev Kumar
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kamalvishnu Gottimukkala
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Harekrushna Panda
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sivaram Gunisetty
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Carl W. Davis
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Haydn Thomas Kissick
- Department of Microbiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sushil Kumar Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
4
|
Ricci D, Gidalevitz T, Argon Y. The special unfolded protein response in plasma cells. Immunol Rev 2021; 303:35-51. [PMID: 34368957 DOI: 10.1111/imr.13012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022]
Abstract
The high rate of antibody production places considerable metabolic and folding stress on plasma cells (PC). Not surprisingly, they rely on the unfolded protein response (UPR), a universal signaling, and transcriptional network that monitors the health of the secretory pathway and mounts cellular responses to stress. Typically, the UPR utilizes three distinct stress sensors in the ER membrane, each regulating a subset of targets to re-establish homeostasis. PC use a specialized UPR scheme-they preemptively trigger the UPR via developmental signals and suppress two of the sensors, PERK and ATF6, relying on IRE1 alone. The specialized PC UPR program is tuned to the specific needs at every stage of development-from early biogenesis of secretory apparatus, to massive immunoglobulin expression later. Furthermore, the UPR in PC integrates with other pathways essential in a highly secretory cell-mTOR pathway that ensures efficient synthesis, autophagosomes that recycle components of the synthetic machinery, and apoptotic signaling that controls cell fate in the face of excessive folding stress. This specialized PC program is not shared with other secretory cells, for reasons yet to be defined. In this review, we give a perspective into how and why PC need such a unique UPR program.
Collapse
Affiliation(s)
- Daniela Ricci
- Department of Pathology and Lab Medicine, The Childrens' Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Tali Gidalevitz
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Yair Argon
- Department of Pathology and Lab Medicine, The Childrens' Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Grasseau A, Boudigou M, Michée-Cospolite M, Delaloy C, Mignen O, Jamin C, Cornec D, Pers JO, Le Pottier L, Hillion S. The diversity of the plasmablast signature across species and experimental conditions: A meta-analysis. Immunology 2021; 164:120-134. [PMID: 34041745 DOI: 10.1111/imm.13344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/15/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Antibody-secreting cells (ASC) are divided into two principal subsets, including the long-lived plasma cell (PC) subset residing in the bone marrow and the short-lived subset, also called plasmablast (PB). PB are described as a proliferating subset circulating through the blood and ending its differentiation in tissues. Due to their inherent heterogeneity, the molecular signature of PB is not fully established. The purpose of this study was to decipher a specific PB signature in humans and mice through a comprehensive meta-analysis of different data sets exploring the PB differentiation in both species and across different experimental conditions. The present study used recent analyses using whole RNA sequencing in prdm1-GFP transgenic mice to define a reliable and accurate PB signature. Next, we performed similar analysis using current data sets obtained from human PB and PC. The PB-specific signature is composed of 155 and 113 genes in mouse and human being, respectively. Although only nine genes are shared between the human and mice PB signature, the loss of B-cell identity such as the down-regulation of PAX5, MS4A1, (CD20) CD22 and IL-4R is a conserved feature across species and across the different experimental conditions. Additionally, we observed that the IRF8 and IRF4 transcription factors have a specific dynamic range of expression in human PB. We thus demonstrated that IRF4/IRF8 intranuclear staining was useful to define PB in vivo and in vitro and able to discriminate between atypical PB populations and transient states.
Collapse
Affiliation(s)
| | | | | | - Céline Delaloy
- UMR U1236, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Université de Rennes 1, Rennes, France
| | | | - Christophe Jamin
- UMR1227, LBAI, INSERM, Univ Brest, Brest, France.,UMR1227, LBAI, INSERM, CHU de Brest, Univ Brest, Brest, France
| | - Divi Cornec
- UMR1227, LBAI, INSERM, Univ Brest, Brest, France.,UMR1227, LBAI, INSERM, CHU de Brest, Univ Brest, Brest, France
| | - Jacques-Olivier Pers
- UMR1227, LBAI, INSERM, Univ Brest, Brest, France.,UMR1227, LBAI, INSERM, CHU de Brest, Univ Brest, Brest, France
| | | | - Sophie Hillion
- UMR1227, LBAI, INSERM, Univ Brest, Brest, France.,UMR1227, LBAI, INSERM, CHU de Brest, Univ Brest, Brest, France
| |
Collapse
|
6
|
Luo B, Zhan Y, Luo M, Dong H, Liu J, Lin Y, Zhang J, Wang G, Verhoeyen E, Zhang Y, Zhang H. Engineering of α-PD-1 antibody-expressing long-lived plasma cells by CRISPR/Cas9-mediated targeted gene integration. Cell Death Dis 2020; 11:973. [PMID: 33184267 PMCID: PMC7661525 DOI: 10.1038/s41419-020-03187-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022]
Abstract
Long-lived plasma cells (LLPCs) are robust specialized antibody-secreting cells that mainly stay in the bone marrow and can persist a lifetime. As they can be generated by inducing the differentiation of B-lymphocytes, we investigated the possibility that human LLPCs might be engineered to express α-PD-1 monoclonal antibody to substitute recombinant α-PD-1 antitumor immunotherapy. To this end, we inserted an α-PD-1 cassette into the GAPDH locus through Cas9/sgRNA-guided specific integration in B-lymphocytes, which was mediated by an integrase-defective lentiviral vector. The edited B cells were capable of differentiating into LLPCs both in vitro and in vivo. Transcriptional profiling analysis confirmed that these cells were typical LLPCs. Importantly, these cells secreted de novo antibodies persistently, which were able to inhibit human melanoma growth via an antibody-mediated checkpoint blockade in xenograft-tumor mice. Our work suggests that the engineered LLPCs may be utilized as a vehicle to constantly produce special antibodies for long-term cellular immunotherapy to eradicate tumors and cellular reservoirs for various pathogens including human immunodeficiency virus type 1 (HIV-1) and hepatitis B virus (HBV).
