1
|
Matera MG, Calzetta L, Rinaldi B, de Novellis V, Page CP, Barnes PJ, Cazzola M. Animal models of chronic obstructive pulmonary disease and their role in drug discovery and development: a critical review. Expert Opin Drug Discov 2025. [PMID: 39939153 DOI: 10.1080/17460441.2025.2466704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/16/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
INTRODUCTION To understand the mechanisms of COPD and to discover and test new drugs, laboratory animals are essential. However, the complex changes associated with the disease in humans are difficult to fully replicate in animal models. AREAS COVERED This review examines the most recent literature on animal models of COPD and their implications for drug discovery and development. EXPERT OPINION Recent advances in animal models have included the introduction of transgenic mice with an increased propensity to develop COPD-associated features, such as emphysema, and animals exposed to relevant environmental agents other than cigarette smoke, such as biomass smoke and other air pollutants. Additionally, other animal species, including zebrafish, pigs, ferrets and non-human primates, are also increasingly being used to gain insights into human COPD. Furthermore, three-dimensional organoids and humanized mouse models are emerging as technologies for evaluating novel therapeutics in more human-like models. However, despite some notable advances, no model developed to date fully captures the heterogeneity and progression of COPD observed in patients. Therefore, further research is needed to develop improved models that incorporate humanized elements in experimental animals that may better predict therapeutic responses in the clinic and accelerate the development of new treatments for this debilitating disease.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Barbara Rinaldi
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Vito de Novellis
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Clive P Page
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
2
|
Ercelen N, Karasu N, Kahyaoglu B, Cerezci O, Akduman RC, Ercelen D, Erturk G, Gulay G, Alpaydin N, Boyraz G, Monteleone B, Kural Z, Silek H, Temur S, Bingol CA. Clinical experience: Outcomes of mesenchymal stem cell transplantation in five stroke patients. Front Med (Lausanne) 2023; 10:1051831. [PMID: 36744151 PMCID: PMC9892908 DOI: 10.3389/fmed.2023.1051831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Stem cell therapy, which has promising results in acute disorders such as stroke, supports treatment by providing rehabilitation in the chronic stage patients. In acute stroke, thrombolytic medical treatment protocols are clearly defined in neurologic emergencies, but in neurologic patients who miss the "thrombolytic treatment intervention window," or in cases of hypoxic-ischemic encephalopathy, our hands are tied, and we are still unfortunately faced with hopeless clinical implementations. We consider mesenchymal stem cell therapy a viable option in these cases. In recent years, novel research has focused on neuro-stimulants and supportive and combined therapies for stroke. Currently, available treatment options are limited, and only certain patients are eligible for acute treatment. In the scope of our experience, five stroke patients were evaluated in this study, who was treated with a single dose of 1-2 × 106 cells/kg allogenic umbilical cord-mesenchymal stem cells (UC-MSCs) with the official confirmation of the Turkish Ministry of Health Stem Cell Commission. The patients were followed up for 12 months, and clinical outcomes are recorded. NIH Stroke Scale/Scores (NIHSS) decreased significantly (p = 0.0310), and the Rivermead Assessment Scale (RMA) increased significantly (p = 0.0234) for all patients at the end of the follow-up. All the patients were followed up for 1 year within a rehabilitation program. Major clinical outcome improvements were observed in the overall clinical conditions of the UC-MSC treatment patients. We observed improvement in the patients' upper extremity and muscle strength, spasticity, and fine motor functions. Considering recent studies in the literature together with our results, allogenic stem cell therapies are introduced as promising novel therapies in terms of their encouraging effects on physiological motor outcomes.
