1
|
Summer M, Ali S, Fiaz U, Hussain T, Khan RRM, Fiaz H. Revealing the molecular mechanisms in wound healing and the effects of different physiological factors including diabetes, age, and stress. J Mol Histol 2024; 55:637-654. [PMID: 39120834 DOI: 10.1007/s10735-024-10223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Wounds are the common fates in various microbial infections and physical damages including accidents, surgery, and burns. In response, a healthy body with a potent immune system heals that particular site within optimal time by following the coagulation, inflammation, proliferation, and remodeling phenomenon. However, certain malfunctions in the body due to various diseases particularly diabetes and other physiological factors like age, stress, etc., prolong the process of wound healing through various mechanisms including the Akt, Polyol, and Hexosamine pathways. The current review thoroughly explains the wound types, normal wound healing mechanisms, and the immune system's role. Moreover, the mechanistic role of diabetes is also elaborated comprehensively.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan.
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan.
| | - Umaima Fiaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan
| | - Tauqeer Hussain
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan
| | | | - Hashim Fiaz
- Ammer-ud-Din Medical College, Lahore, 54000, Pakistan
| |
Collapse
|
2
|
Ghanbari M, Salkovskiy Y, Carlson MA. The rat as an animal model in chronic wound research: An update. Life Sci 2024; 351:122783. [PMID: 38848945 DOI: 10.1016/j.lfs.2024.122783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/29/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The increasing global prevalence of chronic wounds underscores the growing importance of developing effective animal models for their study. This review offers a critical evaluation of the strengths and limitations of rat models frequently employed in chronic wound research and proposes potential improvements. It explores these models in the context of key comorbidities, including diabetes, venous and arterial insufficiency, pressure-induced blood flow obstruction, and infections. Additionally, the review examines important wound factors including age, sex, smoking, and the impact of anesthetic and analgesic drugs, acknowledging their substantial effects on research outcomes. A thorough understanding of these variables is crucial for refining animal models and can provide valuable insights for future research endeavors.
Collapse
Affiliation(s)
- Mahboubeh Ghanbari
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.
| | - Yury Salkovskiy
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.
| | - Mark A Carlson
- Department of Surgery, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
3
|
Villalobos V, Silva I, Morales D, Canelo J, Garrido M, Carreño LJ, Cavalla F, Dutzan N, Caceres M. Topological insight of immune-vascular distribution in peri-implantitis lesions. Oral Dis 2024. [PMID: 38566281 DOI: 10.1111/odi.14935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/31/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE To characterize the distribution of macrophages, neutrophils, NK cells, and blood vessels in peri-implantitis compared to healthy aged gingiva samples. MATERIALS AND METHODS This observational study included eight gingival samples from peri-implantitis and eight from periodontally healthy individuals. By immunofluorescence were identified neutrophils, NK cells, macrophages, and their pro-inflammatory or pro-healing phenotypes, and blood vessels. Two ROIs were designated as zone 1, connective tissue closest to the epithelium and zone 2, connective tissue over 200 microns from the rete ridges. Immune cells and vascular structures were quantified and characterized according to their distribution in both zones. RESULTS Two peri-implantitis zones were characterized by unique macrophage phenotypes and blood vessel architecture. Blood vessels were larger in zone 2 in peri-implantitis. A greater number of NK cells and macrophages were found in peri-implantitis compared to healthy aged samples. A higher presence of pro-inflammatory macrophages was found in zone 1 compared to zone 2. A similar proportion of pro-inflammatory and pro-healing macrophages were found in zone 2. CONCLUSION A specific distribution for pro-inflammatory macrophages and vascular architecture is observed in peri-implantitis. TNF-α colocalizes with macrophages in the connective tissue near rete ridges. NK cells are more abundant in peri-implantitis than in healthy samples.
