1
|
Takeda K, Sarata A, Terasaki M, Kubota A, Shimizu K, Kamata R. Assessment of the Aryl Hydrocarbon Receptor-Mediated Effects of Aromatic Sensitizers in Paper Recycling Effluent Employing Zebrafish Embryos and in Silico Docking. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2176-2188. [PMID: 39092783 DOI: 10.1002/etc.5969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Aromatic sensitizers and related substances (SRCs), which are crucial in the paper industry for facilitating color-forming and color-developing chemical reactions, inadvertently contaminate effluents during paper recycling. Owing to their structural resemblance to endocrine-disrupting aromatic organic compounds, concerns have arisen about potential adverse effects on aquatic organisms. We focused on SRC effects via the aryl hydrocarbon receptor (AHR), employing molecular docking simulations and zebrafish (Danio rerio) embryo exposure assessments. Molecular docking revealed heightened binding affinities between certain SRCs in the paper recycling effluents and zebrafish Ahr2 and human AHR, which are pivotal components in the SRC toxicity mechanism. Fertilized zebrafish eggs were exposed to SRCs for up to 96 h post fertilization; among these substances, benzyl 2-naphthyl ether (BNE) caused morphological abnormalities, such as pericardial edema and shortened body length, at relatively low concentrations (1 μM) during embryogenesis. Gene expression of cytochrome P450 1A (cyp1a) and ahr2 was also significantly increased by BNE. Co-exposure to the AHR antagonist CH-223191 only partially mitigated BNE's phenotypic effects, despite the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin being relatively well restored by CH-223191, indicating BNE's AHR-independent toxic mechanisms. Furthermore, some SRCs, including BNE, exhibited in silico binding affinity to the estrogen receptor and upregulation of cyp19a1b gene expression. Therefore, additional insights into the toxicity of SRCs and their mechanisms are essential. The present results provide important information on SRCs and other papermaking chemicals that could help minimize the environmental impact of the paper industry. Environ Toxicol Chem 2024;43:2176-2188. © 2024 SETAC.
Collapse
Affiliation(s)
- Kazuki Takeda
- Laboratory of Toxicology, School of Veterinary Medicine, Kitasato University, Towada-shi, Aomori, Japan
- Department of Computer Science, Tokyo Institute of Technology, Yokohama-shi, Kanagawa, Japan
| | - Aoi Sarata
- Laboratory of Toxicology, School of Veterinary Medicine, Kitasato University, Towada-shi, Aomori, Japan
| | - Masanori Terasaki
- Environmental Chemistry Laboratory, Graduate School of Arts and Sciences, Iwate University, Morioka City, Iwate, Japan
| | - Akira Kubota
- Laboratory of Toxicology, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Keita Shimizu
- Laboratory of Toxicology, School of Veterinary Medicine, Kitasato University, Towada-shi, Aomori, Japan
| | - Ryo Kamata
- Laboratory of Toxicology, School of Veterinary Medicine, Kitasato University, Towada-shi, Aomori, Japan
| |
Collapse
|
2
|
Elizalde MJ, Gorelick DA. Mechanistic toxicology in light of genetic compensation. Toxicol Sci 2023; 197:kfad113. [PMID: 37941503 PMCID: PMC10823772 DOI: 10.1093/toxsci/kfad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Mechanistic toxicology seeks to identify the molecular and cellular mechanisms by which toxicants exert their deleterious effects. One powerful approach is to generate mutations in genes that respond to a particular toxicant, and then test how such mutations change the effects of the toxicant. CRISPR is a rapid and versatile approach to generate mutations in cultured cells and in animal models. Many studies use CRISPR to generate short insertions or deletions in a target gene and then assume that the resulting mutation, such as a premature termination codon, causes a loss of functional protein. However, recent studies demonstrate that this assumption is flawed. Cells can compensate for short insertion and deletion mutations, leading toxicologists to draw erroneous conclusions from mutant studies. In this review, we will discuss mechanisms by which a mutation in one gene may be rescued by compensatory activity. We will discuss how CRISPR insertion and deletion mutations are susceptible to compensation by transcriptional adaptation, alternative splicing, and rescue by maternally derived gene products. We will review evidence that measuring levels of messenger RNA transcribed from a mutated gene is an unreliable indicator of the severity of the mutation. Finally, we provide guidelines for using CRISPR to generate mutations that avoid compensation.
