1
|
Caraballo G LD, Cevher Zeytin I, Rathi P, Li CH, Tsao AN, Salvador L YJ, Ranjan M, Traynor BM, Heczey AA. DRIMS: A Synthetic Biology Platform that Enables Deletion, Replacement, Insertion, Mutagenesis, and Synthesis of DNA. ACS Synth Biol 2025; 14:485-496. [PMID: 39902634 DOI: 10.1021/acssynbio.4c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
DNA modification and synthesis are fundamental to genetic engineering, and systems that enable time- and cost-effective execution of these processes are crucial. Iteration of genetic construct variants takes significant time, cost and effort to develop new therapeutic strategies to treat diseases including cancer. Thus, decreasing cost and enhancing simplicity while accelerating the speed of advancement is critical. We have developed a PCR-based platform that allows for deletion, replacement, insertion, mutagenesis, and synthesis of DNA (DRIMS). These modifications rely on the recA-independent recombination pathway and are carried out in a single amplification step followed by DpnI digestion and transformation into competent cells. DNA synthesis is accomplished through sequential PCR amplification reactions without the need for a DNA template. Here, we provide proof-of-concept for the DRIMS platform by performing four deletions within DNA fragments of various sizes, sixty-four replacements of DNA binding sequences that incorporate repeat sequences, four replacements of chimeric antigen receptor components, fifty-one insertions of artificial microRNAs that form complex tertiary structures, five varieties of point mutations, and synthesis of eight DNA sequences including two with high GC content. Compared to other advanced cloning methods including Gibson and "in vivo assembly", we demonstrate the significant advantages of the DRIMS platform. In summary, DRIMS allows for efficient modification and synthesis of DNA in a simple, rapid and cost-effective manner to accelerate the synthetic biology field and development of therapeutics.
Collapse
Affiliation(s)
- Leidy D Caraballo G
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Inci Cevher Zeytin
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Purva Rathi
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Che-Hsing Li
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
- Program in Immunology & Microbiology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Ai-Ni Tsao
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
- Program in Cancer & Cell Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Yaery J Salvador L
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Manish Ranjan
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Brendan Magee Traynor
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Andras A Heczey
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Advanced Innate Cell Therapy, Texas Children's Hospital, Houston, Texas 77030, United States
| |
Collapse
|
2
|
Nevarez JL, Turmo A, Gatreddi S, Gupta S, Hu J, Hausinger RP. Overcoming barriers for investigating nickel-pincer nucleotide cofactor-related enzymes. mBio 2025; 16:e0340424. [PMID: 39679682 PMCID: PMC11796402 DOI: 10.1128/mbio.03404-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
The nickel-pincer nucleotide (NPN) cofactor is a modified pyridinium mononucleotide that tri-coordinates nickel and is crucial for the activity of certain racemases and epimerases. LarB, LarC, and LarE are responsible for NPN synthesis, with the cofactor subsequently installed into LarA homologs. Hurdles for investigating the functional properties of such proteins arise from the difficulty of obtaining the active, NPN cofactor-loaded enzymes and in assaying their diverse reactivities. Here, we show that when the Lactiplantibacillus plantarum lar genes are cloned into the Duet expression system and cultured in Escherichia coli, they confer lactate racemase activity to the cells. By replacing L. plantarum larA with related genes from other microorganisms, this system allows for the generation of active LarA homologs. Furthermore, the Duet system enables the functional testing of LarB, LarC, and LarE homologs from other microorganisms. In addition to applying the Duet expression system for synthesis of active, NPN cofactor-containing enzymes in E. coli, we demonstrate that circular dichroism spectroscopy provides a broadly applicable means of assaying these enzymes. By selecting a wavelength of high molar ellipticity and low absorbance for a given 2-hydroxy acid substrate enantiomer, the conversion of one enantiomer/epimer into the other can be monitored for LarA homologs without the need for any coupling enzymes or reagents. The methods discussed here further our abilities to investigate the unique activities of Lar proteins. IMPORTANCE Enzymes containing the nickel-pincer nucleotide (NPN) cofactor are prevalent in a wide range of microorganisms and catalyze various critical biochemical reactions, yet they remain underexplored due, in part, to limitations in current research methodologies. The two significant advancements described here, the heterologous production of active NPN-cofactor containing enzymes in Escherichia coli and the use of a circular dichroism-based assay to monitor enzyme activities, expand our capacity to analyze these enzymes. Such additional detailed characterization will deepen our understanding of the diverse chemistry catalyzed by the NPN cofactor and potentially uncover novel roles for this organometallic species in microbial metabolism.
Collapse
Affiliation(s)
- Jorge L. Nevarez
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Aiko Turmo
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Santhosh Gatreddi
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Swati Gupta
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Jian Hu
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Robert P. Hausinger
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Aliakbari M, Karkhane AA. In vivo cloning of PCR product via site-specific recombination in Escherichia coli. Appl Microbiol Biotechnol 2024; 108:400. [PMID: 38951186 PMCID: PMC11217044 DOI: 10.1007/s00253-024-13239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 07/03/2024]
Abstract
Over the past years, several methods have been developed for gene cloning. Choosing a cloning strategy depends on various factors, among which simplicity and affordability have always been considered. The aim of this study, on the one hand, is to simplify gene cloning by skipping in vitro assembly reactions and, on the other hand, to reduce costs by eliminating relatively expensive materials. We investigated a cloning system using Escherichia coli harboring two plasmids, pLP-AmpR and pScissors-CmR. The pLP-AmpR contains a landing pad (LP) consisting of two genes (λ int and λ gam) that allow the replacement of the transformed linear DNA using site-specific recombination. After the replacement process, the inducible expressing SpCas9 and specific sgRNA from the pScissors-CmR (CRISPR/Cas9) vector leads to the removal of non-recombinant pLP-AmpR plasmids. The function of LP was explored by directly transforming PCR products. The pScissors-CmR plasmid was evaluated for curing three vectors, including the origins of pBR322, p15A, and pSC101. Replacing LP with a PCR product and fast-eradicating pSC101 origin-containing vectors was successful. Recombinant colonies were confirmed following gene replacement and plasmid curing processes. The results made us optimistic that this strategy may potentially be a simple and inexpensive cloning method. KEY POINTS: •The in vivo cloning was performed by replacing the target gene with the landing pad. •Fast eradication of non-recombinant plasmids was possible by adapting key vectors. •This strategy is not dependent on in vitro assembly reactions and expensive materials.