Collapse
Affiliation(s)
- Nesrin Ercelen
- Department of Medical Genetics, Faculty of Medicine, Üsküdar University, Istanbul, Türkiye,*Correspondence: Nesrin Ercelen,
| | - Nilgun Karasu
- Department of Medical Genetics, Faculty of Medicine, Üsküdar University, Istanbul, Türkiye
| | | | - Onder Cerezci
- Department of Physical Therapy and Rehabilitation, Faculty of Medicine, Üsküdar University, Istanbul, Türkiye,Department of Physical Medicine and Rehabilitation, American Hospital, Istanbul, Türkiye
| | - Rana Cagla Akduman
- Department of Neurology, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Defne Ercelen
- Computational and Systems Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gizem Erturk
- Department of Neurology, American Hospital, Istanbul, Türkiye,Department of Healthcare Management, Faculty of Health Sciences, Üsküdar University, Istanbul, Türkiye
| | - Gokay Gulay
- ATIGEN-CELL/Cell and Tissue Center, Trabzon, Türkiye
| | | | - Gizem Boyraz
- Geneis Genetic System Solutions, Istanbul, Türkiye
| | - Berrin Monteleone
- Department of Pediatrics at NYU Long Island School of Medicine, Medical Genetics, Langone Hospital, New York University, Long Island, NY, United States
| | - Zekiye Kural
- Department of Neurology, American Hospital, Istanbul, Türkiye
| | - Hakan Silek
- Department of Neurology, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Sibel Temur
- Department of Anesthesia and Reanimation, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Canan Aykut Bingol
- Department of Neurology, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| |
Collapse
|
3
|
Goh WX, Kok YY, Wong CY. Comparison of Cell-based and Nanoparticle-based Therapeutics in Treating Atherosclerosis. Curr Pharm Des 2023; 29:2827-2840. [PMID: 37936453 DOI: 10.2174/0113816128272185231024115046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 11/09/2023]
Abstract
Today, cardiovascular diseases are among the biggest public health threats worldwide. Atherosclerosis, a chronic inflammatory disease with complex aetiology and pathogenesis, predispose many of these conditions, including the high mortality rate-causing ischaemic heart disease and stroke. Nevertheless, despite the alarming prevalence and absolute death rate, established treatments for atherosclerosis are unsatisfactory in terms of efficacy, safety, and patient acceptance. The rapid advancement of technologies in healthcare research has paved new treatment approaches, namely cell-based and nanoparticle-based therapies, to overcome the limitations of conventional therapeutics. This paper examines the different facets of each approach, discusses their principles, strengths, and weaknesses, analyses the main targeted pathways and their contradictions, provides insights on current trends as well as highlights any unique mechanisms taken in recent years to combat the progression of atherosclerosis.
Collapse
Affiliation(s)
- Wen Xi Goh
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Yih Yih Kok
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Chiew Yen Wong
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Zhou L, Zhu H, Bai X, Huang J, Chen Y, Wen J, Li X, Wu B, Tan Y, Tian M, Ren J, Li M, Yang Q. Potential mechanisms and therapeutic targets of mesenchymal stem cell transplantation for ischemic stroke. Stem Cell Res Ther 2022; 13:195. [PMID: 35551643 PMCID: PMC9096773 DOI: 10.1186/s13287-022-02876-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/25/2022] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke is one of the major causes of death and disability in the world. Currently, most patients cannot choose intravenous thrombolysis or intravascular mechanical thrombectomy because of narrow therapeutic windows and severe complications. Stem cell transplantation is an emerging treatment and has been studied in various central nervous system diseases. Animal and clinical studies showed that transplantation of mesenchymal stem cells (MSCs) could alleviate neurological deficits and bring hope for ischemic stroke treatment. This article reviewed biological characteristics, safety, feasibility and efficacy of MSCs therapy, potential therapeutic targets of MSCs, and production process of Good Manufacturing Practices-grade MSCs, to explore the potential therapeutic targets of MSCs in the process of production and use and provide new therapeutic directions for ischemic stroke.