Collapse
Affiliation(s)
- Mary Jane Elizalde
- Department of Molecular & Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, United States
| | - Daniel A Gorelick
- Department of Molecular & Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
3
|
Marszalek-Grabska M, Gawel K, Kosheva N, Kocki T, Turski WA. Developmental Exposure to Kynurenine Affects Zebrafish and Rat Behavior. Cells 2023; 12:2224. [PMID: 37759447 PMCID: PMC10526278 DOI: 10.3390/cells12182224] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Proper nutrition and supplementation during pregnancy and breastfeeding are crucial for the development of offspring. Kynurenine (KYN) is the central metabolite of the kynurenine pathway and a direct precursor of other metabolites that possess immunoprotective or neuroactive properties, with the ultimate effect on fetal neurodevelopment. To date, no studies have evaluated the effects of KYN on early embryonic development. Thus, the aim of our study was to determine the effect of incubation of larvae with KYN in different developmental periods on the behavior of 5-day-old zebrafish. Additionally, the effects exerted by KYN administered on embryonic days 1-7 (ED 1-7) on the behavior of adult offspring of rats were elucidated. Our study revealed that the incubation with KYN induced changes in zebrafish behavior, especially when zebrafish embryos or larvae were incubated with KYN from 1 to 72 h post-fertilization (hpf) and from 49 to 72 hpf. KYN administered early during pregnancy induced subtle differences in the neurobehavioral development of adult offspring. Further research is required to understand the mechanism of these changes. The larval zebrafish model can be useful for studying disturbances in early brain development processes and their late behavioral consequences. The zebrafish-medium system may be applicable in monitoring drug metabolism in zebrafish.
Collapse
Affiliation(s)
- Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland; (K.G.); (N.K.); (T.K.); (W.A.T.)
| | | | | | | | | |
Collapse
|
4
|
Shen C, He J, Zhu K, Zheng N, Yu Y, He C, Yang C, Zuo Z. Mepanipyrim induces cardiotoxicity of zebrafish (Danio rerio) larvae via promoting AhR-regulated COX expression pathway. J Environ Sci (China) 2023; 125:650-661. [PMID: 36375947 DOI: 10.1016/j.jes.2022.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 06/16/2023]
Abstract
The wide use of pesticides has seriously threatened human health and the survival of beneficial organisms. The fungicide mepanipyrim is widely used in viticulture practices. Studies of mepanipyrim-induced toxicity in organisms are still scarce, especially studies on cardiotoxicity. In this study, we aimed to investigate mepanipyrim-induced cardiotoxicity in zebrafish (Danio rerio) larvae. We found that mepanipyrim could induce cardiotoxicity by altering the heart rate and cardiomyocyte diameter of larvae. Meanwhile, RNA sequencing and RT-qPCR data indicated that mepanipyrim exposure could dramatically alter the mRNA expression of calcium signaling pathway-, cardiac muscle contraction-, and oxidative respiratory chain-related genes. Interestingly, by the CALUX cell bioassay, we found that most cytochrome c oxidase (COX) family genes exhibited potential AhR-regulated activity, suggesting that mepanipyrim induced cardiotoxicity via a novel AhR-regulated manner in larvae. Additionally, the AhR antagonist CH223191 could effectively prevent mepanipyrim-induced cardiotoxicity in zebrafish larvae. In conclusion, the AhR agonist mepanipyrim could induce cardiotoxicity in a novel unreported AhR-regulated manner, which could specifically affect the expression of COX family genes involved in the mitochondrial oxidative respiratory chain. Our data will help explain the toxic effects of mepanipyrim on organisms and provide new insight into the AhR agonistic activity pesticide-induced cardiotoxicity.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Jing He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Naying Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Yue Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China.
