1
|
Dhawan V, Malhotra N, Singh N, Dadhwal V, Dada R. Yoga and its effect on sperm genomic integrity, gene expression, telomere length and perceived quality of life in early pregnancy loss. Sci Rep 2024; 14:11711. [PMID: 38777848 PMCID: PMC11111444 DOI: 10.1038/s41598-024-62380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Achieving successful pregnancy outcomes is a delicate interplay between the maternal and the fetal counterparts. Paternal factors play a critical role in health and disease of offspring. Early pregnancy loss (EPL) is a psychologically devastating condition affecting the quality of life (QOL). Thus, it needs to be managed by a mind body integrated approach like yoga.The prospective single arm exploratory studyincluded male partners of couples experiencing recurrent pregnancy loss (RPL, n = 30), and recurrent implantation failure (RIF, n = 30) and semen samples wereassessed at the beginning and completion of yoga (6 weeks) (WHO 2010).A significant increase in the sperm concentration, motility, decrease in seminal ROS, DFI and increase in relative sperm telomere length was found at the end of yoga. The relative expression of genes critical for early embryonic developmentnormalized towards the levels of controls. WHOQOL-BREF questionnaire scores to assess QOL also showed improvement.Integration of regular practice yoga into our lifestyle may help in improving seminal redox status, genomic integrity, telomere length, normalizing gene expression and QOL, highlighting the need to use an integrated, holistic approach in management of such cases. This is pertinent for decreasing the transmission of mutation and epimutation load to the developing embryo, improving pregnancy outcomes and decreasing genetic and epigenetic disease burden in the next generation.
Collapse
Affiliation(s)
- Vidhu Dhawan
- Department of Anatomy, Laboratory of Molecular Reproduction and Genetics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neena Malhotra
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Neeta Singh
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Vatsla Dadhwal
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Rima Dada
- Department of Anatomy, Laboratory of Molecular Reproduction and Genetics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
2
|
Zhou T, Cao J, Chen G, Wang Y, Zou G, Liang H. Role of Sox3 in Estradiol-Induced Sex Reversal in Pelodiscus sinensis. Int J Mol Sci 2023; 25:248. [PMID: 38203425 PMCID: PMC10779075 DOI: 10.3390/ijms25010248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The Chinese soft-shelled turtle Pelodiscus sinensis, an economically important species in China, exhibits significant sexual dimorphism. Males are more valuable than females owing to their wider calipash and faster growth. Estradiol (E2)-induced sex reversal is used to achieve all-male breeding of turtles; however, the mechanism of this sex reversal remains unclear. In this study, we characterized the Sox3 gene, whose expression level was high in the gonads and brain and exhibited significant sexual dimorphism in the ovary. During embryonic development, Sox3 was highly expressed at the initiation of ovarian differentiation. E2 and Sox3-RNAi treatment before sexual differentiation led to 1352, 908, 990, 1011, and 975 differentially expressed genes in five developmental stages, respectively, compared with only E2 treatment. The differentially expressed genes were clustered into 20 classes. The continuously downregulated and upregulated genes during gonadal differentiation were categorized into Class 0 (n = 271) and Class 19 (n = 606), respectively. KEGG enrichment analysis showed that Sox3 significantly affected sexual differentiation via the Wnt, TGF-β, and TNF signaling pathways and mRNA surveillance pathway. The expression of genes involved in these signaling pathways, such as Dkk4, Nog, Msi1, and Krt14, changed significantly during gonadal differentiation. In conclusion, the deletion of Sox3 may lead to significant upregulation of the mRNA surveillance pathway and TNF and Ras signaling pathways and downregulation of the Wnt and TGF-β signaling pathways, inhibiting E2-induced sex reversal. These findings suggest that Sox3 may play a certain promoting effect during E2-induced sex reversal in P. sinensis.
Collapse
Affiliation(s)
- Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China; (T.Z.); (J.C.); (G.C.); (Y.W.); (G.Z.)
| | - Jizeng Cao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China; (T.Z.); (J.C.); (G.C.); (Y.W.); (G.Z.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Guobin Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China; (T.Z.); (J.C.); (G.C.); (Y.W.); (G.Z.)
| | - Yubin Wang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China; (T.Z.); (J.C.); (G.C.); (Y.W.); (G.Z.)
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China; (T.Z.); (J.C.); (G.C.); (Y.W.); (G.Z.)
