1
|
Caddy HT, Fujino M, Vahabli E, Voigt V, Kelsey LJ, Dilley RJ, Carvalho LS, Takahashi S, Green DJ, Doyle BJ. Simulation of murine retinal hemodynamics in response to tail suspension. Comput Biol Med 2024; 182:109148. [PMID: 39298883 DOI: 10.1016/j.compbiomed.2024.109148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
The etiology of spaceflight-associated neuro-ocular syndrome (SANS) remains unclear. Recent murine studies indicate there may be a link between the space environment and retinal endothelial dysfunction. Post-fixed control (N = 4) and 14-day tail-suspended (TS) (N = 4) mice eye samples were stained and imaged for the vessel plexus and co-located regions of endothelial cell death. A custom workflow combined whole-mounted and tear reconstructed three-dimensional (3D) spherical retinal plexus models with computational fluid dynamics (CFD) simulation that accounted for the Fåhræus-Lindqvist effect and boundary conditions that accommodated TS fluid pressure measurements and deeper capillary layer blood flow distribution. TS samples exhibited reduced surface area (4.6 ± 0.5 mm2 vs. 3.5 ± 0.3 mm2, P = 0.010) and shorter lengths between branches in small vessels (<10 μm, 69.5 ± 0.6 μm vs. 60.4 ± 1.1 μm, P < 0.001). Wall shear stress (WSS) and pressure were higher in TS mice compared to controls, particularly in smaller vessels (<10 μm, WSS: 6.57 ± 1.08 Pa vs. 4.72 ± 0.67 Pa, P = 0.034, Pressure: 72.04 ± 3.14 mmHg vs. 50.64 ± 6.74 mmHg, P = 0.004). Rates of retinal endothelial cell death were variable in TS mice compared to controls. WSS and pressure were generally higher in cell death regions, both within and between cohorts, but significance was variable and limited to small to medium-sized vessels (<20 μm). These findings suggest a link may exist between emulated microgravity and retinal endothelial dysfunction that may have implications for SANS development. Future work with increased sample sizes of larger species or spaceflight cohorts should be considered.
Collapse
Affiliation(s)
- Harrison T Caddy
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
| | - Mitsunori Fujino
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ebrahim Vahabli
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia; T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Valentina Voigt
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Australia
| | - Lachlan J Kelsey
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia
| | - Rodney J Dilley
- T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Livia S Carvalho
- Retinal Genomics and Therapy Group, Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Perth, Australia; Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan; Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan; Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
| | - Barry J Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia.
| |
Collapse
|
2
|
Shinsato RN, Correa CG, Herai RH. Genetic network analysis indicate that individuals affected by neurodevelopmental conditions have genetic variations associated with ophthalmologic alterations: A critical review of literature. Gene 2024; 908:148246. [PMID: 38325665 DOI: 10.1016/j.gene.2024.148246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Changes in the nervous system are related to a wide range of mental disorders, which include neurodevelopmental disorders (NDD) that are characterized by early onset mental conditions, such as schizophrenia and autism spectrum disorders and correlated conditions (ASD). Previous studies have shown distinct genetic components associated with diverse schizophrenia and ASD phenotypes, with mostly focused on rescuing neural phenotypes and brain activity, but alterations related to vision are overlooked. Thus, as the vision is composed by the eyes that itself represents a part of the brain, with the retina being formed by neurons and cells originating from the glia, genetic variations affecting the brain can also affect the vision. Here, we performed a critical systematic literature review to screen for all genetic variations in individuals presenting NDD with reported alterations in vision. Using these restricting criteria, we found 20 genes with distinct types of genetic variations, inherited or de novo, that includes SNP, SNV, deletion, insertion, duplication or indel. The variations occurring within protein coding regions have different impact on protein formation, such as missense, nonsense or frameshift. Moreover, a molecular analysis of the 20 genes found revealed that 17 shared a common protein-protein or genetic interaction network. Moreover, gene expression analysis in samples from the brain and other tissues indicates that 18 of the genes found are highly expressed in the brain and retina, indicating their potential role in adult vision phenotype. Finally, we only found 3 genes from our study described in standard public databanks of ophthalmogenetics, suggesting that the other 17 genes could be novel target for vision diseases.
Collapse
Affiliation(s)
- Rogério N Shinsato
- Unisalesiano, Araçatuba, São Paulo, Brazil; Laboratory of Bioinformatics and Neurogenetics (LaBiN/LEM), Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, 80215-901, Brazil.
| | - Camila Graczyk Correa
- Laboratory of Bioinformatics and Neurogenetics (LaBiN/LEM), Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, 80215-901, Brazil
| | - Roberto H Herai
- Laboratory of Bioinformatics and Neurogenetics (LaBiN/LEM), Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, 80215-901, Brazil; Research Division, Buko Kaesemodel Institute (IBK), Curitiba, Paraná 80240-000, Brazil; Research Division, 9p Brazil Association (A9pB), Santa Maria, Rio Grande do Sul 97060-580, Brazil.
| |
Collapse
|
3
|
Vasudevan S, Senapati S, Pendergast M, Park PSH. Aggregation of rhodopsin mutants in mouse models of autosomal dominant retinitis pigmentosa. Nat Commun 2024; 15:1451. [PMID: 38365903 PMCID: PMC10873427 DOI: 10.1038/s41467-024-45748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
Mutations in rhodopsin can cause it to misfold and lead to retinal degeneration. A distinguishing feature of these mutants in vitro is that they mislocalize and aggregate. It is unclear whether or not these features contribute to retinal degeneration observed in vivo. The effect of P23H and G188R misfolding mutations were examined in a heterologous expression system and knockin mouse models, including a mouse model generated here expressing the G188R rhodopsin mutant. In vitro characterizations demonstrate that both mutants aggregate, with the G188R mutant exhibiting a more severe aggregation profile compared to the P23H mutant. The potential for rhodopsin mutants to aggregate in vivo was assessed by PROTEOSTAT, a dye that labels aggregated proteins. Both mutants mislocalize in photoreceptor cells and PROTEOSTAT staining was detected surrounding the nuclei of photoreceptor cells. The G188R mutant promotes a more severe retinal degeneration phenotype and greater PROTEOSTAT staining compared to that promoted by the P23H mutant. Here, we show that the level of PROTEOSTAT positive cells mirrors the progression and level of photoreceptor cell death, which suggests a potential role for rhodopsin aggregation in retinal degeneration.
Collapse
Affiliation(s)
- Sreelakshmi Vasudevan
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Subhadip Senapati
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
- Prayoga Institute of Education Research, Bengaluru, KA, 560116, India
| | - Maryanne Pendergast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
4
|
Zegeye Y, Aredo B, Yuksel S, Kirman DC, Kumar A, Chen B, Turpin E, Shresta S, He YG, Gautron L, Tang M, Li X, DiCesare SM, Hulleman JD, Xing C, Ludwig S, Moresco EMY, Beutler BA, Ufret-Vincenty RL. E3 ubiquitin ligase Herc3 deficiency leads to accumulation of subretinal microglia and retinal neurodegeneration. Sci Rep 2024; 14:3010. [PMID: 38321224 PMCID: PMC10847449 DOI: 10.1038/s41598-024-53731-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/04/2024] [Indexed: 02/08/2024] Open
Abstract
Activated microglia have been implicated in the pathogenesis of age-related macular degeneration (AMD), diabetic retinopathy, and other neurodegenerative and neuroinflammatory disorders, but our understanding of the mechanisms behind their activation is in infant stages. With the goal of identifying novel genes associated with microglial activation in the retina, we applied a semiquantitative fundus spot scoring scale to an unbiased, state-of-the-science mouse forward genetics pipeline. A mutation in the gene encoding the E3 ubiquitin ligase Herc3 led to prominent accumulation of fundus spots. CRISPR mutagenesis was used to generate Herc3-/- mice, which developed prominent accumulation of fundus spots and corresponding activated Iba1 + /CD16 + subretinal microglia, retinal thinning on OCT and histology, and functional deficits by Optomotory and electrophysiology. Bulk RNA sequencing identified activation of inflammatory pathways and differentially expressed genes involved in the modulation of microglial activation. Thus, despite the known expression of multiple E3 ubiquitin ligases in the retina, we identified a non-redundant role for Herc3 in retinal homeostasis. Our findings are significant given that a dysregulated ubiquitin-proteasome system (UPS) is important in prevalent retinal diseases, in which activated microglia appear to play a role. This association between Herc3 deficiency, retinal microglial activation and retinal degeneration merits further study.