Collapse
Affiliation(s)
- Li Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Huimin Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xue Bai
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.,Department of Neurology, The First People's Hospital of Neijiang, Sichuan, 64100, China
| | - Jiagui Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jun Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xuemei Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Bowen Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yongjun Tan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Mingfen Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jiangxia Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Mengxia Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
5
|
Liu J, Hou Z, Wu J, Liu K, Li D, Gao T, Liu W, An B, Sun Y, Mo F, Wang L, Wang Y, Hao J, Hu B. Infusion of hESC derived Immunity-and-matrix regulatory cells improves cognitive ability in early-stage AD mice. Cell Prolif 2021; 54:e13085. [PMID: 34232542 PMCID: PMC8349653 DOI: 10.1111/cpr.13085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022] Open
Abstract
Objectives In this study, we administered immunity‐and‐matrix regulatory cells (IMRCs) via tail vein (IV) and intracerebroventricular (ICV) injection to 3‐month‐old 5×FAD transgenic mice to assess the effects of IMRC transplantation on the behaviour and pathology of early‐stage Alzheimer's disease (AD). Materials and methods Clinical‐grade human embryonic stem cell (hESC)‐derived IMRCs were produced under good manufacturing practice (GMP) conditions. Three‐month‐old 5×FAD mice were administered IMRCs via IV and ICV injection. After 3 months, the mice were subjected to behavioural tests and electrophysiological analysis to evaluate their cognitive function, memory ability and synaptic plasticity. The effect of IMRCs on amyloid‐beta (Aβ)‐related pathology was detected by thioflavin‐S staining and Western blot. Quantitative real‐time PCR, ELISA and immunostaining were used to confirm that IMRCs inhibit neuroinflammation. RNA‐seq analysis was performed to measure changes in gene expression and perform a pathway analysis in response to IMRC treatment. Results IMRC administration via tail vein injection significantly ameliorated cognitive deficits in early‐stage AD (5×FAD) mice. However, no significant change was observed in the characteristic pathology of AD in the ICV group. Plaque analysis revealed that IMRCs did not influence either plaque deposition or BACE1 expression. In addition, IMRCs inhibited inflammatory responses and reduced microglial activation in vivo. Conclusions We have shown that peripheral administration of IMRCs can ameliorate AD pathology and associated cognitive deficits.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Zongren Hou
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Kailun Liu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Da Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Tingting Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
| | - Wenjing Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
| | - Bin An
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
| | - Yun Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fan Mo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Liu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
| | - Yukai Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Tjahjono Y, Karnati S, Foe K, Anggara E, Gunawan YN, Wijaya H, Steven, Suyono H, Esar SY, Hadinugroho W, Wihadmadyatami H, Ergün S, Widharna RM, Caroline. Anti-inflammatory activity of 2-((3-(chloromethyl)benzoyl)oxy)benzoic acid in LPS-induced rat model. Prostaglandins Other Lipid Mediat 2021; 154:106549. [PMID: 33831580 DOI: 10.1016/j.prostaglandins.2021.106549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/04/2021] [Accepted: 03/29/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Salicylic acid derivate is very popular for its activity to suppress pain, fever, and inflammation. One of its derivatives is acetylsalicylic acid (ASA) which has been reported repeatedly that, as a non-steroidal anti-inflammatory drug (NSAID), it has a cardioprotective effect. Although ASA has various advantages, several studies have reported that it may induce severe peptic ulcer disease. We recently synthesized a new compound derived from salicylic acid, namely 2-((3-(chloromethyl)benzoyl)oxy)benzoic acid (3-CH2Cl) which still has the benefit of acetylsalicylic acid as an analgesic and antiplatelet, but lacks its harmful side effects (Caroline et al., 2019). In addition, in silico studies of 3-CH2Cl showed a higher affinity towards protein receptor cyclooxygenase-2 (COX-2; PDB: 5F1A) than ASA. We hypothesized that 3-CH2Cl inhibits the COX-2 activity which could presumably decrease the inflammatory responses. However, no knowledge is available on the anti-inflammatory response and molecular signaling of this new compound. Hence, in this study, we investigated