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China; (T.Z.); (J.C.); (G.C.); (Y.W.); (G.Z.)
| |
Collapse
|
3
|
Guo L, Jiang H, Lu Y, Liu M, Liu H. 5-azacytidine inhibits Sox2 promoter methylation during the induction of Thy-1 +Lin - cells into hepatocytes. Am J Transl Res 2023; 15:6718-6726. [PMID: 38186987 PMCID: PMC10767535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVE To investigate the changes and functions of Sox2 gene expression and promoter methylation during induced differentiation of bone marrow mesenchymal stem cells (BMSCs) into hepatocytes (HCs). METHODS Rat bone marrow Thy-1+Lin- cells were prepared and divided into control group (directed induction of differentiation into HCs) and experimental group (5-azacytidine intervention induced differentiation). The mRNA expression levels of ALB and Sox2 were detected by fluorescence quantitative polymerase chain reaction (PCR), and the Sox2 gene promoter methylation level was determined by Bisulfite sequencing PCR (BSP). RESULTS Sox mRNA expression level was significantly increased in experimental group compared to the control group at 0, 7, and 14 days, respectively (all P<0.05). The Sox2 promoter methylation level was gradually increased after 0, 7 and 14 days induction in both groups, accompanied by an increase in methylated loci (all P<0.05). Statistical significance was present in CpG methylated loci between groups (all P<0.05). CONCLUSIONS The expression of Sox2 gene increased first and then decreased in the process of inducing rat BMSCs into stem cells, and the methylation level of CpG loci in the promoter region changed dynamically, with an increased overall methylation level. After 5-aza treatment, the Sox2 promoter was in a non-methylated state, and its mRNA expression increased, which hindered the cell differentiation.
Collapse
Affiliation(s)
- Linghong Guo
- Colorectal Surgery, Shanxi Cancer Hospital Taiyuan 030013, Shanxi, China
| | - Huiyuan Jiang
- Colorectal Surgery, Shanxi Cancer Hospital Taiyuan 030013, Shanxi, China
| | - Yanjun Lu
- Colorectal Surgery, Shanxi Cancer Hospital Taiyuan 030013, Shanxi, China
| | - Maoxi Liu
- Colorectal Surgery, Shanxi Cancer Hospital Taiyuan 030013, Shanxi, China
| | - Haiyi Liu
- Colorectal Surgery, Shanxi Cancer Hospital Taiyuan 030013, Shanxi, China
| |
Collapse
|
4
|
Segal D, Coulombe S, Sim J, Dostie J. A conserved HOTAIRM1-HOXA1 regulatory axis contributes early to neuronal differentiation. RNA Biol 2023; 20:1523-1539. [PMID: 37743644 PMCID: PMC10619521 DOI: 10.1080/15476286.2023.2258028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 09/26/2023] Open
Abstract
HOTAIRM1 is unlike most long non-coding RNAs in that its sequence is highly conserved across mammals. Such evolutionary conservation points to it having a role in key cellular processes. We previously reported that HOTAIRM1 is required to curb premature activation of downstream HOXA genes in a cell model recapitulating their sequential induction during development. We found that it regulates 3' HOXA gene expression by a mechanism involving epigenetic and three-dimensional chromatin changes. Here we show that HOTAIRM1 participates in proper progression through the early stages of neuronal differentiation. We found that it can associate with the HOXA1 transcription factor and contributes to its downstream transcriptional program. Particularly, HOTAIRM1 affects the NANOG/POU5F1/SOX2 core pluripotency network maintaining an undifferentiated cell state. HOXA1 depletion similarly perturbed expression of these pluripotent factors, suggesting that HOTAIRM1 is a modulator of this transcription factor pathway. Also, given that binding of HOTAIRM1 to HOXA1 was observed in different cell types and species, our results point to this ribonucleoprotein complex as an integral part of a conserved HOTAIRM1-HOXA1 regulatory axis modulating the transition from a pluripotent to a differentiated neuronal state.