Collapse
Affiliation(s)
- Yeshumenesh Zegeye
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bogale Aredo
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Seher Yuksel
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Dogan Can Kirman
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ashwani Kumar
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bo Chen
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Emily Turpin
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sangita Shresta
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yu-Guang He
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Laurent Gautron
- Center for Hypothalamic Research and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Miao Tang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sophia M DiCesare
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - John D Hulleman
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sara Ludwig
- Center for Hypothalamic Research and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruce A Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | |
Collapse
|
5
|
Freeman TL, McElroy AK. Laboratory Animal Models for Rift Valley Fever Virus Disease. Methods Mol Biol 2024; 2824:425-445. [PMID: 39039428 DOI: 10.1007/978-1-0716-3926-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Rift Valley fever virus (RVFV) is an arboviral pathogen of clinical and agricultural relevance. The ongoing development of targeted RVFV prophylactics and therapeutics is overwhelmingly dependent on animal models due to both natural, that is, sporadic outbreaks, and structural, for example, underresourcing of endemic regions, limitations in accessing human patient samples and cohorts. Elucidating mechanisms of viral pathogenesis and testing therapeutics is further complicated by the diverse manifestations of RVFV disease and the heterogeneity of the host response to infection. In this chapter, we describe major clinical manifestations of RVFV infection and discuss the laboratory animal models used to study each.
Collapse
Affiliation(s)
- Tracey L Freeman
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, Pittsburgh, PA, USA
- University of Pittsburgh Center for Vaccine Research, Pittsburgh, PA, USA
| | - Anita K McElroy
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, Pittsburgh, PA, USA.
- University of Pittsburgh Center for Vaccine Research, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Stephenson EJ, Kinney CE, Stayton AS, Han JC. Energy expenditure deficits drive obesity in a mouse model of Alström syndrome. Obesity (Silver Spring) 2023; 31:2786-2798. [PMID: 37712194 DOI: 10.1002/oby.23877] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/27/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE Alström syndrome (AS) is a rare multisystem disorder of which early onset childhood obesity is a cardinal feature. Like humans with AS, animal models with Alms1 loss-of-function mutations develop obesity, supporting the notion that ALMS1 is required for the regulatory control of energy balance across species. This study aimed to determine which component(s) of energy balance are reliant on ALMS1. METHODS Comprehensive energy balance phenotyping was performed on Alms1tvrm102 mice at both 8 and 18 weeks of age. RESULTS It was found that adiposity gains occurred early and rapidly in Alms1tvrm102 male mice but much later in females. Rapid increases in body fat in males were due to a marked reduction in energy expenditure (EE) during early life and not due to any genotype-specific increases in energy intake under chow conditions. Energy intake did increase in a genotype-specific manner when mice were provided a high-fat diet, exacerbating the effects of reduced EE on obesity progression. The EE deficit observed in male Alms1tvrm102 mice did not persist as mice aged. CONCLUSIONS Either loss of ALMS1 causes a developmental delay in the mechanisms controlling early life EE or activation of compensatory mechanisms occurs after obesity is established in AS. Future studies will determine how ALMS1 modulates EE and how sex moderates this process.
Collapse
Affiliation(s)
- Erin J Stephenson
- Department of Anatomy, College of Graduate Studies and Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, USA
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | - Clint E Kinney
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | - Amanda S Stayton
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
- Department of Surgery, College of Medicine, James D. Eason Transplant Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Joan C Han
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai and Kravis Children's Hospital, New York, New York, USA
| |
Collapse
|
7
|
Kralik J, van Wyk M, Leonardon B, Schilardi G, Schneider S, Kleinlogel S. The Bovine Ex Vivo Retina: A Versatile Model for Retinal Neuroscience. Invest Ophthalmol Vis Sci 2023; 64:29. [PMID: 37610761 PMCID: PMC10461644 DOI: 10.1167/iovs.64.11.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/09/2023] [Indexed: 08/24/2023] Open
Abstract
Purpose The isolated ex vivo retina is the standard model in retinal physiology and neuroscience. During isolation, the retina is peeled from the retinal pigment epithelium (RPE), which plays a key role in the visual cycle. Here we introduce the choroid-attached bovine retina as an in vivo-like model for retinal physiology. We find that-in the bovine eye-the choroid and retina can be peeled from the sclera as a single thin sheet. Importantly, the retina remains tightly associated with the RPE, which is sandwiched between the retina and the choroid. Furthermore, bovine tissue is readily available and cheap, and there are no ethical concerns related to the use of animals solely for research purposes. Methods We combine multi-electrode array and single-cell patch-clamp recordings to characterize light responses in the choroid-attached bovine ex vivo retina. Results We demonstrate robust and consistent light responses in choroid-attached preparations. Importantly, light responses adapt to different levels of background illumination and rapidly recover from photobleaching. The choroid-attached retina is also thin enough to permit targeted electrophysiological recording from individual retinal neurons using standard differential interference contrast microscopy. We also characterize light responses and membrane properties of bovine retinal ganglion cells and compare data obtained from bovine and murine retinas. Conclusions The choroid-attached retinal model retains the advantages of the isolated retina but with an intact visual cycle and represents a useful tool to elucidate retinal physiology.
Collapse
Affiliation(s)
- Jakub Kralik
- Institute of Physiology and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Michiel van Wyk
- Institute of Physiology and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Benjamin Leonardon
- Institute of Physiology and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Giulia Schilardi
- Institute of Physiology and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sabine Schneider
- Institute of Physiology and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sonja Kleinlogel
- Institute of Physiology and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Bussing D, Li Y, Guo L, Verma A, Sullivan JM, Shah DK. Pharmacokinetics of Monoclonal Antibody and Antibody Fragments in The Mouse Eye Following Intravitreal Administration. J Pharm Sci 2023; 112:2276-2284. [PMID: 37062415 DOI: 10.1016/j.xphs.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023]
Abstract
Mice are rarely used in pharmacokinetic (PK) studies of ocular therapeutics due to the small size of their eyes and challenges in drug administration, tissue collection, and analysis of drug concentrations. Therefore, ocular PK of protein therapeutics in mouse eye following intravitreal (IVT) administration is not known. Here, we have presented the first of its kind investigation, to study the PK of 4 different size non-binding protein therapeutics in mouse plasma, cornea/ICB, vitreous humor, retina, and posterior cup (including choroid) following IVT administration. Administered proteins include trastuzumab (150 kDa) and F(ab)2 (100 kDa), Fab, and scFv (27 kDa) fragments of trastuzumab. An imaging and injection apparatus suitable for performing small (50 nL) IVT injections in mice was developed, and techniques for enucleation of the eye and dissection of ocular tissues were developed. Furthermore, a sensitive enzyme-linked immunosorbent assay (ELISA) for detection of proteins in very small amounts of ocular tissues were developed. It was observed that elimination from the vitreous chamber was the primary driver of PK in the cornea/ICB, retina, posterior cup, and plasma. Trastuzumab displays first-order kinetics in the vitreous humor with a half-life of 18.8 h. F(ab)2, Fab, and ScFv show biphasic PK profiles with distribution phases becoming more rapid as molecular weight decreases, and terminal elimination becoming longer as molecular weight decreases, with terminal half-lives of 16.3, 20.6, and 48.9 h, respectively. The mean residence times of trastuzumab, F(ab)2, Fab, and scFv in the vitreous humor were 26.0, 12.2, 10.7, and 8.16 h, respectively. It was found that the mean residence time in vitreous humor doubles with an increase in molecular weight of ∼69 kDa. Interestingly, the PK of proteins measured in the un-injected eye suggest the presence of a pathway for drug transfer between the eyes, which needs to be further validated. Overall, the findings presented here pave the way for drug discovery and development studies of protein therapeutics for ophthalmic indications in mice.