the potential functional relevance of 3-CH2Cl in regulating the inflammatory response in lipopolysaccharide (LPS)-induced rats. The results of this study show that this compound could significantly reduce the inflammatory parameter in LPS-induced rats. MATERIAL AND METHODS Rats were induced with LPS of 0.5 mg/kg bw intravenously, prior oral administration with vehicle (3% Pulvis Gummi Arabicum / PGA), 500 mg/60 kg body weight (bw; rat dosage converted to human) of 3-CH2Cl and ASA. The inflammatory parameters such as changes in the temperature of septic shock, cardiac blood plasma concentrations of IL-1β and TNF-α (ELISA), blood inflammation parameters, white blood cell concentrations, and lung histopathology were observed. Meanwhile, the stability of 3-CH2Cl powder was evaluated. RESULT After the administration of 500 mg/60 kg bw of 3-CH2Cl (rat dosage converted to human) to LPS-induced rats, we observed a significant reduction of both TNF-α (5.70+/-1.04 × 103 pg/mL, p=<0.001) and IL-1β (2.32+/-0.28 × 103 pg/mL, p=<0.001) cardiac blood plasma concentrations. Besides, we found a reduction of white blood cell concentration and the severity of lung injury in the 3-CH2Cl group compared to the LPS-induced rat group. Additionally, this compound maintained the rat body temperature within normal limits during inflammation, preventing the rats to undergo septic shock, characterized by hypothermic (t = 120 min.) or hyperthermic (t = 360 min) conditions. Furthermore, 3-CH2Cl was found to be stable until 3 years at 25°C with a relative humidity of 75 ± 5%. CONCLUSION 3-CH2Cl compound inhibited inflammation in the LPS-induced inflammation response model in rats, hypothetically through binding to COX-2, and presumably inhibited LPS-induced NF-κβ signaling pathways. This study could be used as a preliminary hint to investigate the target molecular pathways of 3-CH2Cl as a novel and less toxic therapeutical agent in alleviating the COX-related inflammatory diseases, and most importantly to support the planning and development of clinical trial.
Collapse
Affiliation(s)
- Yudy Tjahjono
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, 60237, East Java, Indonesia
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Kuncoro Foe
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, 60237, East Java, Indonesia
| | - Efendi Anggara
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, 60237, East Java, Indonesia
| | - Yongky Novandi Gunawan
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, 60237, East Java, Indonesia
| | - Hendy Wijaya
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, 60237, East Java, Indonesia
| | - Steven
- Faculty of Medicine, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, 60237, East Java, Indonesia
| | - Handi Suyono
- Faculty of Medicine, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, 60237, East Java, Indonesia
| | - Senny Yesery Esar
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, 60237, East Java, Indonesia
| | - Wuryanto Hadinugroho
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, 60237, East Java, Indonesia
| | - Hevi Wihadmadyatami
- Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jalan Fauna 2, Sleman, 55281, Yogyakarta, Indonesia
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Ratna Megawati Widharna
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, 60237, East Java, Indonesia
| | - Caroline
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, 60237, East Java, Indonesia.
| |
Collapse
|
7
|
Glassberg MK, Csete I, Simonet E, Elliot SJ. Stem Cell Therapy for COPD: Hope and Exploitation. Chest 2021; 160:1271-1281. [PMID: 33894254 DOI: 10.1016/j.chest.2021.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 12/21/2022] Open
Abstract
COPD is a chronic inflammatory and destructive disease characterized by progressive decline in lung function that can accelerate with aging. Preclinical studies suggest that mesenchymal stem cells (MSCs) may provide a therapeutic option for this incurable disease because of their antiinflammatory, reparative, and immunomodulatory properties. To date, clinical trials using MSCs demonstrate safety in patients with COPD. However, because of the notable absence of large, multicenter randomized trials, no efficacy or evidence exists to support the possibility that MSCs can restore lung function in patients with COPD. Unfortunately, the investigational status of cell-based interventions for lung diseases has not hindered the propagation of commercial businesses, exploitation of the public, and explosion of medical tourism to promote unproven and potentially harmful cell-based interventions for COPD in the United States and worldwide. Patients with COPD constitute the largest group of patients with lung disease flocking to these unregulated clinics. This review highlights the numerous questions and concerns that remain before the establishment of cell-based interventions as safe and efficacious treatments for patients with COPD.