Collapse
Affiliation(s)
- Moein Aliakbari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Asghar Karkhane
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
4
|
Thakur M, Dean SN. Engineering Outer Membrane Vesicles to Carry Enzymes: Encapsulation, Isolation, Characterization, and Modification. Methods Mol Biol 2024; 2843:177-194. [PMID: 39141301 DOI: 10.1007/978-1-0716-4055-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Outer membrane vesicles (OMVs) are small, spherical, nanoscale proteoliposomes released from Gram-negative bacteria that play an important role in cellular defense, pathogenesis, and signaling, among other functions. The functionality of OMVs can be enhanced by engineering developed for biomedical and biochemical applications. Here, we describe methods for directed packaging of enzymes into bacterial OMVs of E. coli using engineered molecular systems, such as localizing proteins to the inner or outer surface of the vesicle. Additionally, we detail some modification strategies for OMVs such as lyophilization and surfactant conjugation that enable the protection of activity of the packaged enzyme when exposed to non-physiological conditions such as elevated temperature, organic solvents, and repeated freeze/thaw that otherwise lead to a substantial loss in the activity of the free enzyme.
Collapse
Affiliation(s)
- Meghna Thakur
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
- College of Science, George Mason University, Fairfax, VA, USA
| | - Scott N Dean
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA.
| |
Collapse
|
5
|
Spangler JR, Cooper DN, Malanoski AP, Walper SA. Promoter Identification and Optimization for the Response of Lactobacillus plantarum WCFS1 to the Gram-Negative Pathogen-Associated Molecule N-3-Oxododecanoyl Homoserine Lactone. ACS Biomater Sci Eng 2023; 9:5111-5122. [PMID: 35708239 DOI: 10.1021/acsbiomaterials.1c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quorum sensing (QS) in bacteria has been well studied as a cellular communication phenomenon for decades. In recent years, such systems have been repurposed for the use of biosensors in both cellular and cell-free contexts as well as for inducible protein expression in nontraditional chassis organisms. Such biosensors are particularly intriguing when considering the association between the pathogenesis of some bacteria and their signaling intermediates. Considering this relationship and considering the recent demonstration of the species Lactobacillus plantarum WCFS1 as both a synthetic biology chassis and an organism capable of detecting a pathogen-associated QS molecule, we wanted to develop this organism as a QS sentinel. We used an approach combining techniques from both systems and synthetic biology to identify a number of native QS-response genes and to alter associated promoter activity to tune the output of L. plantarum cultures exposed to N-3-oxododecanoyl homoserine lactone. The resulting engineered QS sentinel reinforces the potential of modified lactic acid bacteria (LAB) for use in human-health-promoting applications and also demonstrates a simple rational workflow to engineer sentinel organisms to respond to any environmental or chemical stimuli.
Collapse
Affiliation(s)
- Joseph R Spangler
- United States Naval Research Laboratory, Center for Biomolecular Science and Engineering, 4555 Overlook Ave SW, Washington, D.C. 20375, United States
| | - Denver N Cooper
- Spelman College, 350 Spelman Ln SW, Atlanta, Georgia 30314, United States
| | - Anthony P Malanoski
- United States Naval Research Laboratory, Center for Biomolecular Science and Engineering, 4555 Overlook Ave SW, Washington, D.C. 20375, United States
| | - Scott A Walper
- United States Naval Research Laboratory, Center for Biomolecular Science and Engineering, 4555 Overlook Ave SW, Washington, D.C. 20375, United States
| |
Collapse
|
6
|
Vázquez ME, Mesías AC, Acuña L, Spangler J, Zabala B, Parodi C, Thakur M, Oh E, Walper SA, Brandán CP. Exploring the performance of Escherichia coli outer membrane vesicles as a tool for vaccine development against Chagas disease. Mem Inst Oswaldo Cruz 2023; 118:e220263. [PMID: 37222309 DOI: 10.1590/0074-02760220263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Vaccine development is a laborious craftwork in which at least two main components must be defined: a highly immunogenic antigen and a suitable delivery method. Hence, the interplay of these elements could elicit the required immune response to cope with the targeted pathogen with a long-lasting protective capacity. OBJECTIVES Here we evaluate the properties of Escherichia coli spherical proteoliposomes - known as outer membrane vesicles (OMVs) - as particles with natural adjuvant capacities and as antigen-carrier structures to assemble an innovative prophylactic vaccine for Chagas disease. METHODS To achieve this, genetic manipulation was carried out on E. coli using an engineered plasmid containing the Tc24 Trypanosoma cruzi antigen. The goal was to induce the release of OMVs displaying the parasite protein on their surface. FINDINGS As a proof of principle, we observed that native OMVs - as well as those carrying the T. cruzi antigen - were able to trigger a slight, but functional humoral response at low immunization doses. Of note, compared to the non-immunized group, native OMVs-vaccinated animals survived the lethal challenge and showed minor parasitemia values, suggesting a possible involvement of innate trained immunity mechanism. MAIN CONCLUSION These results open the range for further research on the design of new carrier strategies focused on innate immunity activation as an additional immunization target and venture to seek for alternative forms in which OMVs could be used for optimizing vaccine development.