Collapse
Affiliation(s)
- Veronica Villalobos
- Program of Molecular and Cell Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Universidad de Chile, Santiago, Chile
| | - Ian Silva
- Program of Molecular and Cell Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Universidad de Chile, Santiago, Chile
| | - Diego Morales
- Program of Molecular and Cell Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Javiera Canelo
- Program of Molecular and Cell Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Mauricio Garrido
- Millennium Institute on Immunology and Immunotherapy (IMII), Universidad de Chile, Santiago, Chile
- Faculty of Dentistry, Department of Conservative Dentistry, Universidad de Chile, Santiago, Chile
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy (IMII), Universidad de Chile, Santiago, Chile
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Franco Cavalla
- Faculty of Dentistry, Department of Conservative Dentistry, Universidad de Chile, Santiago, Chile
- Faculty of Dentistry, Andres Bello University, Santiago, Chile
| | - Nicolas Dutzan
- Faculty of Dentistry, Department of Conservative Dentistry, Universidad de Chile, Santiago, Chile
| | - Monica Caceres
- Program of Molecular and Cell Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Universidad de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| |
Collapse
|
4
|
Yokoi H, Furukawa M, Wang J, Aoki Y, Raju R, Ikuyo Y, Yamada M, Shikama Y, Matsushita K. Erythritol Can Inhibit the Expression of Senescence Molecules in Mouse Gingival Tissues and Human Gingival Fibroblasts. Nutrients 2023; 15:4050. [PMID: 37764833 PMCID: PMC10537281 DOI: 10.3390/nu15184050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Oral aging causes conditions including periodontal disease. We investigated how the sugar alcohol erythritol, which has anti-caries effects, impacts aging periodontal tissues and gingival fibroblasts in mice and humans in vivo and in vitro. Mice were classified into three groups: control groups of six-week-old (YC) and eighteen-month-old mice (AC) and a group receiving 5% w/w erythritol water for 6 months (AE). After rearing, RNA was extracted from the gingiva, and the levels of aging-related molecules were measured using PCR. Immunostaining was performed for the aging markers p21, γH2AX, and NF-κB p65. p16, p21, γH2AX, IL-1β, and TNFα mRNA expression levels were higher in the gingiva of the AC group than in the YC group, while this enhanced expression was significantly suppressed in AE gingiva. NF-κB p65 expression was high in the AC group but was strongly suppressed in the AE group. We induced senescence in cultured human gingival fibroblasts using H2O2 and lipopolysaccharide before erythritol treatment, which reduced elevated senescence-related marker (p16, p21, SA-β-gal, IL-1β, and TNFα) expression levels. Knockdown of PFK or PGAM promoted p16 and p21 mRNA expression, but erythritol subsequently rescued pyruvate production. Overall, intraoral erythritol administration may prevent age-related oral mucosal diseases.
Collapse
Affiliation(s)
- Haruna Yokoi
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
- Department of Geriatric Oral Science, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Masae Furukawa
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
| | - Jingshu Wang
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
| | - Yu Aoki
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Tokyo 140-8710, Japan;
| | - Resmi Raju
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
| | - Yoriko Ikuyo
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
- Section of Community Oral Health and Epidemiology, Division of Oral Health, Technology and Epidemiology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Mitsuyoshi Yamada
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
- Department of Operative Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Yosuke Shikama
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
- Department of Geriatric Oral Science, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Kenji Matsushita
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (H.Y.); (J.W.); (R.R.); (Y.I.); (M.Y.); (Y.S.)
- Department of Geriatric Oral Science, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
- Section of Community Oral Health and Epidemiology, Division of Oral Health, Technology and Epidemiology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
5
|
Reyes A, Ortiz G, Duarte LF, Fernández C, Hernández-Armengol R, Palacios PA, Prado Y, Andrade CA, Rodriguez-Guilarte L, Kalergis AM, Simon F, Carreño LJ, Riedel CA, Cáceres M, González PA. Contribution of viral and bacterial infections to senescence and immunosenescence. Front Cell Infect Microbiol 2023; 13:1229098. [PMID: 37753486 PMCID: PMC10518457 DOI: 10.3389/fcimb.2023.1229098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Cellular senescence is a key biological process characterized by irreversible cell cycle arrest. The accumulation of senescent cells creates a pro-inflammatory environment that can negatively affect tissue functions and may promote the development of aging-related diseases. Typical biomarkers related to senescence include senescence-associated β-galactosidase activity, histone H2A.X phosphorylation at serine139 (γH2A.X), and senescence-associated heterochromatin foci (SAHF) with heterochromatin protein 1γ (HP-1γ protein) Moreover, immune cells undergoing senescence, which is known as immunosenescence, can affect innate and adaptative immune functions and may elicit detrimental effects over the host's susceptibility to infectious diseases. Although associations between senescence and pathogens have been reported, clear links between both, and the related molecular mechanisms involved remain to be determined. Furthermore, it remains to be determined whether infections effectively induce senescence, the impact of senescence and immunosenescence over infections, or if both events coincidently share common molecular markers, such as γH2A.X and p53. Here, we review and discuss the most recent reports that describe cellular hallmarks and biomarkers related to senescence in immune and non-immune cells in the context of infections, seeking to better understand their relationships. Related literature was searched in Pubmed and Google Scholar databases with search terms related to the sections and subsections of this review.