Collapse
Affiliation(s)
- David Bussing
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Yingyi Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Leiming Guo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Ashwni Verma
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Jack M Sullivan
- Department of Ophthalmology, Jacobs School of Medicine & Biomedical Sciences, Buffalo, New York, USA; VA Western NY Healthcare System, Buffalo, New York, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
9
|
Rad IJ, Chapman L, Tupally KR, Veidt M, Al-Sadiq H, Sullivan R, Parekh HS. A systematic review of ultrasound-mediated drug delivery to the eye and critical insights to facilitate a timely path to the clinic. Theranostics 2023; 13:3582-3638. [PMID: 37441595 PMCID: PMC10334839 DOI: 10.7150/thno.82884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/11/2023] [Indexed: 07/15/2023] Open
Abstract
Ultrasound has long been identified as a promising, non-invasive modality for improving ocular drug delivery across a range of indications. Yet, with 20 years of learnings behind us, clinical translation remains limited. To help address this, and in accordance with PRISMA guidelines, the various mechanisms of ultrasound-mediated ocular drug delivery have been appraised, ranging from first principles to emergent applications spanning both ex vivo and in vivo models. The heterogeneity of study methods precluded meta-analysis, however an extensive characterisation of the included studies allowed for semi-quantitative and qualitative assessments. Methods: In this review, we reflected on study quality of reporting, and risk of bias (RoB) using the latest Animal Research: Reporting of In Vivo Experiments (ARRIVE 2.0) guidelines, alongside the Systematic Review Centre for Laboratory animal Experimentation (SYRCLE) RoB tools. Literature studies from 2002 to 2022 were initially characterised according to methods of ultrasound application, ultrasound parameters applied, animal models employed, as well as safety and efficacy assessments. This exercise contributed to developing a comprehensive understanding of the current state of play within ultrasound-mediated ocular drug delivery. The results were then synthesised and processed into a guide to aid future study design, with the goal of improving the reliability of data, and to support efficient and timely translation to the clinic. Results: Key attributes identified as hindering translation included: poor reporting quality and high RoB, skewed use of animals unrepresentative of the human eye, and the over reliance of reductionist safety assessments. Ex vivo modelling studies were often unable to have comprehensive safety assessments performed on them, which are imperative to determining treatment safety, and represent a pre-requisite for clinical translation. Conclusion: With the use of our synthesised guide, and a thorough understanding of the underlying physicochemical interactions between ultrasound and ocular biology provided herein, this review offers a firm foundation on which future studies should ideally be built, such that ultrasound-mediated ocular drug delivery can be translated from concept to the coalface where it can provide immense clinical benefit.
Collapse
Affiliation(s)
- Isaac J Rad
- The University of Queensland, School of Pharmacy, Brisbane, Queensland, Australia
- The University of Queensland, Faculty of Medicine, Brisbane, Queensland, Australia
| | - Luke Chapman
- The University of Queensland, Faculty of Medicine, Brisbane, Queensland, Australia
| | | | - Martin Veidt
- The University of Queensland, School of Mechanical and Mining Engineering, Brisbane, Queensland, Australia
| | - Hussain Al-Sadiq
- Al-Asala University, Department of Industrial Engineering, Dammam, Saudi Arabia
| | - Robert Sullivan
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland, Australia
| | - Harendra S Parekh
- The University of Queensland, School of Pharmacy, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Yuksel S, Aredo B, Zegeye Y, Zhao CX, Tang M, Li X, Hulleman JD, Gautron L, Ludwig S, Moresco EMY, Butovich IA, Beutler BA, Ufret-Vincenty RL. Forward genetic screening using fundus spot scale identifies an essential role for Lipe in murine retinal homeostasis. Commun Biol 2023; 6:533. [PMID: 37198396 DOI: 10.1038/s42003-023-04870-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Microglia play a role in the pathogenesis of many retinal diseases. Fundus spots in mice often correlate with the accumulation of activated subretinal microglia. Here we use a semiquantitative fundus spot scoring scale in combination with an unbiased, state-of-the-science forward genetics pipeline to identify causative associations between chemically induced mutations and fundus spot phenotypes. Among several associations, we focus on a missense mutation in Lipe linked to an increase in yellow fundus spots in C57BL/6J mice. Lipe-/- mice generated using CRISPR-Cas9 technology are found to develop accumulation of subretinal microglia, a retinal degeneration with decreased visual function, and an abnormal retinal lipid profile. We establish an indispensable role of Lipe in retinal/RPE lipid homeostasis and retinal health. Further studies using this new model will be aimed at determining how lipid dysregulation results in the activation of subretinal microglia and whether these microglia also play a role in the subsequent retinal degeneration.
Collapse
Affiliation(s)
- Seher Yuksel
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bogale Aredo
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yeshumenesh Zegeye
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Cynthia X Zhao
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Miao Tang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Hulleman
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Laurent Gautron
- Center for Hypothalamic Research and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eva M Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Igor A Butovich
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Bruce A Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | |
Collapse
|
11
|
Xu P, Chen Z, Ma J, Shan Y, Wang Y, Xie B, Zheng D, Guo F, Song X, Gao G, Ye K, Liu Y, Pan G, Jiang B, Peng F, Zhong X. Biallelic CLCN2 mutations cause retinal degeneration by impairing retinal pigment epithelium phagocytosis and chloride channel function. Hum Genet 2023; 142:577-593. [PMID: 36964785 DOI: 10.1007/s00439-023-02531-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/06/2023] [Indexed: 03/26/2023]
Abstract
CLCN2 encodes a two-pore homodimeric chloride channel protein (CLC-2) that is widely expressed in human tissues. The association between Clcn2 and the retina is well-established in mice, as loss-of-function of CLC-2 can cause retinopathy in mice; however, the ocular phenotypes caused by CLCN2 mutations in humans and the underlying mechanisms remain unclear. The present study aimed to define the ocular features and reveal the pathogenic mechanisms of CLCN2 variants associated with retinal degeneration in humans using an in vitro overexpression system, as well as patient-induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) cells and retinal organoids (ROs). A patient carrying the homozygous c.2257C > T (p.R753X) nonsense CLCN2 mutation was followed up for > 6 years. Ocular features were comprehensively characterized with multimodality imaging and functional examination. The patient presented with severe bilateral retinal degeneration with loss of photoreceptor and RPE. In vitro, mutant CLC-2 maintained the correct subcellular localization, but with reduced channel function compared to wild-type CLC-2 in HEK293T cells. Additionally, patient iPSC-derived RPE cells carrying the CLCN2 mutation exhibited dysfunctional ClC-2 chloride channels and outer segment phagocytosis. Notably, these functions were rescued following the repair of the CLCN2 mutation using the CRISPR-Cas9 system. However, this variant did not cause significant photoreceptor degeneration in patient-derived ROs, indicating that dysfunctional RPE is likely the primary cause of biallelic CLCN2 variant-mediated retinopathy. This study is the first to establish the confirmatory ocular features of human CLCN2-related retinal degeneration, and reveal a pathogenic mechanism associated with biallelic CLCN2 variants, providing new insights into the cause of inherited retinal dystrophies.
Collapse
Affiliation(s)
- Ping Xu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zhuolin Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jianchi Ma
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China, Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuan Wang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Bingbing Xie
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Dandan Zheng
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Fuying Guo
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Xiaojing Song
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Guanjie Gao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Ke Ye
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China, Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Fuhua Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Xiufeng Zhong
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
12
|
Abdolkarimi D, Cunha DL, Lahne1 M, Moosajee M. PAX6 disease models for aniridia. Indian J Ophthalmol 2022; 70:4119-4129. [PMID: 36453299 PMCID: PMC9940591 DOI: 10.4103/ijo.ijo_316_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 08/10/2022] [Indexed: 12/12/2022] Open
Abstract
Aniridia is a pan-ocular genetic developmental eye disorder characterized by complete or partial iris and foveal hypoplasia, for which there is no treatment currently. Progressive sight loss can arise from cataracts, glaucoma, and aniridia-related keratopathy, which can be managed conservatively or through surgical intervention. The vast majority of patients harbor heterozygous mutations involving the PAX6 gene, which is considered the master transcription factor of early eye development. Over the past decades, several disease models have been investigated to gain a better understanding of the molecular pathophysiology, including several mouse and zebrafish strains and, more recently, human-induced pluripotent stem cells (hiPSCs) derived from aniridia patients. The latter provides a more faithful cellular system to study early human eye development. This review outlines the main aniridia-related animal and cellular models used to study aniridia and highlights the key discoveries that are bringing us closer to a therapy for patients.