Collapse
Affiliation(s)
- María Elisa Vázquez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Salta, Instituto de Patología Experimental Dr Miguel Ángel Basombrío, Salta, Argentina
| | - Andrea Cecilia Mesías
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Salta, Instituto de Patología Experimental Dr Miguel Ángel Basombrío, Salta, Argentina
| | - Leonardo Acuña
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Salta, Instituto de Patología Experimental Dr Miguel Ángel Basombrío, Salta, Argentina
| | - Joseph Spangler
- US Naval Research Laboratory, Center for Bio/Molecular Science & Engineering, Washington, DC, United States of America
| | - Brenda Zabala
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Salta, Instituto de Patología Experimental Dr Miguel Ángel Basombrío, Salta, Argentina
| | - Cecilia Parodi
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Salta, Instituto de Patología Experimental Dr Miguel Ángel Basombrío, Salta, Argentina
| | - Meghna Thakur
- George Mason University, Fairfax, Virginia, United States of America
| | - Eunkeu Oh
- US Naval Research Laboratory, Optical Science Division, Washington, DC, United States of America
| | - Scott Allan Walper
- US Naval Research Laboratory, Center for Bio/Molecular Science & Engineering, Washington, DC, United States of America
| | - Cecilia Pérez Brandán
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Salta, Instituto de Patología Experimental Dr Miguel Ángel Basombrío, Salta, Argentina
| |
Collapse
|
7
|
Dean SN, Thakur M, Spangler JR, Smith AD, Garin SP, Walper SA, Ellis GA. Different Strategies Affect Enzyme Packaging into Bacterial Outer Membrane Vesicles. Bioengineering (Basel) 2023; 10:bioengineering10050583. [PMID: 37237653 DOI: 10.3390/bioengineering10050583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
All Gram-negative bacteria are believed to produce outer membrane vesicles (OMVs), proteoliposomes shed from the outermost membrane. We previously separately engineered E. coli to produce and package two organophosphate (OP) hydrolyzing enzymes, phosphotriesterase (PTE) and diisopropylfluorophosphatase (DFPase), into secreted OMVs. From this work, we realized a need to thoroughly compare multiple packaging strategies to elicit design rules for this process, focused on (1) membrane anchors or periplasm-directing proteins (herein "anchors/directors") and (2) the linkers connecting these to the cargo enzyme; both may affect enzyme cargo activity. Herein, we assessed six anchors/directors to load PTE and DFPase into OMVs: four membrane anchors, namely, lipopeptide Lpp', SlyB, SLP, and OmpA, and two periplasm-directing proteins, namely, maltose-binding protein (MBP) and BtuF. To test the effect of linker length and rigidity, four different linkers were compared using the anchor Lpp'. Our results showed that PTE and DFPase were packaged with most anchors/directors to different degrees. For the Lpp' anchor, increased packaging and activity corresponded to increased linker length. Our findings demonstrate that the selection of anchors/directors and linkers can greatly influence the packaging and bioactivity of enzymes loaded into OMVs, and these findings have the potential to be utilized for packaging other enzymes into OMVs.
Collapse
Affiliation(s)
- Scott N Dean
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Meghna Thakur
- College of Science, George Mason University, Fairfax, VA 22030, USA
| | - Joseph R Spangler
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Aaron D Smith
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Sean P Garin
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Scott A Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Gregory A Ellis
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| |
Collapse
|
8
|
Nazneen F, Thompson EA, Blackwell C, Bai JS, Huang F, Bai F. An effective live-attenuated Zika vaccine candidate with a modified 5' untranslated region. NPJ Vaccines 2023; 8:50. [PMID: 37005424 PMCID: PMC10066991 DOI: 10.1038/s41541-023-00650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-transmitted flavivirus that has caused devastating congenital Zika syndrome (CZS), including microcephaly, congenital malformation, and fetal demise in human newborns in recent epidemics. ZIKV infection can also cause Guillain-Barré syndrome (GBS) and meningoencephalitis in adults. Despite intensive research in recent years, there are no approved vaccines or antiviral therapeutics against CZS and adult Zika diseases. In this report, we developed a novel live-attenuated ZIKV strain (named Z7) by inserting 50 RNA nucleotides (nt) into the 5' untranslated region (UTR) of a pre-epidemic ZIKV Cambodian strain, FSS13025. We used this particular ZIKV strain as it is attenuated in neurovirulence, immune antagonism, and mosquito infectivity compared with the American epidemic isolates. Our data demonstrate that Z7 replicates efficiently and produces high titers without causing apparent cytopathic effects (CPE) in Vero cells or losing the insert sequence, even after ten passages. Significantly, Z7 induces robust humoral and cellular immune responses that completely prevent viremia after a challenge with a high dose of an American epidemic ZIKV strain PRVABC59 infection in type I interferon (IFN) receptor A deficient (Ifnar1-/-) mice. Moreover, adoptive transfer of plasma collected from Z7 immunized mice protects Ifnar1-/- mice from ZIKV (strain PRVABC59) infection. These results suggest that modifying the ZIKV 5' UTR is a novel strategy to develop live-attenuated vaccine candidates for ZIKV and potentially for other flaviviruses.
Collapse
Affiliation(s)
- Farzana Nazneen
- Cell and Molecular Biology Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - E Ashley Thompson
- Cell and Molecular Biology Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Claire Blackwell
- Cell and Molecular Biology Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Jonathan S Bai
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Faqing Huang
- Chemistry and Biochemistry Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Fengwei Bai
- Cell and Molecular Biology Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
| |
Collapse
|
9
|
Patel VK, Das A, Kumari R, Kajla S. Recent progress and challenges in CRISPR-Cas9 engineered algae and cyanobacteria. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Yang Z, Chen Z, Zhang Y. A simple and economical site-directed mutagenesis method for large plasmids by direct transformation of two overlapping PCR fragments. Biotechniques 2022; 73:239-245. [DOI: 10.2144/btn-2022-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite the development of various methods and commercial kits, site-directed mutagenesis of large plasmids remains a challenge in many laboratories. A site-directed mutagenesis method was developed for large plasmids by directly transforming two overlapping PCR fragments into Escherichia coli. This method successfully generated mutations for plasmids of 8.3 kb and 11.0 kb with high efficiencies. The method only requires Q5 DNA polymerase and DpnI, which greatly reduces costs. The procedure is simple, including PCR reaction, DpnI treatment and transformation. This simple, efficient and economical site-directed mutagenesis method for large plasmids is likely to be widely applied in the future.
Collapse
Affiliation(s)
- Zhibo Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zan Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yueping Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
11
|
Cheng L, Deng Z, Tao H, Song W, Xing B, Liu W, Kong L, Yuan S, Ma Y, Wu Y, Huang X, Peng Y, Wong NK, Liu Y, Wang Y, Shen Y, Li J, Xiao M. Harnessing stepping-stone hosts to engineer, select, and reboot synthetic bacteriophages in one pot. CELL REPORTS METHODS 2022; 2:100217. [PMID: 35637913 PMCID: PMC9142689 DOI: 10.1016/j.crmeth.2022.100217] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022]
Abstract
Advances in synthetic genomics have led to a great demand for genetic manipulation. Trimming any process to simplify and accelerate streamlining of genetic code into life holds great promise for synthesizing and studying organisms. Here, we develop a simple but powerful stepping-stone strategy to promote genome refactoring of viruses in one pot, validated by successful cross-genus and cross-order rebooting of 90 phages infecting 4 orders of popular pathogens. Genomic sequencing suggests that rebooting outcome is associated with gene number and DNA polymerase availability within phage genomes. We integrate recombineering, screening, and rebooting processes in one pot and demonstrate genome assembly and genome editing of phages by stepping-stone hosts in an efficient and economic manner. Under this framework, in vitro assembly, yeast-based assembly, or genetic manipulation of native hosts are not required. As additional stepping-stone hosts are being developed, this framework will open doors for synthetic phages targeting more pathogens and commensals.