Collapse
Affiliation(s)
- Marilyn K Glassberg
- Division of Pulmonary, Critical Care, and Sleep, Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ.
| | | | | | - Sharon J Elliot
- Division of Pulmonary, Critical Care, and Sleep, Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ; University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
8
|
Xie X, Cong L, Liu S, Xiang L, Fu X. Genistein alleviates chronic vascular inflammatory response via the miR‑21/NF‑κB p65 axis in lipopolysaccharide‑treated mice. Mol Med Rep 2021; 23:192. [PMID: 33495831 PMCID: PMC7809901 DOI: 10.3892/mmr.2021.11831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic vascular inflammatory response is an important pathological basis of cardiovascular disease. Genistein (GEN), a natural compound, exhibits anti‑inflammatory effects. The aim of the present study was to investigate the effects of GEN on lipopolysaccharide (LPS)‑induced chronic vascular inflammatory response in mice and explore the underlying anti‑inflammatory mechanisms. C57BL/6 mice were fed with a high‑fat diet combined with intraperitoneal injection of LPS to induce chronic vascular inflammation. The expression levels of TNF‑α, IL‑6 and microRNA (miR)‑21 in the vasculature were detected via reverse transcription‑quantitative (RT‑q)PCR. The protein levels of inducible nitric oxide synthase (iNOS) and NF‑κB p65 were detected via western blotting. NF‑κB p65 was also analyzed via immunohistochemistry and immunofluorescence (IF). In addition, after transfection with miR‑21 mimic or inhibitor for 24 h, vascular endothelial cells (VECs) were treated with GEN and LPS. RT‑qPCR and western blot analyses were performed to detect the expression of TNF‑α, IL‑6, miR‑21 and iNOS, and the protein levels of iNOS and NF‑κB p65, respectively. IF was used to measure NF‑κB p65 nuclear translocation. The results revealed that GEN significantly decreased the expression of inflammation‑associated vascular factors in LPS‑treated C57BL/6 mice, including TNF‑α, IL‑6, iNOS, NF‑κB p65 and miR‑21. Furthermore, miR‑21 antagomir enhanced the anti‑inflammatory effects of GEN. In LPS‑induced VECs, miR‑21 mimic increased inflammation‑associated factor expression and attenuated the anti‑inflammatory effects of GEN, whereas miR‑21 inhibitor induced opposing effects. Therefore, the results of the present study suggested that GEN inhibited chronic vascular inflammatory response in mice, which may be associated with the inhibition of VEC inflammatory injury via the miR‑21/NF‑κB p65 pathway.
Collapse
Affiliation(s)
- Xiaolin Xie
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410013, P.R. China
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Li Cong
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Sujuan Liu
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Liping Xiang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaohua Fu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410013, P.R. China
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
- Correspondence to: Professor Xiaohua Fu, Department of Basic Medicine, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, Hunan 410013, P.R. China, E-mail:
| |
Collapse
|
9
|
Laplace-Builhé B, Bahraoui S, Jorgensen C, Djouad F. From the Basis of Epimorphic Regeneration to Enhanced Regenerative Therapies. Front Cell Dev Biol 2021; 8:605120. [PMID: 33585444 PMCID: PMC7873919 DOI: 10.3389/fcell.2020.605120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/14/2020] [Indexed: 01/01/2023] Open
Abstract
Current cell-based therapies to treat degenerative diseases such as osteoarthritis (OA) fail to offer long-term beneficial effects. The therapeutic effects provided by mesenchymal stem cell (MSC) injection, characterized by reduced pain and an improved functional activity in patients with knee OA, are reported at short-term follow-up since the improved outcomes plateau or, even worse, decline several months after MSC administration. This review tackles the limitations of MSC-based therapy for degenerative diseases and highlights the lessons learned from regenerative species to comprehend the coordination of molecular and cellular events critical for complex regeneration processes. We discuss how MSC injection generates a positive cascade of events resulting in a long-lasting systemic immune regulation with limited beneficial effects on tissue regeneration while in regenerative species fine-tuned inflammation is required for progenitor cell proliferation, differentiation, and regeneration. Finally, we stress the direct or indirect involvement of neural crest derived cells (NCC) in most if not all adult regenerative models studied so far. This review underlines the regenerative potential of NCC and the limitations of MSC-based therapy to open new avenues for the treatment of degenerative diseases such as OA.