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
5
|
Shankar P, Dasgupta S, Hahn ME, Tanguay RL. A Review of the Functional Roles of the Zebrafish Aryl Hydrocarbon Receptors. Toxicol Sci 2020; 178:215-238. [PMID: 32976604 PMCID: PMC7706399 DOI: 10.1093/toxsci/kfaa143] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the last 2 decades, the zebrafish (Danio rerio) has emerged as a stellar model for unraveling molecular signaling events mediated by the aryl hydrocarbon receptor (AHR), an important ligand-activated receptor found in all eumetazoan animals. Zebrafish have 3 AHRs-AHR1a, AHR1b, and AHR2, and studies have demonstrated the diversity of both the endogenous and toxicological functions of the zebrafish AHRs. In this contemporary review, we first highlight the evolution of the zebrafish ahr genes, and the characteristics of the receptors including developmental and adult expression, their endogenous and inducible roles, and the predicted ligands from homology modeling studies. We then review the toxicity of a broad spectrum of AHR ligands across multiple life stages (early stage, and adult), discuss their transcriptomic and epigenetic mechanisms of action, and report on any known interactions between the AHRs and other signaling pathways. Through this article, we summarize the promising research that furthers our understanding of the complex AHR pathway through the extensive use of zebrafish as a model, coupled with a large array of molecular techniques. As much of the research has focused on the functions of AHR2 during development and the mechanism of TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) toxicity, we illustrate the need to address the considerable knowledge gap in our understanding of both the mechanistic roles of AHR1a and AHR1b, and the diverse modes of toxicity of the various AHR ligands.
Collapse
Affiliation(s)
- Prarthana Shankar
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| | - Subham Dasgupta
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
6
|
Aranguren-Abadía L, Donald CE, Eilertsen M, Gharbi N, Tronci V, Sørhus E, Mayer P, Nilsen TO, Meier S, Goksøyr A, Karlsen OA. Expression and localization of the aryl hydrocarbon receptors and cytochrome P450 1A during early development of Atlantic cod (Gadus morhua). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105558. [PMID: 32673888 DOI: 10.1016/j.aquatox.2020.105558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates the toxicity of dioxins and dioxin-like compounds (DLCs) in vertebrates. Two clades of the Ahr family exist in teleosts (Ahr1 and Ahr2), and it has been demonstrated that Ahr2 is the main protein involved in mediating the toxicity of dioxins and DLCs in most teleost species. Recently, we characterized the Atlantic cod (Gadus morhua) Ahr1a and Ahr2a receptors. To further explore a possible subfunction partitioning of Ahr1a and Ahr2a in Atlantic cod we have mapped the expression and localization of ahr1a and ahr2a in early developmental stages. Atlantic cod embryos were continuously exposed in a passive-dosing exposure system to the Ahr agonist, benzo[a]pyrene (B[a]P), from five days post fertilization (dpf) until three days post hatching (dph). Expression of ahr1a, ahr2a, and the Ahr-target genes, cyp1a and ahrrb, was assessed in embryos (8 dpf and 10 dpf) and larvae (3 dph) with quantitative real-time PCR analyses (qPCR), while in situ hybridization was used to assess the localization of expression of ahr1a, ahr2a and cyp1a. Quantitative measurements showed an increased cyp1a expression in B[a]P-exposed samples at all sampling points, and for ahr2a at 10 dpf, confirming the activation of the Ahr-signalling pathway. Furthermore, B[a]P strongly induced ahr2a and cyp1a expression in the cardiovascular system and skin, respectively, of embryos and larvae. Induced expression of both ahr2a and cyp1a was also revealed in the liver of B[a]P-exposed larvae. Our results suggest that Ahr2a is the major subtype involved in mediating responses to B[a]P in early developmental stages of Atlantic cod, which involves transcriptional regulation of biotransformation genes, such as cyp1a. The focused expression of ahr1a in the eye of embryos and larvae, and the presence of ahr2a transcripts in the jaws and fin nodes, further indicate evolved specialized roles of the two Ahrs in ontogenesis.