Collapse
Affiliation(s)
- Li Cheng
- BGI-Shenzhen, Shenzhen 518083, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Ziqing Deng
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
- BGI-Beijing, Beijing 100101, China
| | - Haoran Tao
- BGI-Shenzhen, Shenzhen 518083, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Wenchen Song
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Bo Xing
- BGI-Shenzhen, Shenzhen 518083, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Wenfeng Liu
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Lingxin Kong
- BGI-Shenzhen, Shenzhen 518083, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Shengjian Yuan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yingfei Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yayun Wu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xun Huang
- Infection Control Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yun Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, 518112 Shenzhen, China
| | - Nai-Kei Wong
- Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, 518112 Shenzhen, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, 518112 Shenzhen, China
| | - Yun Wang
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
- Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Yue Shen
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
- Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI-Shenzhen, Shenzhen 518120, China
| | - Junhua Li
- BGI-Shenzhen, Shenzhen 518083, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Minfeng Xiao
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
12
|
Thakur M, Breger JC, Susumu K, Oh E, Spangler JR, Medintz IL, Walper SA, Ellis GA. Self-assembled nanoparticle-enzyme aggregates enhance functional protein production in pure transcription-translation systems. PLoS One 2022; 17:e0265274. [PMID: 35298538 PMCID: PMC8929567 DOI: 10.1371/journal.pone.0265274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/27/2022] [Indexed: 11/19/2022] Open
Abstract
Cell-free protein synthesis systems (CFPS) utilize cellular transcription and translation (TX-TL) machinery to synthesize proteins in vitro. These systems are useful for multiple applications including production of difficult proteins, as high-throughput tools for genetic circuit screening, and as systems for biosensor development. Though rapidly evolving, CFPS suffer from some disadvantages such as limited reaction rates due to longer diffusion times, significant cost per assay when using commercially sourced materials, and reduced reagent stability over prolonged periods. To address some of these challenges, we conducted a series of proof-of-concept experiments to demonstrate enhancement of CFPS productivity via nanoparticle assembly driven nanoaggregation of its constituent proteins. We combined a commercially available CFPS that utilizes purified polyhistidine-tagged (His-tag) TX-TL machinery with CdSe/CdS/ZnS core/shell/shell quantum dots (QDs) known to readily coordinate His-tagged proteins in an oriented fashion. We show that nanoparticle scaffolding of the CFPS cross-links the QDs into nanoaggregate structures while enhancing the production of functional recombinant super-folder green fluorescent protein and phosphotriesterase, an organophosphate hydrolase; the latter by up to 12-fold. This enhancement, which occurs by an undetermined mechanism, has the potential to improve CFPS in general and specifically CFPS-based biosensors (faster response time) while also enabling rapid detoxification/bioremediation through point-of-concern synthesis of similar catalytic enzymes. We further show that such nanoaggregates improve production in diluted CFPS reactions, which can help to save money and extend the amount of these costly reagents. The results are discussed in the context of what may contribute mechanistically to the enhancement and how this can be applied to other CFPS application scenarios.
Collapse
Affiliation(s)
- Meghna Thakur
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
- College of Science, George Mason University, Fairfax, Virginia, United States of America
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
- Jacobs Corporation, Dallas, Texas, United States of America
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Joseph R. Spangler
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - Gregory A. Ellis
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, District of Columbia, United States of America
- * E-mail:
| |
Collapse
|
13
|
Abstract
Considered a serious threat by the Centers for Disease Control and Prevention, multidrug-resistant Enterococcus faecium is an increasing cause of hospital-acquired infection. Here, we provide details on a single-plasmid CRISPR-Cas12a system for generating clean deletions and insertions. Single manipulations were carried out in under 2 weeks, with successful deletions/insertions present in >80% of the clones tested. Using this method, we generated three individual clean deletion mutations in the acpH, treA, and lacL genes and inserted codon-optimized unaG, enabling green fluorescent protein (GFP)-like fluorescence under the control of the trehalase operon. The use of in vivo recombination for plasmid construction kept costs to a minimum. IMPORTANCE Enterococcus faecium is increasingly associated with hard-to-treat antibiotic-resistant infections. The ability to generate clean genomic alterations is the first step in generating a complete mechanistic understanding of how E. faecium acquires pathogenic traits and causes disease. Here, we show that CRISPR-Cas12a can be used to quickly (under 2 weeks) and cheaply delete or insert genes into the E. faecium genome. This substantial improvement over current methods should speed up research on this important opportunistic pathogen.
Collapse
|
14
|
Thakur M, Dean SN, Moore M, Spangler JR, Johnson BJ, Medintz IL, Walper SA. Packaging of Diisopropyl Fluorophosphatase (DFPase) in Bacterial Outer Membrane Vesicles Protects Its Activity at Extreme Temperature. ACS Biomater Sci Eng 2022; 8:493-501. [DOI: 10.1021/acsbiomaterials.1c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Meghna Thakur
- Center for Bio/Molecular Science & Engineering (Code 6900), US Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
- College of Science, George Mason University, 4400 University Drive, Fairfax, Virginia 22030, United States
| | - Scott N. Dean
- Center for Bio/Molecular Science & Engineering (Code 6900), US Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Martin Moore
- Center for Bio/Molecular Science & Engineering (Code 6900), US Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Joseph R. Spangler
- Center for Bio/Molecular Science & Engineering (Code 6900), US Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Brandy J. Johnson
- Center for Bio/Molecular Science & Engineering (Code 6900), US Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science & Engineering (Code 6900), US Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Scott A. Walper
- Center for Bio/Molecular Science & Engineering (Code 6900), US Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| |
Collapse
|
15
|
Soussan D, Salze M, Ledormand P, Sauvageot N, Boukerb A, Lesouhaitier O, Fichant G, Rincé A, Quentin Y, Muller C. The NagY regulator: A member of the BglG/SacY antiterminator family conserved in Enterococcus faecalis and involved in virulence. Front Microbiol 2022; 13:1070116. [PMID: 36875533 PMCID: PMC9981650 DOI: 10.3389/fmicb.2022.1070116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/21/2022] [Indexed: 02/19/2023] Open
Abstract
Enterococcus faecalis is a commensal bacterium of the gastrointestinal tract but also a major nosocomial pathogen. This bacterium uses regulators like BglG/SacY family of transcriptional antiterminators to adapt its metabolism during host colonization. In this report, we investigated the role of the BglG/SacY family antiterminator NagY in the regulation of the nagY-nagE operon in presence of N-acetylglucosamine, with nagE encoding a transporter of this carbohydrate, as well as the expression of the virulence factor HylA. We showed that this last protein is involved in biofilm formation and glycosaminoglycans degradation that are important features in bacterial infection, confirmed in the Galleria mellonella model. In order to elucidate the evolution of these actors, we performed phylogenomic analyses on E. faecalis and Enterococcaceae genomes, identified orthologous sequences of NagY, NagE, and HylA, and we report their taxonomic distribution. The study of the conservation of the upstream region of nagY and hylA genes showed that the molecular mechanism of NagY regulation involves ribonucleic antiterminator sequence overlapping a rho-independent terminator, suggesting a regulation conforming to the canonical model of BglG/SacY family antiterminators. In the perspective of opportunism understanding, we offer new insights into the mechanism of host sensing thanks to the NagY antiterminator and its targets expression.