Collapse
Affiliation(s)
- Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gerardo Ortiz
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Christian Fernández
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Rosario Hernández-Armengol
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Yolanda Prado
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Catalina A. Andrade
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodriguez-Guilarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Mónica Cáceres
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Capparè P, Tetè G, D'Orto B, Nagni M, Gherlone EF. Immediate Loaded Full-Arch Mandibular Rehabilitations in Younger vs. Elderly Patients: A Comparative Retrospective Study with 7-Year Follow-Up. J Clin Med 2023; 12:4524. [PMID: 37445559 DOI: 10.3390/jcm12134524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/14/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this comparative retrospective clinical study was to assess the effect of age on immediate loaded full-arch mandibular rehabilitation in younger vs. elderly patients. Patients with an age between 45 and 60 years (younger group, YG) or with an age more or equal to 75 years (older group, OG), requiring a mandibular full-arch rehabilitation were scheduled for the present study. Implant and prosthetic failure, biological and prosthetic complications, and peri-implant marginal bone level changes were recorded until a 7-year follow-up. Sixty-six patients were included in the study; a total of 264 implants were placed and, in total, 66 "all-on-four" rehabilitations were delivered. In total, 33 patients were scheduled in the YG and 33 patients in the OG. At the 7-year follow-up, an overall implant failure rate of 1.14% was reported. Moreover, at the 7-year radiographic evaluation, peri-implant crestal bone loss averaged 1.12 ± 0.91 mm for the YG and 1.04 ± 1.01 mm for the OG. No statistically significant differences were found between the YG and OG except for the rate of peri-implantitis, which was statistically higher in the YG. The present study reported that immediate fixed mandibular full-arch rehabilitation is a viable procedure in elderly people of equal or more than 75 years of age.
Collapse
Affiliation(s)
- Paolo Capparè
- Dental School, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Dentistry, IRCCS San Raffaele Hospital, 00163 Milan, Italy
| | - Giulia Tetè
- Dental School, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Dentistry, IRCCS San Raffaele Hospital, 00163 Milan, Italy
| | - Bianca D'Orto
- Dental School, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Dentistry, IRCCS San Raffaele Hospital, 00163 Milan, Italy
| | - Matteo Nagni
- Dental School, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Dentistry, IRCCS San Raffaele Hospital, 00163 Milan, Italy
| | - Enrico Felice Gherlone
- Dental School, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Dentistry, IRCCS San Raffaele Hospital, 00163 Milan, Italy
| |
Collapse
|
7
|
Villalobos V, Garrido M, Reyes A, Fernández C, Diaz C, Torres VA, González PA, Cáceres M. Aging envisage imbalance of the periodontium: A keystone in oral disease and systemic health. Front Immunol 2022; 13:1044334. [PMID: 36341447 PMCID: PMC9630574 DOI: 10.3389/fimmu.2022.1044334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/05/2022] [Indexed: 10/21/2023] Open
Abstract
Aging is a gradual and progressive deterioration of integrity across multiple organ systems that negatively affects gingival wound healing. The cellular responses associated with wound healing, such as collagen synthesis, cell migration, proliferation, and collagen contraction, have been shown to be lower in gingival fibroblasts (the most abundant cells from the connective gingival tissue) in aged donors than young donors. Cellular senescence is one of the hallmarks of aging, which is characterized by the acquisition of a senescence-associated secretory phenotype that is characterized by the release of pro-inflammatory cytokines, chemokines, growth factors, and proteases which have been implicated in the recruitment of immune cells such as neutrophils, T cells and monocytes. Moreover, during aging, macrophages show altered acquisition of functional phenotypes in response to the tissue microenvironment. Thus, inflammatory and resolution macrophage-mediated processes are impaired, impacting the progression of periodontal disease. Interestingly, salivary antimicrobial peptides, such as histatins, which are involved in various functions, such as antifungal, bactericidal, enamel-protecting, angiogenesis, and re-epithelization, have been shown to fluctuate with aging. Several studies have associated the presence of Porphyromonas gingivalis, a key pathogen related to periodontitis and apical periodontitis, with the progression of Alzheimer's disease, as well as gut, esophageal, and gastric cancers. Moreover, herpes simplex virus types 1 and 2 have been associated with the severity of periodontal disease, cardiovascular complications, and nervous system-related pathologies. This review encompasses the effects of aging on periodontal tissues, how P. gingivalis and HSV infections could favor periodontitis and their relationship with other pathologies.