Collapse
Affiliation(s)
| | - Dulce Lima Cunha
- UCL Institute of Ophthalmology, London, UK
- Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
13
|
Hyde LF, Kong Y, Zhao L, Rao SR, Wang J, Stone L, Njaa A, Collin GB, Krebs MP, Chang B, Fliesler SJ, Nishina PM, Naggert JK. A Dpagt1 Missense Variant Causes Degenerative Retinopathy without Myasthenic Syndrome in Mice. Int J Mol Sci 2022; 23:12005. [PMID: 36233305 PMCID: PMC9570038 DOI: 10.3390/ijms231912005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 01/12/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) are a heterogenous group of primarily autosomal recessive mendelian diseases caused by disruptions in the synthesis of lipid-linked oligosaccharides and their transfer to proteins. CDGs usually affect multiple organ systems and vary in presentation, even within families. There is currently no cure, and treatment is aimed at ameliorating symptoms and improving quality of life. Here, we describe a chemically induced mouse mutant, tvrm76, with early-onset photoreceptor degeneration. The recessive mutation was mapped to Chromosome 9 and associated with a missense mutation in the Dpagt1 gene encoding UDP-N-acetyl-D-glucosamine:dolichyl-phosphate N-acetyl-D-glucosaminephosphotransferase (EC 2.7.8.15). The mutation is predicted to cause a substitution of aspartic acid with glycine at residue 166 of DPAGT1. This represents the first viable animal model of a Dpagt1 mutation and a novel phenotype for a CDG. The increased expression of Ddit3, and elevated levels of HSPA5 (BiP) suggest the presence of early-onset endoplasmic reticulum (ER) stress. These changes were associated with the induction of photoreceptor apoptosis in tvrm76 retinas. Mutations in human DPAGT1 cause myasthenic syndrome-13 and severe forms of a congenital disorder of glycosylation Type Ij. In contrast, Dpagt1tvrm76 homozygous mice present with congenital photoreceptor degeneration without overt muscle or muscular junction involvement. Our results suggest the possibility of DPAGT1 mutations in human patients that present primarily with retinitis pigmentosa, with little or no muscle disease. Variants in DPAGT1 should be considered when evaluating cases of non-syndromic retinal degeneration.
Collapse
Affiliation(s)
| | - Yang Kong
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - Lihong Zhao
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Research Service, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Jieping Wang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Andrew Njaa
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - Mark P Krebs
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Research Service, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | | | | |
Collapse
|
14
|
Weatherly SM, Collin GB, Charette JR, Stone L, Damkham N, Hyde LF, Peterson JG, Hicks W, Carter GW, Naggert JK, Krebs MP, Nishina PM. Identification of Arhgef12 and Prkci as genetic modifiers of retinal dysplasia in the Crb1rd8 mouse model. PLoS Genet 2022; 18:e1009798. [PMID: 35675330 PMCID: PMC9212170 DOI: 10.1371/journal.pgen.1009798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 06/21/2022] [Accepted: 05/03/2022] [Indexed: 12/03/2022] Open
Abstract
Mutations in the apicobasal polarity gene CRB1 lead to diverse retinal diseases, such as Leber congenital amaurosis, cone-rod dystrophy, retinitis pigmentosa (with and without Coats-like vasculopathy), foveal retinoschisis, macular dystrophy, and pigmented paravenous chorioretinal atrophy. Limited correlation between disease phenotypes and CRB1 alleles, and evidence that patients sharing the same alleles often present with different disease features, suggest that genetic modifiers contribute to clinical variation. Similarly, the retinal phenotype of mice bearing the Crb1 retinal degeneration 8 (rd8) allele varies with genetic background. Here, we initiated a sensitized chemical mutagenesis screen in B6.Cg-Crb1rd8/Pjn, a strain with a mild clinical presentation, to identify genetic modifiers that cause a more severe disease phenotype. Two models from this screen, Tvrm266 and Tvrm323, exhibited increased retinal dysplasia. Genetic mapping with high-throughput exome and candidate-gene sequencing identified causative mutations in Arhgef12 and Prkci, respectively. Epistasis analysis of both strains indicated that the increased dysplastic phenotype required homozygosity of the Crb1rd8 allele. Retinal dysplastic lesions in Tvrm266 mice were smaller and caused less photoreceptor degeneration than those in Tvrm323 mice, which developed an early, large diffuse lesion phenotype. At one month of age, Müller glia and microglia mislocalization at dysplastic lesions in both modifier strains was similar to that in B6.Cg-Crb1rd8/Pjn mice but photoreceptor cell mislocalization was more extensive. External limiting membrane disruption was comparable in Tvrm266 and B6.Cg-Crb1rd8/Pjn mice but milder in Tvrm323 mice. Immunohistological analysis of mice at postnatal day 0 indicated a normal distribution of mitotic cells in Tvrm266 and Tvrm323 mice, suggesting normal early development. Aberrant electroretinography responses were observed in both models but functional decline was significant only in Tvrm323 mice. These results identify Arhgef12 and Prkci as modifier genes that differentially shape Crb1-associated retinal disease, which may be relevant to understanding clinical variability and underlying disease mechanisms in humans.
Collapse
Affiliation(s)
| | - Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Nattaya Damkham
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Lillian F. Hyde
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Wanda Hicks
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | | | - Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|
15
|
Zhong Z, Wang J, Tian J, Deng X, Balayan A, Sun Y, Xiang Y, Guan J, Schimelman J, Hwang H, You S, Wu X, Ma C, Shi X, Yao E, Deng SX, Chen S. Rapid 3D bioprinting of a multicellular model recapitulating pterygium microenvironment. Biomaterials 2022; 282:121391. [PMID: 35101743 PMCID: PMC10162446 DOI: 10.1016/j.biomaterials.2022.121391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 12/25/2022]
Abstract
Pterygium is an ocular surface disorder with high prevalence that can lead to vision impairment. As a pathological outgrowth of conjunctiva, pterygium involves neovascularization and chronic inflammation. Here, we developed a 3D multicellular in vitro pterygium model using a digital light processing (DLP)-based 3D bioprinting platform with human conjunctival stem cells (hCjSCs). A novel feeder-free culture system was adopted and efficiently expanded the primary hCjSCs with homogeneity, stemness and differentiation potency. The DLP-based 3D bioprinting method was able to fabricate hydrogel scaffolds that support the viability and biological integrity of the encapsulated hCjSCs. The bioprinted 3D pterygium model consisted of hCjSCs, immune cells, and vascular cells to recapitulate the disease microenvironment. Transcriptomic analysis using RNA sequencing (RNA-seq) identified a distinct profile correlated to inflammation response, angiogenesis, and epithelial mesenchymal transition in the bioprinted 3D pterygium model. In addition, the pterygium signatures and disease relevance of the bioprinted model were validated with the public RNA-seq data from patient-derived pterygium tissues. By integrating the stem cell technology with 3D bioprinting, this is the first reported 3D in vitro disease model for pterygium that can be utilized for future studies towards personalized medicine and drug screening.
Collapse
Affiliation(s)
- Zheng Zhong
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jing Wang
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jing Tian
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xiaoqian Deng
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Alis Balayan
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA; School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yazhi Sun
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yi Xiang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiaao Guan
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jacob Schimelman
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Henry Hwang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shangting You
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xiaokang Wu
- School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chao Ma
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiaoao Shi
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Emmie Yao
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sophie X Deng
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
16
|
Collin GB, Shi L, Yu M, Akturk N, Charette JR, Hyde LF, Weatherly SM, Pera MF, Naggert JK, Peachey NS, Nishina PM, Krebs MP. A Splicing Mutation in Slc4a5 Results in Retinal Detachment and Retinal Pigment Epithelium Dysfunction. Int J Mol Sci 2022; 23:2220. [PMID: 35216333 PMCID: PMC8875008 DOI: 10.3390/ijms23042220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/29/2022] Open
Abstract
Fluid and solute transporters of the retinal pigment epithelium (RPE) are core components of the outer blood-retinal barrier. Characterizing these transporters and their role in retinal homeostasis may provide insights into ocular function and disease. Here, we describe RPE defects in tvrm77 mice, which exhibit hypopigmented patches in the central retina. Mapping and nucleotide sequencing of tvrm77 mice revealed a disrupted 5' splice donor sequence in Slc4a5, a sodium bicarbonate cotransporter gene. Slc4a5 expression was reduced 19.7-fold in tvrm77 RPE relative to controls, and alternative splice variants were detected. SLC4A5 was localized to the Golgi apparatus of cultured human RPE cells and in apical and basal membranes. Fundus imaging, optical coherence tomography, microscopy, and electroretinography (ERG) of tvrm77 mice revealed retinal detachment, hypopigmented patches corresponding to neovascular lesions, and retinal folds. Detachment worsened and outer nuclear layer thickness decreased with age. ERG a- and b-wave response amplitudes were initially normal but declined in older mice. The direct current ERG fast oscillation and light peak were reduced in amplitude at all ages, whereas other RPE-associated responses were unaffected. These results link a new Slc4a5 mutation to subretinal fluid accumulation and altered light-evoked RPE electrophysiological responses, suggesting that SLC4A5 functions at the outer blood-retinal barrier.