Collapse
Affiliation(s)
- Diane Soussan
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Marine Salze
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Pierre Ledormand
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Nicolas Sauvageot
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Amine Boukerb
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France.,Plateforme de Génomique, CBSA EA4312, Normandie Université, UNIROUEN, Évreux, France
| | - Olivier Lesouhaitier
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Gwennaele Fichant
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Alain Rincé
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| | - Yves Quentin
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Cécile Muller
- Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Normandie Université, UNICAEN, Caen, France.,Fédération de Recherche SeSAD, Normandie Université, UNICAEN, Caen, France
| |
Collapse
|
16
|
Nguyen H, Wilson H, Jayakumar S, Kulkarni V, Kulkarni S. Efficient Inhibition of HIV Using CRISPR/Cas13d Nuclease System. Viruses 2021; 13:1850. [PMID: 34578431 PMCID: PMC8473377 DOI: 10.3390/v13091850] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022] Open
Abstract
Recently discovered Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas13 proteins are programmable RNA-guided ribonucleases that target single-stranded RNA (ssRNA). CRISPR/Cas13-mediated RNA targeting has emerged as a powerful tool for detecting and eliminating RNA viruses. Here, we demonstrate the effectiveness of CRISPR/Cas13d to inhibit HIV-1 replication. We designed guide RNAs (gRNAs) targeting highly conserved regions of HIV-1. RfxCas13d (CasRx) in combination with HIV-specific gRNAs efficiently inhibited HIV-1 replication in cell line models. Furthermore, simultaneous targeting of four distinct, non-overlapping sites in the HIV-1 transcript resulted in robust inhibition of HIV-1 replication. We also show the effective HIV-1 inhibition in primary CD4+ T-cells and suppression of HIV-1 reactivated from latently infected cells using the CRISPR/Cas13d system. Our study demonstrates the utility of the CRISPR/Cas13d nuclease system to target acute and latent HIV infection and provides an alternative treatment modality against HIV.
Collapse
Affiliation(s)
- Hoang Nguyen
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (H.N.); (H.W.); (S.J.)
| | - Hannah Wilson
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (H.N.); (H.W.); (S.J.)
| | - Sahana Jayakumar
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (H.N.); (H.W.); (S.J.)
| | - Viraj Kulkarni
- Disease Intervention and Prevention Program; Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
| | - Smita Kulkarni
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (H.N.); (H.W.); (S.J.)
| |
Collapse
|
17
|
Jain K, Wood EA, Romero ZJ, Cox MM. RecA-independent recombination: Dependence on the Escherichia coli RarA protein. Mol Microbiol 2021; 115:1122-1137. [PMID: 33247976 PMCID: PMC8160026 DOI: 10.1111/mmi.14655] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/29/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022]
Abstract
Most, but not all, homologous genetic recombination in bacteria is mediated by the RecA recombinase. The mechanistic origin of RecA-independent recombination has remained enigmatic. Here, we demonstrate that the RarA protein makes a major enzymatic contribution to RecA-independent recombination. In particular, RarA makes substantial contributions to intermolecular recombination and to recombination events involving relatively short (<200 bp) homologous sequences, where RecA-mediated recombination is inefficient. The effects are seen here in plasmid-based recombination assays and in vivo cloning processes. Vestigial levels of recombination remain even when both RecA and RarA are absent. Additional pathways for RecA-independent recombination, possibly mediated by helicases, are suppressed by exonucleases ExoI and RecJ. Translesion DNA polymerases may also contribute. Our results provide additional substance to a previous report of a functional overlap between RecA and RarA.
Collapse
Affiliation(s)
- Kanika Jain
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary J Romero
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
18
|
Staerck C, Wasselin V, Budin-Verneuil A, Rincé I, Cacaci M, Weigel M, Giraud C, Hain T, Hartke A, Riboulet-Bisson E. Analysis of glycerol and dihydroxyacetone metabolism in Enterococcus faecium. FEMS Microbiol Lett 2021; 368:6232157. [PMID: 33864460 DOI: 10.1093/femsle/fnab043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/15/2021] [Indexed: 12/28/2022] Open
Abstract
Glycerol (Gly) can be dissimilated by two pathways in bacteria. Either this sugar alcohol is first oxidized to dihydroxyacetone (DHA) and then phosphorylated or it is first phosphorylated to glycerol-3-phosphate (GlyP) followed by oxidation. Oxidation of GlyP can be achieved by NAD-dependent dehydrogenases or by a GlyP oxidase. In both cases, dihydroxyacetone phosphate is the product. Genomic analysis showed that Enterococcus faecium harbors numerous genes annotated to encode activities for the two pathways. However, our physiological analyses of growth on glycerol showed that dissimilation is limited to aerobic conditions and that despite the presence of genes encoding presumed GlyP dehydrogenases, the GlyP oxidase is essential in this process. Although E. faecium contains an operon encoding the phosphotransfer protein DhaM and DHA kinase, which are required for DHA phosphorylation, it is unable to grow on DHA. This operon is highly expressed in stationary phase but its physiological role remains unknown. Finally, data obtained from sequencing of a transposon mutant bank of E. faecium grown on BHI revealed that the GlyP dehydrogenases and a major intrinsic family protein have important but hitherto unknown physiological functions.