Collapse
Affiliation(s)
| | | | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France.,CHU Montpellier, Montpellier, France
| | | |
Collapse
|
10
|
Ellison-Hughes GM, Colley L, O'Brien KA, Roberts KA, Agbaedeng TA, Ross MD. The Role of MSC Therapy in Attenuating the Damaging Effects of the Cytokine Storm Induced by COVID-19 on the Heart and Cardiovascular System. Front Cardiovasc Med 2020; 7:602183. [PMID: 33363221 PMCID: PMC7756089 DOI: 10.3389/fcvm.2020.602183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/17/2020] [Indexed: 01/08/2023] Open
Abstract
The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) has led to 47 m infected cases and 1. 2 m (2.6%) deaths. A hallmark of more severe cases of SARS-CoV-2 in patients with acute respiratory distress syndrome (ARDS) appears to be a virally-induced over-activation or unregulated response of the immune system, termed a "cytokine storm," featuring elevated levels of pro-inflammatory cytokines such as IL-2, IL-6, IL-7, IL-22, CXCL10, and TNFα. Whilst the lungs are the primary site of infection for SARS-CoV-2, in more severe cases its effects can be detected in multiple organ systems. Indeed, many COVID-19 positive patients develop cardiovascular complications, such as myocardial injury, myocarditis, cardiac arrhythmia, and thromboembolism, which are associated with higher mortality. Drug and cell therapies targeting immunosuppression have been suggested to help combat the cytokine storm. In particular, mesenchymal stromal cells (MSCs), owing to their powerful immunomodulatory ability, have shown promise in early clinical studies to avoid, prevent or attenuate the cytokine storm. In this review, we will discuss the mechanistic underpinnings of the cytokine storm on the cardiovascular system, and how MSCs potentially attenuate the damage caused by the cytokine storm induced by COVID-19. We will also address how MSC transplantation could alleviate the long-term complications seen in some COVID-19 patients, such as improving tissue repair and regeneration.
Collapse
Affiliation(s)
- Georgina M. Ellison-Hughes
- Faculty of Life Sciences & Medicine, Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London Guy's Campus, London, United Kingdom
| | - Liam Colley
- School of Sport, Health, and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Katie A. O'Brien
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Kirsty A. Roberts
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Thomas A. Agbaedeng
- Faculty of Health & Medical Sciences, Centre for Heart Rhythm Disorders, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Mark D. Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Chen XY, Chen YY, Lin W, Chien CW, Chen CH, Wen YC, Hsiao TC, Chuang HC. Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells on the Acute Cigarette Smoke-Induced Pulmonary Inflammation Model. Front Physiol 2020; 11:962. [PMID: 32903481 PMCID: PMC7434987 DOI: 10.3389/fphys.2020.00962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/15/2020] [Indexed: 12/27/2022] Open
Abstract
Cigarette smoke (CS) has been reported to induce oxidative stress and inflammatory process in the lungs. However, the role of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in the regulation of pulmonary inflammation remains unclear. The objective of this study is to investigate the effects of hUC-MSCs on lung inflammation in the acute CS-induced pulmonary inflammation animal model. Eight-week-old male C57BL/6 mice were intravenously administered 3 × 106, 1 × 107, and 3 × 107 cells/kg of hUC-MSCs as well as normal saline alone (control) after 3 days of CS exposure. Mice exposed to high-efficiency particulate air (HEPA)-filtered room air served as the CS control group. High-dose (3 × 107 cells/kg) hUC-MSC administration significantly decreased tumor necrosis factor (TNF)-α in the bronchoalveolar lavage fluid (BALF) of CS-exposed mice (p < 0.05). The chemokine (CXC motif) ligand 1/keratinocyte chemoattractant (CXCL1/KC) in BALF were significantly reduced by low-dose (3 × 106 cells/kg) and high-dose (3 × 107 cells/kg) hUC-MSC (p < 0.05). Medium-dose hUC-MSC administration decreased interleukin (IL)-1β in lung of mice, and TNF-α and caspase-3 were decreased in the lung of CS-exposed mice by medium- and high-dose MSC (p < 0.05). Low-dose hUC-MSCs significantly elevated serum CXCL1/KC and IL-1β in CS-exposed mice (p < 0.05). Our results suggest that high-dose hUC-MSCs reduced pulmonary inflammation and had antiapoptotic effects in acute pulmonary inflammation.