Collapse
Affiliation(s)
| | | | - Mariann Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Naouel Gharbi
- NORCE Norwegian Research Centre AS, Uni Research Environment, Bergen, Norway
| | - Valentina Tronci
- NORCE Norwegian Research Centre AS, Uni Research Environment, Bergen, Norway
| | - Elin Sørhus
- Institute of Marine Research, Bergen, Norway
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Tom Ole Nilsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Bergen, Norway; Institute of Marine Research, Bergen, Norway
| | - Odd André Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
7
|
Souder JP, Gorelick DA. ahr2, But Not ahr1a or ahr1b, Is Required for Craniofacial and Fin Development and TCDD-dependent Cardiotoxicity in Zebrafish. Toxicol Sci 2020; 170:25-44. [PMID: 30907958 DOI: 10.1093/toxsci/kfz075] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that binds environmental toxicants and regulates gene expression. AHR also regulates developmental processes, like craniofacial development and hematopoiesis, in the absence of environmental exposures. Zebrafish have 3 paralogs of AHR: ahr1a, ahr1b, and ahr2. Adult zebrafish with mutations in ahr2 exhibited craniofacial and fin defects. However, the degree to which ahr1a and ahr1b influence ahr2 signaling and contribute to fin and craniofacial development are not known. We compared morphology of adult ahr2 mutants and ahr1a;ahr1b single and double mutant zebrafish. We found that ahr1a;ahr1b single and double mutants were morphologically normal whereas ahr2 mutant zebrafish demonstrated fin and craniofacial malformations. At 5 days post fertilization, both ahr1a;ahr1b and ahr2 mutant larvae were normal, suggesting that adult phenotypes are due to defects in maturation or maintenance. Next, we analyzed the function of zebrafish AHRs activated by environmental ligands. The prototypical AHR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), induces toxicity in humans and rodents via AHR and causes cardiotoxicity in zebrafish embryos. It has been shown that embryos with mutations in ahr2 are resistant to TCDD toxicity, yet it is unclear whether ahr1 receptors are required. Furthermore, though AHR was shown to interact with estrogen receptor alpha following TCDD treatment, it is not known whether this interaction is constitutive or context-dependent. To determine whether estrogen receptors are constitutive cofactors for AHR signaling, we used genetic and pharmacologic techniques to analyze TCDD-dependent toxicity in estrogen receptor and ahr mutant embryos. We found that embryos with mutations in ahr1a;ahr1b or estrogen receptor genes are susceptible to TCDD toxicity whereas ahr2 mutant embryos are TCDD-resistant. Moreover, pharmacologic blockade of nuclear estrogen receptors failed to prevent TCDD toxicity. These findings suggest that ahr1 genes do not have overlapping functions with ahr2 in fin and craniofacial development or TCDD-dependent toxicity, and that estrogen receptors are not constitutive partners of ahr2.