Collapse
Affiliation(s)
- Cindy Staerck
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France
| | - Valentin Wasselin
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France
| | - Aurélie Budin-Verneuil
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France
| | - Isabelle Rincé
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France
| | - Margherita Cacaci
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy.,Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Markus Weigel
- Institute of Medical Microbiology, Justus-Liebig-University Giessen, Biomedical Research Facility Seltersberg (BFS), Schubertstrasse 81, D-35392 Giessen, Germany
| | - Caroline Giraud
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France
| | - Torsten Hain
- Institute of Medical Microbiology, Justus-Liebig-University Giessen, Biomedical Research Facility Seltersberg (BFS), Schubertstrasse 81, D-35392 Giessen, Germany.,German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Schubertstrasse 81, D-35392 Giessen, Germany
| | - Axel Hartke
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France
| | | |
Collapse
|
19
|
Chen F, Li YY, Yu YL, Dai J, Huang JL, Lin J. Simplified plasmid cloning with a universal MCS design and bacterial in vivo assembly. BMC Biotechnol 2021; 21:24. [PMID: 33722223 PMCID: PMC7962268 DOI: 10.1186/s12896-021-00679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ability to clone DNA sequences quickly and precisely into plasmids is essential for molecular biology studies. The recent development of seamless cloning technologies has made significant improvements in plasmid construction, but simple and reliable tools are always desirable for time- and labor-saving purposes. RESULTS We developed and standardized a plasmid cloning protocol based on a universal MCS (Multiple Cloning Site) design and bacterial in vivo assembly. With this method, the vector is linearized first by PCR (Polymerase Chain Reaction) or restriction digestion. Then a small amount (10 ~ 20 ng) of this linear vector can be mixed with a PCR-amplified insert (5× molar ratio against vector) and transformed directly into competent E. coli cells to obtain the desired clones through in vivo assembly. Since we used a 36-bp universal MCS as the homologous linker, any PCR-amplified insert with ~ 15 bp compatible termini can be cloned into the vector with high fidelity and efficiency. Thus, the need for redesigning insert-amplifying primers according to various vector sequences and the following PCR procedures was eliminated. CONCLUSIONS Our protocol significantly reduced hands-on time for preparing transformation reactions, had excellent reliability, and was confirmed to be a rapid and versatile plasmid cloning technique. The protocol contains mostly mixing steps, making it an extremely automation-friendly and promising tool in modern biology studies.
Collapse
Affiliation(s)
- Fan Chen
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000, P.R. China.
| | - Yi-Ya Li
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000, P.R. China
| | - Yan-Li Yu
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000, P.R. China
| | - Jie Dai
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000, P.R. China
| | - Jin-Ling Huang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000, P.R. China
| | - Jie Lin
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000, P.R. China
| |
Collapse
|
20
|
Yang Y, Wang T, Yu Q, Liu H, Xun L, Xia Y. The pathway of recombining short homologous ends in Escherichia coli revealed by the genetic study. Mol Microbiol 2021; 115:1309-1322. [PMID: 33372330 DOI: 10.1111/mmi.14677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022]
Abstract
The recombination of short homologous ends in Escherichia coli has been known for 30 years, and it is often used for both site-directed mutagenesis and in vivo cloning. For cloning, a plasmid and target DNA fragments were converted into linear DNA fragments with short homologous ends, which are joined via recombination inside E. coli after transformation. Here this mechanism of joining homologous ends in E. coli was determined by a linearized plasmid with short homologous ends. Two 3'-5' exonucleases ExoIII and ExoX with nonprocessive activity digested linear dsDNA to generate 5' single-strand overhangs, which annealed with each other. The polymerase activity of DNA polymerase I (Pol I) was exclusively employed to fill in the gaps. The strand displacement activity and the 5'-3' exonuclease activity of Pol I were also required, likely to generate 5' phosphate termini for subsequent ligation. Ligase A (LigA) joined the nicks to finish the process. The model involving 5' single-stranded overhangs is different from established recombination pathways that all generate 3' single-stranded overhangs. This recombination is likely common in bacteria since the involved enzymes are ubiquitous.
Collapse
Affiliation(s)
- Yuqing Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.,Institute of Marine Science and Technology, Shandong University, Qingdao, People's Republic of China
| | - Tianqi Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Qiaoli Yu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.,School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| |
Collapse
|
21
|
Gurung C, Fendereski M, Sapkota K, Guo J, Huang F, Guo YL. Dicer represses the interferon response and the double-stranded RNA-activated protein kinase pathway in mouse embryonic stem cells. J Biol Chem 2021; 296:100264. [PMID: 33837743 PMCID: PMC7948645 DOI: 10.1016/j.jbc.2021.100264] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Recent studies have demonstrated that embryonic stem cells (ESCs) are deficient in expressing type I interferons (IFN), the cytokines that play key roles in antiviral responses. However, the underlying molecular mechanisms and biological implications of this finding are poorly understood. In this study, we developed a synthetic RNA-based assay that can simultaneously assess multiple forms of antiviral responses. Dicer is an enzyme essential for RNA interference (RNAi), which is used as a major antiviral mechanism in invertebrates. RNAi activity is detected in wild-type ESCs but is abolished in Dicer knockout ESCs (D-/-ESCs) as expected. Surprisingly, D-/-ESCs have gained the ability to express IFN, which is otherwise deficient in wild-type ESCs. Furthermore, D-/-ESCs have constitutively active double-stranded RNA (dsRNA)-activated protein kinase (PKR), an enzyme that is also involved in antiviral response. D-/-ESCs show increased sensitivity to the cytotoxicity resulting from RNA transfection. The effects of dsRNA can be partly replicated with a synthetic B2RNA corresponding to the retrotransposon B2 short interspersed nuclear element. B2RNA has secondary structure features of dsRNA and accumulates in D-/-ESCs, suggesting that B2RNA could be a cellular RNA that activates PKR and contributes to the decreased cell proliferation and viability of D-/-ESCs. Treatment of D-/-ESCs with a PKR inhibitor and IFNβ-neutralizing antibodies increased cell proliferation rate and cell viability. Based on these findings, we propose that, in ESCs, Dicer acts as a repressor of antiviral responses and plays a key role in the maintenance of proliferation, viability, and pluripotency of ESCs.