Collapse
Affiliation(s)
- Xiao-Yue Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ying Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Willie Lin
- Meridigen Biotech Co. Ltd., Taipei, Taiwan
| | | | | | | | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
12
|
Lin Y, Zhu W, Chen X. The involving progress of MSCs based therapy in atherosclerosis. Stem Cell Res Ther 2020; 11:216. [PMID: 32503682 PMCID: PMC7275513 DOI: 10.1186/s13287-020-01728-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/25/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic progressive vascular inflammation characterized by lipid deposition and plaque formation, for which vascular cell dysfunction and impaired immune responses are involved. Up to now, lipid-lowering drugs remain the main therapy for treating atherosclerosis; however, the surgical or interventional therapy is often applied, and yet, morbidity and mortality of such cardiovascular disease remain high worldwide. Over the past decades, an anti-inflammatory approach has become an important therapeutic target for dealing with atherosclerosis, as altered immune responses have been regarded as an essential player in the pathological process of vascular abnormality induced by hyperlipidemia. Interestingly, mesenchymal stem cells, one type of stem cells with the capabilities of self-renewal and multi-potential, have demonstrated their unique immunomodulatory function in the various pathological process, especially in atherosclerosis. While some controversies remain regarding their therapeutic efficacy and working mechanisms, our present review aims to summarize the current research progress on stem cell-based therapy, focusing on its immunomodulatory effects on the pathogenesis of atherosclerosis and how endothelial cells, smooth muscle cells, and other immune cells are regulated by MSC-based therapy.
Collapse
Affiliation(s)
- Ying Lin
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,Department of Cardiology, Ningbo First hospital, Ningbo, Zhejiang, China.,Department of Cardiology and Key Lab of Cardiovascular Disease, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhu
- Department of Cardiology and Key Lab of Cardiovascular Disease, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaomin Chen
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China. .,Department of Cardiology, Ningbo First hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
13
|
Behnke J, Kremer S, Shahzad T, Chao CM, Böttcher-Friebertshäuser E, Morty RE, Bellusci S, Ehrhardt H. MSC Based Therapies-New Perspectives for the Injured Lung. J Clin Med 2020; 9:jcm9030682. [PMID: 32138309 PMCID: PMC7141210 DOI: 10.3390/jcm9030682] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic lung diseases pose a tremendous global burden. At least one in four people suffer from severe pulmonary sequelae over the course of a lifetime. Despite substantial improvements in therapeutic interventions, persistent alleviation of clinical symptoms cannot be offered to most patients affected to date. Despite broad discrepancies in origins and pathomechanisms, the important disease entities all have in common the pulmonary inflammatory response which is central to lung injury and structural abnormalities. Mesenchymal stem cells (MSC) attract particular attention due to their broadly acting anti-inflammatory and regenerative properties. Plenty of preclinical studies provided congruent and convincing evidence that MSC have the therapeutic potential to alleviate lung injuries across ages. These include the disease entities bronchopulmonary dysplasia, asthma and the different forms of acute lung injury and chronic pulmonary diseases in adulthood. While clinical trials are so far restricted to pioneering trials on safety and feasibility, preclinical results point out possibilities to boost the therapeutic efficacy of MSC application and to take advantage of the MSC secretome. The presented review summarizes the most recent advances and highlights joint mechanisms of MSC action across disease entities which provide the basis to timely tackle this global disease burden.