Collapse
Affiliation(s)
- Gayle B. Collin
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Lanying Shi
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA; (M.Y.); (N.S.P.)
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Nurten Akturk
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Jeremy R. Charette
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Lillian F. Hyde
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Sonia M. Weatherly
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Martin F. Pera
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Jürgen K. Naggert
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Neal S. Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA; (M.Y.); (N.S.P.)
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Research Service, Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Patsy M. Nishina
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| | - Mark P. Krebs
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; (G.B.C.); (L.S.); (N.A.); (J.R.C.); (L.F.H.); (S.M.W.); (M.F.P.); (J.K.N.)
| |
Collapse
|
17
|
Retinal ganglion cell loss in an ex vivo mouse model of optic nerve cut is prevented by curcumin treatment. Cell Death Discov 2021; 7:394. [PMID: 34911931 PMCID: PMC8674341 DOI: 10.1038/s41420-021-00760-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022] Open
Abstract
Retinal ganglion cell (RGC) loss is a pathologic feature common to several retinopathies associated to optic nerve damage, leading to visual loss and blindness. Although several scientific efforts have been spent to understand the molecular and cellular changes occurring in retinal degeneration, an effective therapy to counteract the retinal damage is still not available. Here we show that eyeballs, enucleated with the concomitant optic nerve cut (ONC), when kept in PBS for 24 h showed retinal and optic nerve degeneration. Examining retinas and optic nerves at different time points in a temporal window of 24 h, we found a thinning of some retinal layers especially RGC's layer, observing a powerful RGC loss after 24 h correlated with an apoptotic, MAPKs and degradative pathways dysfunctions. Specifically, we detected a time-dependent increase of Caspase-3, -9 and pro-apoptotic marker levels, associated with a strong reduction of BRN3A and NeuN levels. Importantly, a powerful activation of JNK, c-Jun, and ERK signaling (MAPKs) were observed, correlated with a significant augmented SUMO-1 and UBC9 protein levels. The degradation signaling pathways was also altered, causing a significant decrease of ubiquitination level and an increased LC3B activation. Notably, it was also detected an augmented Tau protein level. Curcumin, a powerful antioxidant natural compound, prevented the alterations of apoptotic cascade, MAPKs, and SUMO-1 pathways and the degradation system, preserving the RGC survival and the retinal layer thickness. This ex vivo retinal degeneration model could be a useful method to study, in a short time window, the effect of neuroprotective tools like curcumin that could represent a potential treatment to contrast retinal cell death.
Collapse
|
18
|
Bussing D, Li Z, Li Y, Chang HP, Chang HY, Guo L, Verma A, Shah DK. Pharmacokinetics of Monoclonal Antibody and Antibody Fragments in the Mouse Eye Following Systemic Administration. AAPS JOURNAL 2021; 23:116. [PMID: 34750690 PMCID: PMC8575492 DOI: 10.1208/s12248-021-00647-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022]
Abstract
The ocular pharmacokinetics (PK) of antibody-based therapies are infrequently studied in mice due to the technical difficulties in working with the small murine eye. This study is the first of its kind to quantitatively measure the PK of variously sized proteins in the plasma, cornea/ICB, vitreous humor, retina, and posterior cup (including choroid) of the mouse and to evaluate the relationship between molecular weight (MW) and antibody biodistribution coefficient (BC) to the eye. Proteins analyzed include trastuzumab (150 kDa), trastuzumab-vc-MMAE (T-vc-MMAE, 155 kDa), F(ab)2 (100 kDa), Fab (50 kDa), and scFv (27 kDa). As expected, ocular PK mirrored the systemic PK as plasma was the driving force for ocular exposure. For trastuzumab, T-vc-MMAE, F(ab)2, Fab, and scFv, respectively, the BCs in the cornea/ICB were 0.610%, 0.475%, 1.74%, 3.39%, and 13.7%; the BCs in the vitreous humor were 0.0198%, 0.0427%, 0.0934%, 0.234%, and 5.56%; the BCs for the retina were 0.539%, 0.230%, 0.704%, 2.44%, and 20.4%; the BCs for the posterior cup were 0.557%, 0.650%, 1.47%, 4.06%, and 13.9%. The relationship between BC and MW was best characterized by a log–log regression in which BC decreased as MW increased, with every doubling in MW leading to a decrease in BC by a factor of 3.44 × , 6.76 × , 4.74 × , and 3.43 × in cornea/ICB, vitreous humor, retina, and posterior cup, respectively. In analyzing the disposition of protein therapeutics to the eye, these findings enhance our understanding of the potential for ocular toxicity of systemically administered protein therapeutics and may aid in the discovery of systemically administered protein therapeutics for ocular disorders.
Collapse
Affiliation(s)
- David Bussing
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Zhe Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Yingyi Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Hsuan-Ping Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Hsueh-Yuan Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Leiming Guo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Ashwni Verma
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA.
| |
Collapse
|
19
|
Alfonsetti M, Castelli V, d’Angelo M, Benedetti E, Allegretti M, Barboni B, Cimini A. Looking for In Vitro Models for Retinal Diseases. Int J Mol Sci 2021; 22:10334. [PMID: 34638674 PMCID: PMC8508697 DOI: 10.3390/ijms221910334] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
Retina is a layered structure of the eye, composed of different cellular components working together to produce a complex visual output. Because of its important role in visual function, retinal pathologies commonly represent the main causes of visual injury and blindness in the industrialized world. It is important to develop in vitro models of retinal diseases to use them in first screenings before translating in in vivo experiments and clinics. For this reason, it is important to develop bidimensional (2D) models that are more suitable for drug screening and toxicological studies and tridimensional (3D) models, which can replicate physiological conditions, for investigating pathological mechanisms leading to visual loss. This review provides an overview of the most common retinal diseases, relating to in vivo models, with a specific focus on alternative 2D and 3D in vitro models that can replicate the different cellular and matrix components of retinal layers, as well as injury insults that induce retinal disease and loss of the visual function.
Collapse
Affiliation(s)
- Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | | | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
20
|
Genome Editing of Induced Pluripotent Stem Cells Using CRISPR/Cas9 Ribonucleoprotein Complexes to Model Genetic Ocular Diseases. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2549:321-334. [PMID: 34128206 DOI: 10.1007/7651_2021_409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Genome editing with the use of CRISPR/Cas9 ribonucleoprotein complexes of induced pluripotent stem cells can be used to model many diseases. The combination of stem cells and gene editing technologies is a valuable tool to study ocular disorders, as many have been identified to be caused by specific genetic mutations. This protocol provides experimentally derived guidelines for genome editing of human induced pluripotent stem cells (iPSCs) using CRISPR/Cas9 ribonucleoprotein complexes to generate iPSCs harboring single nucleotide variants from ocular disorders. Edited iPSC can be further differentiated into retinal cells in order to study disease mechanisms as well as screen potential therapies.
Collapse
|
21
|
Palmer D, Dumont JR, Dexter TD, Prado MAM, Finger E, Bussey TJ, Saksida LM. Touchscreen cognitive testing: Cross-species translation and co-clinical trials in neurodegenerative and neuropsychiatric disease. Neurobiol Learn Mem 2021; 182:107443. [PMID: 33895351 DOI: 10.1016/j.nlm.2021.107443] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/06/2021] [Accepted: 02/26/2021] [Indexed: 01/06/2023]
Abstract
Translating results from pre-clinical animal studies to successful human clinical trials in neurodegenerative and neuropsychiatric disease presents a significant challenge. While this issue is clearly multifaceted, the lack of reproducibility and poor translational validity of many paradigms used to assess cognition in animal models are central contributors to this challenge. Computer-automated cognitive test batteries have the potential to substantially improve translation between pre-clinical studies and clinical trials by increasing both reproducibility and translational validity. Given the structured nature of data output, computer-automated tests also lend themselves to increased data sharing and other open science good practices. Over the past two decades, computer automated, touchscreen-based cognitive testing methods have been developed for non-human primate and rodent models. These automated methods lend themselves to increased standardization, hence reproducibility, and have become increasingly important for the elucidation of the neurobiological basis of cognition in animal models. More recently, there have been increased efforts to use these methods to enhance translational validity by developing task batteries that are nearly identical across different species via forward (i.e., translating animal tasks to humans) and reverse (i.e., translating human tasks to animals) translation. An additional benefit of the touchscreen approach is that a cross-species cognitive test battery makes it possible to implement co-clinical trials-an approach developed initially in cancer research-for novel treatments for neurodegenerative disorders. Co-clinical trials bring together pre-clinical and early clinical studies, which facilitates testing of novel treatments in mouse models with underlying genetic or other changes, and can help to stratify patients on the basis of genetic, molecular, or cognitive criteria. This approach can help to determine which patients should be enrolled in specific clinical trials and can facilitate repositioning and/or repurposing of previously approved drugs. This has the potential to mitigate the resources required to study treatment responses in large numbers of human patients.