Collapse
Affiliation(s)
- Chandan Gurung
- Department of Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Mona Fendereski
- Department of Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Krishna Sapkota
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Jason Guo
- Department of Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Faqing Huang
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Yan-Lin Guo
- Department of Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, Mississippi, USA.
| |
Collapse
|
22
|
Tao CC, Yang Y, Li F, Qiao L, Wu Y, Sun XD, Zhang YY, Li CL. Cloning short DNA into plasmids by one-step PCR. Thorac Cancer 2020; 11:3409-3415. [PMID: 33015950 PMCID: PMC7605993 DOI: 10.1111/1759-7714.13660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/30/2020] [Accepted: 08/30/2020] [Indexed: 11/30/2022] Open
Abstract
Background Plasmid construction of small fragments of interest (such as insertion of small fragment marker genes, expression of shRNA, siRNA, etc) is the basis of many biomolecular experiments. Here, we describe a method to clone short DNA into vectors by polymerase chain reaction (PCR), named one‐step PCR cloning. Our method uses PCR to amplify the entire circular plasmid. The PCR was performed by the primers containing the gene of short DNA with overlapping sequences between 10–15 bp. The PCR products were then transformed into E. coli and cyclized by homologous recombination in vivo. Methods The pEGFP‐N1‐HA plasmid was constructed by one‐step PCR and transformation. Cells were transfected with pEGFP‐N1‐HA and pEGFP‐N1 plasmid using TurboFect transfection reagent. Protein expression was detected by western blotting and the HA‐GFP fusion protein was detected by confocal microscopy. Results The pEGFP‐N1‐HA plasmid was successfully constructed and HA expression in cells. Conclusions Free from the limitations of restriction enzyme sites and omitting the ligation process, our method offers a flexible and economical option of plasmid construction. Key points
Collapse
Affiliation(s)
- Cheng-Cheng Tao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ying Yang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Fang Li
- Department of Medical Oncology, Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Qiao
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Wu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiao-Dong Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yuan-Yuan Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.,School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Chang-Long Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Cloning, expression and purification of the low-complexity region of RanBP9 protein. Protein Expr Purif 2020; 172:105630. [PMID: 32217127 DOI: 10.1016/j.pep.2020.105630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 11/22/2022]
Abstract
Recombinant expression and purification of proteins is key for biochemical and biophysical investigations. Although this has become a routine and standard procedure for many proteins, intrinsically disordered ones and those with low complexity sequences pose difficulties. Proteins containing low complexity regions (LCRs) are increasingly becoming significant for their roles in both normal and pathological processes. Here, we report cloning, expression and purification of N-terminal LCR of RanBP9 protein (Nt-RanBP9). RanBP9 is a scaffolding protein present in both cytoplasm and nucleus that is implicated in many cellular processes. Nt-RanBP9 is a poorly understood region of the protein perhaps due to difficulties posed by the LCR. Indeed, conventional methods presented difficulties in Nt-RanBP9 cloning due to its high GC content resulting in insignificant protein expression. These led us to use a different approach of cloning by expressing the protein as a fusion construct containing mCherry or mEGFP using in vivo DNA recombination methods. Our results indicate that expression of mEGFP-tagged Nt-RanBP9 followed by thrombin cleavage of the tag was the most effective method to obtain the protein with >90% purity and good yields. We report and discuss the challenges in obtaining the N-terminal region of RanBP9, a protein with functional implications in multiple biological processes and neurodegenerative diseases.
Collapse
|
24
|
Watson JF, García-Nafría J. In vivo DNA assembly using common laboratory bacteria: A re-emerging tool to simplify molecular cloning. J Biol Chem 2019; 294:15271-15281. [PMID: 31522138 DOI: 10.1074/jbc.rev119.009109] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular cloning is a cornerstone of biomedical, biotechnological, and synthetic biology research. As such, improved cloning methodologies can significantly advance the speed and cost of research projects. Whereas current popular cloning approaches use in vitro assembly of DNA fragments, in vivo cloning offers potential for greater simplification. It is generally assumed that bacterial in vivo cloning requires Escherichia coli strains with enhanced recombination ability; however, this is incorrect. A widely present, bacterial RecA-independent recombination pathway is re-emerging as a powerful tool for molecular cloning and DNA assembly. This poorly understood pathway offers optimal cloning properties (i.e. seamless, directional, and sequence-independent) without requiring in vitro DNA assembly or specialized bacteria, therefore vastly simplifying cloning procedures. Although the use of this pathway to perform DNA assembly was first reported over 25 years ago, it failed to gain popularity, possibly due to both technical and circumstantial reasons. Technical limitations have now been overcome, and recent reports have demonstrated its versatility for DNA manipulation. Here, we summarize the historical trajectory of this approach and collate recent reports to provide a roadmap for its optimal use. Given the simplified protocols and minimal requirements, cloning using in vivo DNA assembly in E. coli has the potential to become widely employed across the molecular biology community.
Collapse
Affiliation(s)
- Jake F Watson
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Javier García-Nafría
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC), 50018 Zaragoza, Spain
| |
Collapse
|
25
|
Xia Y, Li K, Li J, Wang T, Gu L, Xun L. T5 exonuclease-dependent assembly offers a low-cost method for efficient cloning and site-directed mutagenesis. Nucleic Acids Res 2019; 47:e15. [PMID: 30462336 PMCID: PMC6379645 DOI: 10.1093/nar/gky1169] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
The assembly of DNA fragments with homologous arms is becoming popular in routine cloning. For an in vitro assembly reaction, a DNA polymerase is often used either alone for its 3'-5' exonuclease activity or together with a 5'-3' exonuclease for its DNA polymerase activity. Here, we present a 'T5 exonuclease DNA assembly' (TEDA) method that only uses a 5'-3' exonuclease. DNA fragments with short homologous ends were treated by T5 exonuclease and then transformed into Escherichia coli to produce clone colonies. The cloning efficiency was similar to that of the commercial In-Fusion method employing a proprietary DNA polymerase, but higher than that of the Gibson method utilizing T5 exonuclease, Phusion DNA polymerase, and DNA ligase. It also assembled multiple DNA fragments and did simultaneous site-directed mutagenesis at multiple sites. The reaction mixture was simple, and each reaction used 0.04 U of T5 exonuclease that cost 0.25 US cents. The simplicity, cost effectiveness, and cloning efficiency should promote its routine use, especially for labs with a budget constraint. TEDA may trigger further development of DNA assembly methods that employ single exonucleases.
Collapse
Affiliation(s)
- Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Kai Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Jingjing Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Tianqi Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China.,School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| |
Collapse
|
26
|
Spangler JR, Caruana JC, Phillips DA, Walper SA. Broad range shuttle vector construction and promoter evaluation for the use of Lactobacillus plantarum WCFS1 as a microbial engineering platform. Synth Biol (Oxf) 2019; 4:ysz012. [PMID: 32995537 DOI: 10.1093/synbio/ysz012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/13/2022] Open
Abstract
As the field of synthetic biology grows, efforts to deploy complex genetic circuits in nonlaboratory strains of bacteria will continue to be a focus of research laboratories. Members of the Lactobacillus genus are good targets for synthetic biology research as several species are already used in many foods and as probiotics. Additionally, Lactobacilli offer a relatively safe vehicle for microbiological treatment of various health issues considering these commensals are often minor constituents of the gut microbial community and maintain allochthonous behavior. In order to generate a foundation for engineering, we developed a shuttle vector for subcloning in Escherichia coli and used it to characterize the transcriptional and translational activities of a number of promoters native to Lactobacillus plantarum WCFS1. Additionally, we demonstrated the use of this vector system in multiple Lactobacillus species, and provided examples of non-native promoter recognition by both L. plantarum and E. coli strains that might allow a shortcut assessment of circuit outputs. A variety of promoter activities were observed covering a range of protein expression levels peaking at various times throughout growth, and subsequent directed mutations were demonstrated and suggested to further increase the degree of output tuning. We believe these data show the potential for L. plantarum WCFS1 to be used as a nontraditional synthetic biology chassis and provide evidence that our system can be transitioned to other probiotic Lactobacillus species as well.