Collapse
Affiliation(s)
- Jaclyn P Souder
- Medical Scientist Training Program & Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, 35294.,Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, 77030
| | - Daniel A Gorelick
- Medical Scientist Training Program & Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, 35294.,Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
8
|
Aranguren-Abadía L, Lille-Langøy R, Madsen AK, Karchner SI, Franks DG, Yadetie F, Hahn ME, Goksøyr A, Karlsen OA. Molecular and Functional Properties of the Atlantic Cod ( Gadus morhua) Aryl Hydrocarbon Receptors Ahr1a and Ahr2a. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1033-1044. [PMID: 31852180 PMCID: PMC7003535 DOI: 10.1021/acs.est.9b05312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates the toxicity of halogenated and polycyclic aromatic hydrocarbons in vertebrates. Atlantic cod (Gadus morhua) has recently emerged as a model organism in environmental toxicology studies, and increased knowledge of Ahr-mediated responses to xenobiotics is imperative. Genome mining and phylogenetic analyses revealed two Ahr-encoding genes in the Atlantic cod genome, gmahr1a and gmahr2a. In vitro binding assays showed that both gmAhr proteins bind to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but stronger binding to gmAhr1a was observed. Transactivation studies with a reporter gene assay revealed that gmAhr1a is one order of magnitude more sensitive to TCDD than gmAhr2a, but the maximal responses of the receptors were similar. Other well-known Ahr agonists, such as β-naphthoflavone (BNF), 3,3',4,4',5-pentachlorobiphenyl (PCB126), and 6-formylindolo[3,2-b]carbazole (FICZ), also activated the gmAhr proteins, but gmAhr1a was, in general, the more sensitive receptor and produced the highest efficacies. The induction of cyp1a in exposed precision-cut cod liver slices confirmed the activation of the Ahr signaling pathway ex vivo. In conclusion, the differences in transcriptional activation by gmAhr's with various agonists, the distinct binding properties with TCDD and BNF, and the distinct tissue-specific expression profiles indicate different functional specializations of the Atlantic cod Ahr's.
Collapse
Affiliation(s)
| | | | | | - Sibel I. Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Diana G. Franks
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Odd André Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Ulin A, Henderson J, Pham MT, Meyo J, Chen Y, Karchner SI, Goldstone JV, Hahn ME, Williams LM. Developmental Regulation of Nuclear Factor Erythroid-2 Related Factors (nrfs) by AHR1b in Zebrafish (Danio rerio). Toxicol Sci 2019; 167:536-545. [PMID: 30321412 PMCID: PMC6358246 DOI: 10.1093/toxsci/kfy257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Interactions between regulatory pathways allow organisms to adapt to their environment and respond to stress. One interaction that has been recently identified occurs between the aryl hydrocarbon receptor (AHR) and the nuclear factor erythroid-2 related factor (NRF) family. Each transcription factor regulates numerous downstream genes involved in the cellular response to toxicants and oxidative stress; they are also implicated in normal developmental pathways. The zebrafish model was used to explore the role of AHR regulation of nrf genes during development and in response to toxicant exposure. To determine if AHR1b is responsible for transcriptional regulation of 6 nrf genes during development, a loss-of-function experiment using morpholino-modified oligonucleotides was conducted followed by a chromatin immunoprecipitation study at the beginning of the pharyngula period (24 h postfertilization). The expression of nrf1a was AHR1b dependent and its expression was directly regulated through specific XREs in its cis-promoter. However, nrf1a expression was not altered by exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), a toxicant and prototypic AHR agonist. The expression of nrf1b, nrf2a, and nfe2 was induced by TCDD, and AHR1b directly regulated their expression by binding to cis-XRE promoter elements. Last, nrf2b and nrf3 were neither induced by TCDD nor regulated by AHR1b. These results show that AHR1b transcriptionally regulates nrf genes under toxicant modulation via binding to specific XREs. These data provide a better understanding of how combinatorial molecular signaling potentially protects embryos from embryotoxic events following toxicant exposure.
Collapse
Affiliation(s)
- Alexandra Ulin
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Jake Henderson
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Minh-Tam Pham
- Department of biology, Bates College, Lewiston, Maine 04240
| | - James Meyo
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Yuying Chen
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Sibel I Karchner
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Jared V Goldstone
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Mark E Hahn
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Larissa M Williams
- Department of biology, Bates College, Lewiston, Maine 04240
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| |
Collapse
|