Collapse
Affiliation(s)
- Daniel Palmer
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada.
| | - Julie R Dumont
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; BrainsCAN, The University of Western Ontario, Ontario, Canada
| | - Tyler D Dexter
- Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Graduate Program in Neuroscience, The University of Western Ontario, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Graduate Program in Neuroscience, The University of Western Ontario, Ontario, Canada; Department of Anatomy and Cell Biology, The University of Western Ontario, Ontario, Canada
| | - Elizabeth Finger
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Clinical Neurological Sciences, The University of Western Ontario, Ontario, Canada; Lawson Health Research Institute, Ontario, Canada; Parkwood Institute, St. Josephs Health Care, Ontario, Canada
| | - Timothy J Bussey
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Brain and Mind Institute, The University of Western Ontario, Ontario, Canada
| | - Lisa M Saksida
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Brain and Mind Institute, The University of Western Ontario, Ontario, Canada
| |
Collapse
|
22
|
Harding P, Cunha DL, Moosajee M. Animal and cellular models of microphthalmia. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:2633004021997447. [PMID: 37181112 PMCID: PMC10032472 DOI: 10.1177/2633004021997447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/02/2021] [Indexed: 05/16/2023]
Abstract
Microphthalmia is a rare developmental eye disorder affecting 1 in 7000 births. It is defined as a small (axial length ⩾2 standard deviations below the age-adjusted mean) underdeveloped eye, caused by disruption of ocular development through genetic or environmental factors in the first trimester of pregnancy. Clinical phenotypic heterogeneity exists amongst patients with varying levels of severity, and associated ocular and systemic features. Up to 11% of blind children are reported to have microphthalmia, yet currently no treatments are available. By identifying the aetiology of microphthalmia and understanding how the mechanisms of eye development are disrupted, we can gain a better understanding of the pathogenesis. Animal models, mainly mouse, zebrafish and Xenopus, have provided extensive information on the genetic regulation of oculogenesis, and how perturbation of these pathways leads to microphthalmia. However, differences exist between species, hence cellular models, such as patient-derived induced pluripotent stem cell (iPSC) optic vesicles, are now being used to provide greater insights into the human disease process. Progress in 3D cellular modelling techniques has enhanced the ability of researchers to study interactions of different cell types during eye development. Through improved molecular knowledge of microphthalmia, preventative or postnatal therapies may be developed, together with establishing genotype-phenotype correlations in order to provide patients with the appropriate prognosis, multidisciplinary care and informed genetic counselling. This review summarises some key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future. Plain language summary Animal and Cellular Models of the Eye Disorder, Microphthalmia (Small Eye) Microphthalmia, meaning a small, underdeveloped eye, is a rare disorder that children are born with. Genetic changes or variations in the environment during the first 3 months of pregnancy can disrupt early development of the eye, resulting in microphthalmia. Up to 11% of blind children have microphthalmia, yet currently no treatments are available. By understanding the genes necessary for eye development, we can determine how disruption by genetic changes or environmental factors can cause this condition. This helps us understand why microphthalmia occurs, and ensure patients are provided with the appropriate clinical care and genetic counselling advice. Additionally, by understanding the causes of microphthalmia, researchers can develop treatments to prevent or reduce the severity of this condition. Animal models, particularly mice, zebrafish and frogs, which can also develop small eyes due to the same genetic/environmental changes, have helped us understand the genes which are important for eye development and can cause birth eye defects when disrupted. Studying a patient's own cells grown in the laboratory can further help researchers understand how changes in genes affect their function. Both animal and cellular models can be used to develop and test new drugs, which could provide treatment options for patients living with microphthalmia. This review summarises the key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future.
Collapse
Affiliation(s)
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, 11-43 Bath
Street, London, EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust,
London, UK
- Great Ormond Street Hospital for Children NHS
Foundation Trust, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
23
|
De Vera Mudry MC, Martin J, Schumacher V, Venugopal R. Deep Learning in Toxicologic Pathology: A New Approach to Evaluate Rodent Retinal Atrophy. Toxicol Pathol 2020; 49:851-861. [PMID: 33371793 DOI: 10.1177/0192623320980674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Quantification of retinal atrophy, caused by therapeutics and/or light, by manual measurement of retinal layers is labor intensive and time-consuming. In this study, we explored the role of deep learning (DL) in automating the assessment of retinal atrophy, particularly of the outer and inner nuclear layers, in rats. Herein, we report our experience creating and employing a hybrid approach, which combines conventional image processing and DL to quantify rodent retinal atrophy. Utilizing a DL approach based upon the VGG16 model architecture, models were trained, tested, and validated using 10,746 image patches scanned from whole slide images (WSIs) of hematoxylin-eosin stained rodent retina. The accuracy of this computational method was validated using pathologist annotated WSIs throughout and used to separately quantify the thickness of the outer and inner nuclear layers of the retina. Our results show that DL can facilitate the evaluation of therapeutic and/or light-induced atrophy, particularly of the outer retina, efficiently in rodents. In addition, this study provides a template which can be used to train, validate, and analyze the results of toxicologic pathology DL models across different animal species used in preclinical efficacy and safety studies.
Collapse
Affiliation(s)
- Maria Cristina De Vera Mudry
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, 1529F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jim Martin
- 1529Roche Tissue Diagnostics, Santa Clara, CA, USA
| | - Vanessa Schumacher
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, 1529F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | |
Collapse
|
24
|
Ortiz-Cordero C, Azzag K, Perlingeiro RCR. Fukutin-Related Protein: From Pathology to Treatments. Trends Cell Biol 2020; 31:197-210. [PMID: 33272829 DOI: 10.1016/j.tcb.2020.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022]
Abstract
Fukutin-related protein (FKRP) is a glycosyltransferase involved in the functional glycosylation of α-dystroglycan (DG), a key component in the link between the cytoskeleton and the extracellular matrix (ECM). Mutations in FKRP lead to dystroglycanopathies with broad severity, including limb-girdle and congenital muscular dystrophy. Studies over the past 5 years have elucidated the function of FKRP, which has expanded the number of therapeutic opportunities for patients carrying FKRP mutations. These include small molecules, gene delivery, and cell therapy. Here we summarize recent findings on the function of FKRP and describe available models for studying diseases and testing therapeutics. Lastly, we highlight preclinical studies that hold potential for the treatment of FKRP-associated dystroglycanopathies.
Collapse
Affiliation(s)
- Carolina Ortiz-Cordero
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Karim Azzag
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
25
|
Forward genetic analysis using OCT screening identifies Sfxn3 mutations leading to progressive outer retinal degeneration in mice. Proc Natl Acad Sci U S A 2020; 117:12931-12942. [PMID: 32457148 DOI: 10.1073/pnas.1921224117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Retinal disease and loss of vision can result from any disruption of the complex pathways controlling retinal development and homeostasis. Forward genetics provides an excellent tool to find, in an unbiased manner, genes that are essential to these processes. Using N-ethyl-N-nitrosourea mutagenesis in mice in combination with a screening protocol using optical coherence tomography (OCT) and automated meiotic mapping, we identified 11 mutations presumably causative of retinal phenotypes in genes previously known to be essential for retinal integrity. In addition, we found multiple statistically significant gene-phenotype associations that have not been reported previously and decided to target one of these genes, Sfxn3 (encoding sideroflexin-3), using CRISPR/Cas9 technology. We demonstrate, using OCT, light microscopy, and electroretinography, that two Sfxn3 -/- mouse lines developed progressive and severe outer retinal degeneration. Electron microscopy showed thinning of the retinal pigment epithelium and disruption of the external limiting membrane. Using single-cell RNA sequencing of retinal cells isolated from C57BL/6J mice, we demonstrate that Sfxn3 is expressed in several bipolar cell subtypes, retinal ganglion cells, and some amacrine cell subtypes but not significantly in Müller cells or photoreceptors. In situ hybridization confirmed these findings. Furthermore, pathway analysis suggests that Sfxn3 may be associated with synaptic homeostasis. Importantly, electron microscopy analysis showed disruption of synapses and synaptic ribbons in the outer plexiform layer of Sfxn3 -/- mice. Our work describes a previously unknown requirement for Sfxn3 in retinal function.