Collapse
Affiliation(s)
- Judith Behnke
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
| | - Sarah Kremer
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
| | - Tayyab Shahzad
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
| | - Cho-Ming Chao
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardiopulmonary Institute (CPI), German Center for Lung Research (DZL), Aulweg 130, 35392 Giessen, Germany;
| | | | - Rory E. Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Ludwigstrasse 43, 61231 Bad Nauheim, Germany;
| | - Saverio Bellusci
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardiopulmonary Institute (CPI), German Center for Lung Research (DZL), Aulweg 130, 35392 Giessen, Germany;
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
- Correspondence: ; Tel.: +49-985-43400; Fax: +49-985-43419
| |
Collapse
|
14
|
Broekman W, Khedoe PPSJ, Schepers K, Roelofs H, Stolk J, Hiemstra PS. Mesenchymal stromal cells: a novel therapy for the treatment of chronic obstructive pulmonary disease? Thorax 2018; 73:565-574. [PMID: 29653970 PMCID: PMC5969341 DOI: 10.1136/thoraxjnl-2017-210672] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 03/18/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
COPD is characterised by tissue destruction and inflammation. Given the lack of curative treatments and the progressive nature of the disease, new treatments for COPD are highly relevant. In vitro cell culture and animal studies have demonstrated that mesenchymal stromal cells (MSCs) have the capacity to modify immune responses and to enhance tissue repair. These properties of MSCs provided a rationale to investigate their potential for treatment of a variety of diseases, including COPD. Preclinical models support the hypothesis that MSCs may have clinical efficacy in COPD. However, although clinical trials have demonstrated the safety of MSC treatment, thus far they have not provided evidence for MSC efficacy in the treatment of COPD. In this review, we discuss the rationale for MSC-based cell therapy in COPD, the main findings from in vitro and in vivo preclinical COPD model studies, clinical trials in patients with COPD and directions for further research.
Collapse
Affiliation(s)
- Winifred Broekman
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Padmini P S J Khedoe
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Koen Schepers
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Helene Roelofs
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
15
|
Role of Muramyl Dipeptide in Lipopolysaccharide-Mediated Biological Activity and Osteoclast Activity. Anal Cell Pathol (Amst) 2018; 2018:8047610. [PMID: 29666781 PMCID: PMC5832107 DOI: 10.1155/2018/8047610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/10/2018] [Indexed: 11/23/2022] Open
Abstract
Lipopolysaccharide (LPS) is an endotoxin and bacterial cell wall component that is capable of inducing inflammation and immunological activity. Muramyl dipeptide (MDP), the minimal essential structural unit responsible for the immunological activity of peptidoglycans, is another inflammation-inducing molecule that is ubiquitously expressed by bacteria. Several studies have shown that inflammation-related biological activities were synergistically induced by interactions between LPS and MDP. MDP synergistically enhances production of proinflammatory cytokines that are induced by LPS exposure. Injection of MDP induces lethal shock in mice challenged with LPS. LPS also induces osteoclast formation and pathological bone resorption; MDP enhances LPS induction of both processes. Furthermore, MDP enhances the LPS-induced receptor activator of NF-κB ligand (RANKL) expression and toll-like receptor 4 (TLR4) expression both in vivo and in vitro. Additionally, MDP enhances LPS-induced mitogen-activated protein kinase (MAPK) signaling in stromal cells. Taken together, these findings suggest that MDP plays an important role in LPS-induced biological activities. This review discusses the role of MDP in LPS-mediated biological activities, primarily in relation to osteoclastogenesis.
Collapse
|