Collapse
Affiliation(s)
- Baohong Luo
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Yikang Zhan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Minqi Luo
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Huimin Dong
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Jun Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Yingtong Lin
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Junsong Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Guanwen Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Els Verhoeyen
- CIRI - International Center for Infectiology, Research team EVIR, Inserm, U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, University of Lyon, Lyon, France.,Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
| | - Yiwen Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China. .,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China. .,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Differential epigenetic regulation between the alternative promoters, PRDM1α and PRDM1β, of the tumour suppressor gene PRDM1 in human multiple myeloma cells. Sci Rep 2020; 10:15899. [PMID: 32985591 PMCID: PMC7522722 DOI: 10.1038/s41598-020-72946-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 09/07/2020] [Indexed: 12/23/2022] Open
Abstract
Multiple myeloma (MM) is a B-cell neoplasm that is characterized by the accumulation of malignant plasma cells in the bone marrow. The transcription factor PRDM1 is a master regulator of plasma cell development and is considered to be an oncosuppressor in several lymphoid neoplasms. The PRDM1β isoform is an alternative promoter of the PRDM1 gene that may interfere with the normal role of the PRDM1α isoform. To explain the induction of the PRDM1β isoform in MM and to offer potential therapeutic strategies to modulate its expression, we characterized the cis regulatory elements and epigenetic status of its promoter. We observed unexpected patterns of hypermethylation and hypomethylation at the PRDM1α and PRDM1β promoters, respectively, and prominent H3K4me1 and H3K9me2 enrichment at the PRDM1β promoter in non-expressing cell lines compared to PRDM1β-expressing cell lines. After treatment with drugs that inhibit DNA methylation, we were able to modify the activity of the PRDM1β promoter but not that of the PRDM1α promoter. Epigenetic drugs may offer the ability to control the expression of the PRDM1α/PRDM1β promoters as components of novel therapeutic approaches.
Collapse
|
8
|
D'Souza L, Bhattacharya D. Plasma cells: You are what you eat. Immunol Rev 2019; 288:161-177. [PMID: 30874356 DOI: 10.1111/imr.12732] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/03/2018] [Indexed: 12/26/2022]
Abstract
Plasma cells are terminally differentiated B lymphocytes that constitutively secrete antibodies. These antibodies can provide protection against pathogens, and their quantity and quality are the best clinical correlates of vaccine efficacy. As such, plasma cell lifespan is the primary determinant of the duration of humoral immunity. Yet dysregulation of plasma cell function can cause autoimmunity or multiple myeloma. The longevity of plasma cells is primarily dictated by nutrient uptake and non-transcriptionally regulated metabolic pathways. We have previously shown a positive effect of glucose uptake and catabolism on plasma cell longevity and function. In this review, we discuss these findings with an emphasis on nutrient uptake and its effects on respiratory capacity, lifespan, endoplasmic reticulum stress, and antibody secretion in plasma cells. We further discuss how some of these pathways may be dysregulated in multiple myeloma, potentially providing new therapeutic targets. Finally, we speculate on the connection between plasma cell intrinsic metabolism and systemic changes in nutrient availability and metabolic diseases.