Collapse
|
26
|
Collin GB, Gogna N, Chang B, Damkham N, Pinkney J, Hyde LF, Stone L, Naggert JK, Nishina PM, Krebs MP. Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss. Cells 2020; 9:cells9040931. [PMID: 32290105 PMCID: PMC7227028 DOI: 10.3390/cells9040931] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated. The progression of PR cell loss with postnatal age was documented in mutant alleles of genes grouped by biological function. As anticipated, a wide range in the onset and rate of cell loss was observed among the reported models. The analysis underscored relationships between RD genes and ciliary function, transcription-coupled DNA damage repair, and cellular chloride homeostasis. Comparing the mouse gene list to human RD genes identified in the RetNet database revealed that mouse models are available for 40% of the known human diseases, suggesting opportunities for future research. This work may provide insight into the molecular players and pathways through which PR degenerative disease occurs and may be useful for planning translational studies.
Collapse
Affiliation(s)
- Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Navdeep Gogna
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Nattaya Damkham
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jai Pinkney
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lillian F. Hyde
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Jürgen K. Naggert
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Correspondence: (P.M.N.); (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.)
| | - Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Correspondence: (P.M.N.); (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.)
| |
Collapse
|
27
|
Collin GB, Won J, Krebs MP, Hicks WJ, Charette JR, Naggert JK, Nishina PM. Disruption in murine Eml1 perturbs retinal lamination during early development. Sci Rep 2020; 10:5647. [PMID: 32221352 PMCID: PMC7101416 DOI: 10.1038/s41598-020-62373-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/09/2020] [Indexed: 11/23/2022] Open
Abstract
During mammalian development, establishing functional neural networks in stratified tissues of the mammalian central nervous system depends upon the proper migration and positioning of neurons, a process known as lamination. In particular, the pseudostratified neuroepithelia of the retina and cerebrocortical ventricular zones provide a platform for progenitor cell proliferation and migration. Lamination defects in these tissues lead to mispositioned neurons, disrupted neuronal connections, and abnormal function. The molecular mechanisms necessary for proper lamination in these tissues are incompletely understood. Here, we identified a nonsense mutation in the Eml1 gene in a novel murine model, tvrm360, displaying subcortical heterotopia, hydrocephalus and disorganization of retinal architecture. In the retina, Eml1 disruption caused abnormal positioning of photoreceptor cell nuclei early in development. Upon maturation, these ectopic photoreceptors possessed cilia and formed synapses but failed to produce robust outer segments, implying a late defect in photoreceptor differentiation secondary to mislocalization. In addition, abnormal positioning of Müller cell bodies and bipolar cells was evident throughout the inner neuroblastic layer. Basal displacement of mitotic nuclei in the retinal neuroepithelium was observed in tvrm360 mice at postnatal day 0. The abnormal positioning of retinal progenitor cells at birth and ectopic presence of photoreceptors and secondary neurons upon maturation suggest that EML1 functions early in eye development and is crucial for proper retinal lamination during cellular proliferation and development.
Collapse
Affiliation(s)
- G B Collin
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, 04609, USA
| | - J Won
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, 04609, USA
| | - M P Krebs
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, 04609, USA
| | - W J Hicks
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, 04609, USA
| | - J R Charette
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, 04609, USA
| | - J K Naggert
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, 04609, USA
| | - P M Nishina
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, 04609, USA.
| |
Collapse
|
28
|
32-channel mouse EEG: Visual evoked potentials. J Neurosci Methods 2019; 325:108316. [PMID: 31251949 DOI: 10.1016/j.jneumeth.2019.108316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/31/2019] [Accepted: 06/14/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Measuring visual evoked potentials (VEP) by means of EEG allows the quasi non-invasive assessment of visual function in mice. Such sensory phenotyping is important to screen for genetic or aging effects on vision in preclinical mouse models. Thus, a standardized EEG-like approach for the assessment of sensory evoked potentials in mice is desirable. NEW METHOD We describe a method to obtain the topographical distribution of flash evoked VEPs with 32-channel thin-film EEG electrode arrays in anesthetized mice. Further, we provide suggestions for the optimal choice of adequate digital filtering, referencing, and stimulus parameters for fast and reliable assessment of VEP parameters and distribution. RESULTS 32-channel thin-film electrodes provided clear information on the VEP topography across the skull. Re-referencing, such as bipolar, common average, and local average montages could be used to further refine the information on VEP topography. A balanced choice of digital high-pass filter, signal averaging and stimulus rate allowed to minimize measurement duration and at the same time assured good VEP signal-to-noise ratio. COMPARISON WITH EXISTING METHODS Subdermal electrodes or single skull screws provide only limited topographical information of the VEP. Assessment of VEPs with 32-channel thin-film electrodes can provide comparable signal quality with superior spatial resolution and standardized topographical and hemispheric information of VEP distribution. CONCLUSIONS EEG-like thin-film electrodes are an efficient tool for fast, comprehensive sensory phenotyping with topographical information in mice. This is a step towards the use of standardized mouse EEG to characterize EEG biomarkers in mouse models of human diseases.
Collapse
|
29
|
Harding P, Moosajee M. The Molecular Basis of Human Anophthalmia and Microphthalmia. J Dev Biol 2019; 7:jdb7030016. [PMID: 31416264 PMCID: PMC6787759 DOI: 10.3390/jdb7030016] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Human eye development is coordinated through an extensive network of genetic signalling pathways. Disruption of key regulatory genes in the early stages of eye development can result in aborted eye formation, resulting in an absent eye (anophthalmia) or a small underdeveloped eye (microphthalmia) phenotype. Anophthalmia and microphthalmia (AM) are part of the same clinical spectrum and have high genetic heterogeneity, with >90 identified associated genes. By understanding the roles of these genes in development, including their temporal expression, the phenotypic variation associated with AM can be better understood, improving diagnosis and management. This review describes the genetic and structural basis of eye development, focusing on the function of key genes known to be associated with AM. In addition, we highlight some promising avenues of research involving multiomic approaches and disease modelling with induced pluripotent stem cell (iPSC) technology, which will aid in developing novel therapies.
Collapse
Affiliation(s)
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK.
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
| |
Collapse
|
30
|
Bell BA, Bonilha VL, Hagstrom SA, Anand-Apte B, Hollyfield JG, Samuels IS. Prolonged ocular exposure leads to retinal lesions in mice. Exp Eye Res 2019; 185:107672. [PMID: 31128100 DOI: 10.1016/j.exer.2019.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/06/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
Abstract
Retinal lesions in the posterior pole of laboratory mice occur due to native, developmental abnormalities or as a consequence of environmental or experimental conditions. In this study, we investigated the rate and extent of retinal lesions as a result of prolonged ocular exposure following general anesthesia. Following experimental preparation induction procedures (EPIP) involving general anesthesia, mydriasis/cycloplegia, and topical anesthesia to the cornea, two ocular recovery conditions (protected and unprotected) were tested within two different animal recovery chambers (open or closed). The anterior and posterior poles were evaluated for the development of retinal lesions using digital color photography, scanning laser ophthalmoscopy, and spectral-domain optical coherence during anesthesia recovery and up to 2.5 months thereafter. In some mice, electroretinograms, histological and immunohistological evaluations were performed to assess functional and structural changes that accompanied the retinal lesions detected by in vivo imaging. Our data suggests that prolonged ocular surface exposure to circulating ambient room air leads to significant anterior and posterior segment ocular complications. The most abundant, semi-reversible complication observed was the development of lesions in the outer retina, which had a 90% probability of occurring after 45 min of exposure. The lesions mostly resolved short-term, but functional and imaging evidence suggest that some perturbations to the outer retina may persist one or more months following initial development.