Collapse
Affiliation(s)
- Dana Segal
- Department of Biochemistry, and Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Samy Coulombe
- Department of Biochemistry, and Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- School of Computer Science, and McGill Center for Bioinformatics, McGill University, Montréal, Québec, Canada
| | - Jasper Sim
- Department of Biochemistry, and Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Josée Dostie
- Department of Biochemistry, and Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| |
Collapse
|
5
|
Stevanovic M, Drakulic D, Lazic A, Ninkovic DS, Schwirtlich M, Mojsin M. SOX Transcription Factors as Important Regulators of Neuronal and Glial Differentiation During Nervous System Development and Adult Neurogenesis. Front Mol Neurosci 2021; 14:654031. [PMID: 33867936 PMCID: PMC8044450 DOI: 10.3389/fnmol.2021.654031] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The SOX proteins belong to the superfamily of transcription factors (TFs) that display properties of both classical TFs and architectural components of chromatin. Since the cloning of the Sox/SOX genes, remarkable progress has been made in illuminating their roles as key players in the regulation of multiple developmental and physiological processes. SOX TFs govern diverse cellular processes during development, such as maintaining the pluripotency of stem cells, cell proliferation, cell fate decisions/germ layer formation as well as terminal cell differentiation into tissues and organs. However, their roles are not limited to development since SOX proteins influence survival, regeneration, cell death and control homeostasis in adult tissues. This review summarized current knowledge of the roles of SOX proteins in control of central nervous system development. Some SOX TFs suspend neural progenitors in proliferative, stem-like state and prevent their differentiation. SOX proteins function as pioneer factors that occupy silenced target genes and keep them in a poised state for activation at subsequent stages of differentiation. At appropriate stage of development, SOX members that maintain stemness are down-regulated in cells that are competent to differentiate, while other SOX members take over their functions and govern the process of differentiation. Distinct SOX members determine down-stream processes of neuronal and glial differentiation. Thus, sequentially acting SOX TFs orchestrate neural lineage development defining neuronal and glial phenotypes. In line with their crucial roles in the nervous system development, deregulation of specific SOX proteins activities is associated with neurodevelopmental disorders (NDDs). The overview of the current knowledge about the link between SOX gene variants and NDDs is presented. We outline the roles of SOX TFs in adult neurogenesis and brain homeostasis and discuss whether impaired adult neurogenesis, detected in neurodegenerative diseases, could be associated with deregulation of SOX proteins activities. We present the current data regarding the interaction between SOX proteins and signaling pathways and microRNAs that play roles in nervous system development. Finally, future research directions that will improve the knowledge about distinct and various roles of SOX TFs in health and diseases are presented and discussed.
Collapse
Affiliation(s)
- Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.,Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Danijela Drakulic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Andrijana Lazic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Danijela Stanisavljevic Ninkovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Schwirtlich
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Tahira AC, Barbosa AR, Feltrin AS, Gastaldi VD, de Toledo VHC, de Carvalho Pereira JG, Lisboa BCG, de Souza Reis VN, dos Santos ACF, Maschietto M, Brentani H. Putative contributions of the sex chromosome proteins SOX3 and SRY to neurodevelopmental disorders. Am J Med Genet B Neuropsychiatr Genet 2019; 180:390-414. [PMID: 30537354 PMCID: PMC6767407 DOI: 10.1002/ajmg.b.32704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
Abstract
The male-biased prevalence of certain neurodevelopmental disorders and the sex-biased outcomes associated with stress exposure during gestation have been previously described. Here, we hypothesized that genes distinctively targeted by only one or both homologous proteins highly conserved across therian mammals, SOX3 and SRY, could induce sexual adaptive changes that result in a differential risk for neurodevelopmental disorders. ChIP-seq/chip data showed that SOX3/SRY gene targets were expressed in different brain cell types in mice. We used orthologous human genes in rodent genomes to extend the number of SOX3/SRY set (1,721). These genes were later found to be enriched in five modules of coexpressed genes during the early and mid-gestation periods (FDR < 0.05), independent of sexual hormones. Genes with differential expression (24, p < 0.0001) and methylation (40, p < 0.047) between sexes were overrepresented in this set. Exclusive SOX3 or SRY target genes were more associated with the late gestational and postnatal periods. Using autism as a model sex-biased disorder, the SOX3/SRY set was enriched in autism gene databases (FDR ≤ 0.05), and there were more de novo variations from the male autism spectrum disorder (ASD) samples under the SRY peaks compared to the random peaks (p < 0.024). The comparison of coexpressed networks of SOX3/SRY target genes between male autism and control samples revealed low preservation in gene modules related to stress response (99 genes) and neurogenesis (78 genes). This study provides evidence that while SOX3 is a regulatory mechanism for both sexes, the male-exclusive SRY also plays a role in gene regulation, suggesting a potential mechanism for sex bias in ASD.
Collapse
Affiliation(s)
- Ana Carolina Tahira
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - André Rocha Barbosa
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Inter‐institutional Grad Program on BioinformaticsUniversity of São PauloSão PauloSPBrazil
| | | | - Vinicius Daguano Gastaldi
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Victor Hugo Calegari de Toledo
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | | | - Bianca Cristina Garcia Lisboa
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Viviane Neri de Souza Reis
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Ana Cecília Feio dos Santos
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Laboratório de Pesquisas Básicas em Malária – EntomologiaSeção de Parasitologia – Instituto Evandro Chagas/SVS/MSAnanindeuaPABrazil
| | - Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio)Brazilian Center for Research in Energy and Materials (CNPEM)CampinasSPBrazil
| | - Helena Brentani
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Inter‐institutional Grad Program on BioinformaticsUniversity of São PauloSão PauloSPBrazil
- Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSPBrazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD)Sao PauloSPBrazil
- Faculdade de Medicina FMUSPUniversidade de Sao PauloSao PauloSPBrazil
| |
Collapse
|