Collapse
Affiliation(s)
- Lucas D'Souza
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, Arizona
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
9
|
Lightman SM, Utley A, Lee KP. Survival of Long-Lived Plasma Cells (LLPC): Piecing Together the Puzzle. Front Immunol 2019; 10:965. [PMID: 31130955 PMCID: PMC6510054 DOI: 10.3389/fimmu.2019.00965] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
Durable humoral immunity is dependent upon the generation of antigen-specific antibody titers, produced by non-proliferating bone marrow resident long-lived plasma cells (LLPC). Longevity is the hallmark of LLPC, but why and how they survive and function for years after antigen exposure is only beginning to be understood. LLPC are not intrinsically long-lived; they require continuous signals from the LLPC niche to survive. Signals unique to LLPC survival (vs. PC survival in general) most notably include those that upregulate the anti-apoptotic factor Mcl-1 and activation of the CD28 receptor expressed on LLPC. Other potential factors include expression of BCMA, upregulation of the transcription factor ZBTB20, and upregulation of the enzyme ENPP1. Metabolic fitness is another key component of LLPC longevity, facilitating the diversion of glucose to generate pyruvate during times of stress to facilitate long term survival. A third major component of LLPC survival is the microenvironment/LLPC niche itself. Cellular partners such as stromal cells, dendritic cells, and T regulatory cells establish a niche for LLPC and drive survival signaling by expressing ligands such as CD80/CD86 for CD28 and producing soluble and stromal factors that contribute to LLPC longevity. These findings have led to the current paradigm wherein both intrinsic and extrinsic mechanisms are required for the survival of LLPC. Here we outline this diverse network of signals and highlight the mechanisms thought to regulate and promote the survival of LLPC. Understanding this network of signals has direct implications in increasing our basic understanding of plasma cell biology, but also in vaccine and therapeutic drug development to address the pathologies that can arise from this subset.
Collapse
Affiliation(s)
- Shivana M Lightman
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Adam Utley
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Kelvin P Lee
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
10
|
Lam WY, Jash A, Yao CH, D'Souza L, Wong R, Nunley RM, Meares GP, Patti GJ, Bhattacharya D. Metabolic and Transcriptional Modules Independently Diversify Plasma Cell Lifespan and Function. Cell Rep 2018; 24:2479-2492.e6. [PMID: 30157439 PMCID: PMC6172041 DOI: 10.1016/j.celrep.2018.07.084] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/15/2018] [Accepted: 07/25/2018] [Indexed: 01/12/2023] Open
Abstract
Plasma cell survival and the consequent duration of immunity vary widely with infection or vaccination. Using fluorescent glucose analog uptake, we defined multiple developmentally independent mouse plasma cell populations with varying lifespans. Long-lived plasma cells imported more fluorescent glucose analog, expressed higher surface levels of the amino acid transporter CD98, and had more autophagosome mass than did short-lived cells. Low amino acid concentrations triggered reductions in both antibody secretion and mitochondrial respiration, especially by short-lived plasma cells. To explain these observations, we found that glutamine was used for both mitochondrial respiration and anaplerotic reactions, yielding glutamate and aspartate for antibody synthesis. Endoplasmic reticulum (ER) stress responses, which link metabolism to transcriptional outcomes, were similar between long- and short-lived subsets. Accordingly, population and single-cell transcriptional comparisons across mouse and human plasma cell subsets revealed few consistent and conserved differences. Thus, plasma cell antibody secretion and lifespan are primarily defined by non-transcriptional metabolic traits.
Collapse
Affiliation(s)
- Wing Y Lam
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Arijita Jash
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cong-Hui Yao
- Department of Chemistry, Washington University, St. Louis, MO 63110, USA
| | - Lucas D'Souza
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Rachel Wong
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Ryan M Nunley
- Washington University Orthopedics, Barnes Jewish Hospital, St. Louis, MO 63110, USA
| | - Gordon P Meares
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Gary J Patti
- Department of Chemistry, Washington University, St. Louis, MO 63110, USA
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| |
Collapse
|
11
|
Early alteration of epigenetic-related transcription in Huntington's disease mouse models. Sci Rep 2018; 8:9925. [PMID: 29967375 PMCID: PMC6028428 DOI: 10.1038/s41598-018-28185-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022] Open
Abstract
Transcriptional dysregulation in Huntington’s disease (HD) affects the expression of genes involved in survival and neuronal functions throughout the progression of the pathology. In recent years, extensive research has focused on epigenetic and chromatin-modifying factors as a causative explanation for such dysregulation, offering attractive targets for pharmacological therapies. In this work, we extensively examined the gene expression profiles in the cortex, striatum, hippocampus and cerebellum of juvenile R6/1 and N171-82Q mice, models of rapidly progressive HD, to retrieve the early transcriptional signatures associated with this pathology. These profiles were largely consistent across HD datasets, contained tissular and neuronal-specific genes and showed significant correspondence with the transcriptional changes in mouse strains deficient for epigenetic regulatory genes. The most prominent cases were the conditional knockout of the lysine acetyltransferase CBP in post-mitotic forebrain neurons, the double knockout of the histone methyltransferases Ezh1 and Ezh2, components of the polycomb repressor complex 2 (PRC2), and the conditional mutants of the histone methyltransferases G9a (Ehmt2) and GLP (Ehmt1). Based on these observations, we propose that the neuronal epigenetic status is compromised in the prodromal stages of HD, leading to an altered transcriptional programme that is prominently involved in neuronal identity.
Collapse
|