Collapse
Affiliation(s)
- Brent A Bell
- Cole Eye Institute/Ophthalmic Research, Cleveland Clinic, Cleveland, OH, United States.
| | - Vera L Bonilha
- Cole Eye Institute/Ophthalmic Research, Cleveland Clinic, Cleveland, OH, United States; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Stephanie A Hagstrom
- Cole Eye Institute/Ophthalmic Research, Cleveland Clinic, Cleveland, OH, United States; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Bela Anand-Apte
- Cole Eye Institute/Ophthalmic Research, Cleveland Clinic, Cleveland, OH, United States; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Joe G Hollyfield
- Cole Eye Institute/Ophthalmic Research, Cleveland Clinic, Cleveland, OH, United States; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Ivy S Samuels
- Cole Eye Institute/Ophthalmic Research, Cleveland Clinic, Cleveland, OH, United States; Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| |
Collapse
|
31
|
Moore BA, Leonard BC, Sebbag L, Edwards SG, Cooper A, Imai DM, Straiton E, Santos L, Reilly C, Griffey SM, Bower L, Clary D, Mason J, Roux MJ, Meziane H, Herault Y, McKerlie C, Flenniken AM, Nutter LMJ, Berberovic Z, Owen C, Newbigging S, Adissu H, Eskandarian M, Hsu CW, Kalaga S, Udensi U, Asomugha C, Bohat R, Gallegos JJ, Seavitt JR, Heaney JD, Beaudet AL, Dickinson ME, Justice MJ, Philip V, Kumar V, Svenson KL, Braun RE, Wells S, Cater H, Stewart M, Clementson-Mobbs S, Joynson R, Gao X, Suzuki T, Wakana S, Smedley D, Seong JK, Tocchini-Valentini G, Moore M, Fletcher C, Karp N, Ramirez-Solis R, White JK, de Angelis MH, Wurst W, Thomasy SM, Flicek P, Parkinson H, Brown SDM, Meehan TF, Nishina PM, Murray SA, Krebs MP, Mallon AM, Lloyd KCK, Murphy CJ, Moshiri A. Identification of genes required for eye development by high-throughput screening of mouse knockouts. Commun Biol 2018; 1:236. [PMID: 30588515 PMCID: PMC6303268 DOI: 10.1038/s42003-018-0226-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
Despite advances in next generation sequencing technologies, determining the genetic basis of ocular disease remains a major challenge due to the limited access and prohibitive cost of human forward genetics. Thus, less than 4,000 genes currently have available phenotype information for any organ system. Here we report the ophthalmic findings from the International Mouse Phenotyping Consortium, a large-scale functional genetic screen with the goal of generating and phenotyping a null mutant for every mouse gene. Of 4364 genes evaluated, 347 were identified to influence ocular phenotypes, 75% of which are entirely novel in ocular pathology. This discovery greatly increases the current number of genes known to contribute to ophthalmic disease, and it is likely that many of the genes will subsequently prove to be important in human ocular development and disease. Bret Moore et al. from the International Mouse Phenotyping Consortium report the identification of 347 mouse genes that influence ocular phenotypes when knocked out. 75% of the identified genes have not previously been associated with any ocular pathology.
Collapse
Affiliation(s)
- Bret A Moore
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, 95616, CA, USA
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Lionel Sebbag
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, 95616, CA, USA
| | - Sydney G Edwards
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, 95616, CA, USA
| | - Ann Cooper
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, 95616, CA, USA
| | - Denise M Imai
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Ewan Straiton
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Luis Santos
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Christopher Reilly
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Stephen M Griffey
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Lynette Bower
- Mouse Biology Program, and Department of Surgery, School of Medicine, University of California-Davis, Davis, CA, 95618, USA
| | - David Clary
- Mouse Biology Program, and Department of Surgery, School of Medicine, University of California-Davis, Davis, CA, 95618, USA
| | - Jeremy Mason
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | - Michel J Roux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden, France
| | - Hamid Meziane
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden, France
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden, France
| | | | - Colin McKerlie
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Ann M Flenniken
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Zorana Berberovic
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Celeste Owen
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Susan Newbigging
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Hibret Adissu
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Mohammed Eskandarian
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sowmya Kalaga
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Uchechukwu Udensi
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chinwe Asomugha
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ritu Bohat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Juan J Gallegos
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - John R Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Monica J Justice
- The Centre for Phenogenomics, Toronto, ON, M5T 3H7, Canada.,The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Vivek Philip
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Vivek Kumar
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | | | | | - Sara Wells
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Heather Cater
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Michelle Stewart
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Sharon Clementson-Mobbs
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Russell Joynson
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Xiang Gao
- SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, 210061, China
| | | | | | - Damian Smedley
- Clinical Pharmacology, Charterhouse Square, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - J K Seong
- Korea Mouse Phenotyping Consortium (KMPC) and BK21 Program for Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea
| | - Glauco Tocchini-Valentini
- Monterotondo Mouse Clinic, Italian National Research Council (CNR), Institute of Cell Biology and Neurobiology, Adriano Buzzati-Traverso Campus, Via Ramarini, I-00015, Monterotondo Scalo, Italy
| | - Mark Moore
- International Mouse Phenotyping Consortium, San Anselmo, CA, 94960, USA
| | | | - Natasha Karp
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ramiro Ramirez-Solis
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Jacqueline K White
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA.,The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Wolfgang Wurst
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA.,Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | - Helen Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | - Steve D M Brown
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - Terrence F Meehan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1 SD, UK
| | | | | | - Mark P Krebs
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Ann-Marie Mallon
- Medical Research Council Harwell Institute (Mammalian Genetis Unit and Mary Lyon Center, Harwell, Oxfordshire, OX11 0RD, UK
| | - K C Kent Lloyd
- Mouse Biology Program, and Department of Surgery, School of Medicine, University of California-Davis, Davis, CA, 95618, USA
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA. .,Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA.
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, School of Medicine, U.C. Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
32
|
Kinoshita J, Peachey NS. Noninvasive Electroretinographic Procedures for the Study of the Mouse Retina. ACTA ACUST UNITED AC 2018; 8:1-16. [PMID: 30040236 DOI: 10.1002/cpmo.39] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Overall retinal function can be monitored by recording the light-evoked response of the eye at the corneal surface. The major components of the electroretinogram (ERG) provide important information regarding the functional status of many retinal cell types including rod photoreceptors, cone photoreceptors, bipolar cells, and the retinal pigment epithelium (RPE). The ERG can be readily recorded from mice, and this unit describes procedures for mouse anesthesia and the use of stimulation and recording procedures for measuring ERGs that reflect the response properties of different retinal cell types. Through these, the mouse ERG provides a noninvasive approach to measure multiple aspects of outer retinal function, including the status of the initial rod and cone pathways, rod photoreceptor deactivation, rod dark adaptation, the photoreceptor-to-bipolar cell synapse, and the RPE. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Junzo Kinoshita
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Neal S Peachey
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio.,Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
33
|
Maddalena A, Tornabene P, Tiberi P, Minopoli R, Manfredi A, Mutarelli M, Rossi S, Simonelli F, Naggert JK, Cacchiarelli D, Auricchio A. Triple Vectors Expand AAV Transfer Capacity in the Retina. Mol Ther 2017; 26:524-541. [PMID: 29292161 PMCID: PMC5835116 DOI: 10.1016/j.ymthe.2017.11.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023] Open
Abstract
Retinal gene transfer with adeno-associated viral (AAV) vectors holds great promise for the treatment of inherited retinal degenerations (IRDs). One limit of AAV is its transfer capacity of about 5 kb, which can be expanded to about 9 kb, using dual AAV vectors. This strategy would still not suffice for treatment of IRDs such as Usher syndrome type 1D or Alström syndrome type I (ALMS) due to mutations in CDH23 or ALMS1, respectively. To overcome this limitation, we generated triple AAV vectors, with a maximal transfer capacity of about 14 kb. Transcriptomic analysis following triple AAV transduction showed the expected full-length products along a number of aberrant transcripts. However, only the full-length transcripts are efficiently translated in vivo. We additionally showed that approximately 4% of mouse photoreceptors are transduced by triple AAV vectors and showed correct localization of recombinant ALMS1. The low-photoreceptor transduction levels might justify the modest and transient improvement we observe in the retina of a mouse model of ALMS. However, the levels of transduction mediated by triple AAV vectors in pig retina reached 40% of those observed with single vectors, and this bodes well for further improving the efficiency of triple AAV vectors in the retina.
Collapse
Affiliation(s)
- Andrea Maddalena
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Patrizia Tornabene
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Paola Tiberi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Renato Minopoli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Anna Manfredi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy; Armenise/Harvard Laboratory of Integrative Genomics, TIGEM, Pozzuoli 80078, Italy
| | | | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Second University of Naples, Naples 80121, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Second University of Naples, Naples 80121, Italy
| | | | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy; Armenise/Harvard Laboratory of Integrative Genomics, TIGEM, Pozzuoli 80078, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy; Medical Genetics, Department of Advanced Biomedicine, Federico II University, Naples 80131, Italy.
| |
Collapse
|