Collapse
Affiliation(s)
| | - Julie C Caruana
- American Society for Engineering Education, Washington, DC, United States
| | - Daniel A Phillips
- American Society for Engineering Education, Washington, DC, United States
| | - Scott A Walper
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Overlook Avenue, Washington, DC, USA
| |
Collapse
|
27
|
Exonuclease III (XthA) Enforces In Vivo DNA Cloning of Escherichia coli To Create Cohesive Ends. J Bacteriol 2019; 201:JB.00660-18. [PMID: 30530516 PMCID: PMC6379578 DOI: 10.1128/jb.00660-18] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/05/2018] [Indexed: 11/20/2022] Open
Abstract
Cloning of a DNA fragment into a vector is one of the fundamental techniques in recombinant DNA technology. Recently, an in vitro recombination system for DNA cloning was shown to enable the joining of multiple DNA fragments at once. Interestingly, E. coli potentially assembles multiple linear DNA fragments that are introduced into the cell. Improved protocols for this in vivo cloning have realized a high level of usability, comparable to that by in vitro recombination reactions. However, the mechanism of in vivo cloning is highly controversial. Here, we clarified the fundamental mechanism underlying in vivo cloning and also constructed a strain that was optimized for in vivo cloning. Additionally, we streamlined the procedure of in vivo cloning by using a single microcentrifuge tube. Escherichia coli has an ability to assemble DNA fragments with homologous overlapping sequences of 15 to 40 bp at each end. Several modified protocols have already been reported to improve this simple and useful DNA cloning technology. However, the molecular mechanism by which E. coli accomplishes such cloning is still unknown. In this study, we provide evidence that the in vivo cloning of E. coli is independent of both RecA and RecET recombinases but is dependent on XthA, a 3′ to 5′ exonuclease. Here, in vivo cloning of E. coli by XthA is referred to as in vivoE. coli cloning (iVEC). We also show that iVEC activity is reduced by deletion of the C-terminal domain of DNA polymerase I (PolA). Collectively, these results suggest the following mechanism of iVEC. First, XthA resects the 3′ ends of linear DNA fragments that are introduced into E. coli cells, resulting in exposure of the single-stranded 5′ overhangs. Then, the complementary single-stranded DNA ends hybridize each other, and gaps are filled by DNA polymerase I. Elucidation of the iVEC mechanism at the molecular level would further advance the development of in vivo DNA cloning technology. Already we have successfully demonstrated multiple-fragment assembly of up to seven fragments in combination with an effortless transformation procedure using a modified host strain for iVEC. IMPORTANCE Cloning of a DNA fragment into a vector is one of the fundamental techniques in recombinant DNA technology. Recently, an in vitro recombination system for DNA cloning was shown to enable the joining of multiple DNA fragments at once. Interestingly, E. coli potentially assembles multiple linear DNA fragments that are introduced into the cell. Improved protocols for this in vivo cloning have realized a high level of usability, comparable to that by in vitro recombination reactions. However, the mechanism of in vivo cloning is highly controversial. Here, we clarified the fundamental mechanism underlying in vivo cloning and also constructed a strain that was optimized for in vivo cloning. Additionally, we streamlined the procedure of in vivo cloning by using a single microcentrifuge tube.
Collapse
|
28
|
Mutant T4 DNA polymerase for easy cloning and mutagenesis. PLoS One 2019; 14:e0211065. [PMID: 30673756 PMCID: PMC6343910 DOI: 10.1371/journal.pone.0211065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/17/2018] [Indexed: 11/19/2022] Open
Abstract
The advent of high-fidelity DNA polymerases that can be used to linearize and amplify whole plasmids by PCR opened the door to greatly simplified cloning and mutagenesis protocols. Commercially available kits work well, but often have been optimized using undisclosed or proprietory components. Here we show that a mutant T4 DNA polymerase (Y320A) with attenuated 3’-exonuclease activity is uniquely suited to generate single-stranded DNA overhangs of uniform length in a more easily controllable manner than the wild-type enzyme, and this can be used to increase the yields of colonies containing correctly modified plasmids in cloning and mutagenesis experiments, which is particularly useful when E. coli cells are of relatively low competency. Standard protocols using the mutant T4 DNA polymerase are provided for the sequence and ligation independent cloning (SLIC) method and a modified QuikChange method, where the mutant enzyme enhances the yield of correctly mutated plasmid and further suppresses parental plasmid during digestion with DpnI. Single-stranded DNA overhangs generated by the mutant T4 DNA polymerase facilitate subsequent plasmid circularization, annealing and ligation in E. coli.
Collapse
|
29
|
Efficient one-pot enzymatic synthesis of dephospho coenzyme A. Bioorg Chem 2017; 76:23-27. [PMID: 29107839 DOI: 10.1016/j.bioorg.2017.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/06/2017] [Accepted: 10/22/2017] [Indexed: 11/23/2022]
Abstract
Dephospho coenzyme A (depCoA) is the last intermediate for CoA biosynthesis, and it can be used as a transcription initiator to prepare CoA-linked RNA by in vitro transcription. However, commercially available depCoA is expensive. We hereby describe a simple and efficient enzymatic synthesis of depCoA in a single-step from commercially available and inexpensive oxidized pantethine (Ox-Pan) and ATP. A plasmid (pCoaDAa) was constructed to co-express and co-purify two enzymes pantothenate kinase (PanK/coaA) and phosphopantetheine adenylyltransferase (PPAT/coaD). Starting from Ox-Pan and ATP, two different synthetic routes of one-pot reaction catalyzed by PanK and PPAT, followed by a simple column purification step, afforded depCoA and its oxidized dimer (Ox-depCoA) with high yields and purity. The simplicity and low cost of our method should make depCoA easily accessible to a broad scientific community, and promote research on CoA-related areas in biology and biomedicine.
Collapse
|