Collapse
Affiliation(s)
- Verónica Villalobos
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mauricio Garrido
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian Fernández
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Catalina Diaz
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Vicente A. Torres
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica Cáceres
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Niinikoski I, Kouki S, Koho N, Aromaa M, Holopainen S, Laurila HP, Fastrès A, Clercx C, Lilja-Maula L, Rajamäki MM. Evaluation of VEGF-A and CCL2 in dogs with brachycephalic obstructive airway syndrome or canine idiopathic pulmonary fibrosis and in normocephalic dogs. Res Vet Sci 2022; 152:557-563. [PMID: 36183612 DOI: 10.1016/j.rvsc.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022]
Abstract
Brachycephalic obstructive airway syndrome (BOAS) and canine idiopathic pulmonary fibrosis (CIPF) of West Highland White Terriers (WHWTs) often cause intermittent or chronic hypoxemia. Our objective was to evaluate serum and bronchoalveolar lavage fluid (BALF) concentrations of hypoxemia-related proinflammatory mediators vascular endothelial growth factor A (VEGF-A) and chemokine (CC motif) ligand 2 (CCL2) in brachycephalic dogs (BDs) and WHWTs with and without CIPF. Additionally, effects of BOAS severity and ageing on these mediators were assessed. 114 BDs (28 English Bulldogs (EBs), 37 French Bulldogs, 49 Pugs), 16 WHWTs with CIPF, 26 healthy WHWTs, and 39 normocephalic control dogs were included. Fifty-four BDs were re-examined after two to three years. Bead-based immunoassay was used for proinflammatory mediator measurements. Compared with controls, significantly higher serum concentrations of VEGF-A were seen in EBs (P = 0.009) and of CCL2 in CIPF and healthy WHWTs (P < 0.001; P = 0.002). BALF samples were available from controls, EBs, and WHWTs. VEGF-A was significantly lower in EBs (P < 0.001) and in CIPF and healthy WHWTs (P = 0.006; P = 0.007) and CCL2 was higher in CIPF WHWTs (P = 0.01) compared with controls. Between visits, only serum VEGF-A significantly decreased in BDs (P < 0.001), but breed, BOAS severity, or its change had no significant effect. In conclusion, in EBs with BOAS proinflammatory changes in VEGF-A were detected in both serum and BALF. Ageing reduced serum VEGF-A in BDs. In WHWTs, our results confirmed earlier findings of CCL2 as an important biomarker for CIPF.
Collapse
Affiliation(s)
- I Niinikoski
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland.
| | - S Kouki
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland
| | - N Koho
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland
| | - M Aromaa
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland
| | - S Holopainen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland
| | - H P Laurila
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland
| | - A Fastrès
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Bd de Colonster 1, 4000 Liège, Belgium
| | - C Clercx
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Bd de Colonster 1, 4000 Liège, Belgium
| | - L Lilja-Maula
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland
| | - M M Rajamäki
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland
| |
Collapse
|
9
|
Lázničková P, Bendíčková K, Kepák T, Frič J. Immunosenescence in Childhood Cancer Survivors and in Elderly: A Comparison and Implication for Risk Stratification. FRONTIERS IN AGING 2022; 2:708788. [PMID: 35822014 PMCID: PMC9261368 DOI: 10.3389/fragi.2021.708788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
The population of childhood cancer survivors (CCS) has grown rapidly in recent decades. Although cured of their original malignancy, these individuals are at increased risk of serious late effects, including age-associated complications. An impaired immune system has been linked to the emergence of these conditions in the elderly and CCS, likely due to senescent immune cell phenotypes accompanied by low-grade inflammation, which in the elderly is known as "inflammaging." Whether these observations in the elderly and CCS are underpinned by similar mechanisms is unclear. If so, existing knowledge on immunosenescent phenotypes and inflammaging might potentially serve to benefit CCS. We summarize recent findings on the immune changes in CCS and the elderly, and highlight the similarities and identify areas for future research. Improving our understanding of the underlying mechanisms and immunosenescent markers of accelerated immune aging might help us to identify individuals at increased risk of serious health complications.
Collapse
Affiliation(s)
- Petra Lázničková
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kamila Bendíčková
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Tomáš Kepák
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Pediatric Oncology, University Hospital Brno, Brno, Czech Republic
| | - Jan Frič
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
10
|
Maldonado F, Morales D, Díaz-Papapietro C, Valdés C, Fernandez C, Valls N, Lazo M, Espinoza C, González R, Gutiérrez R, Jara Á, Romero C, Cerda O, Cáceres M. Relationship Between Endothelial and Angiogenesis Biomarkers Envisage Mortality in a Prospective Cohort of COVID-19 Patients Requiring Respiratory Support. Front Med (Lausanne) 2022; 9:826218. [PMID: 35372407 PMCID: PMC8966493 DOI: 10.3389/fmed.2022.826218] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose Endothelial damage and angiogenesis are fundamental elements of neovascularisation and fibrosis observed in patients with coronavirus disease 2019 (COVID-19). Here, we aimed to evaluate whether early endothelial and angiogenic biomarkers detection predicts mortality and major cardiovascular events in patients with COVID-19 requiring respiratory support. Methods Changes in serum syndecan-1, thrombomodulin, and angiogenic factor concentrations were analysed during the first 24 h and 10 days after COVID-19 hospitalisation in patients with high-flow nasal oxygen or mechanical ventilation. Also, we performed an exploratory evaluation of the endothelial migration process induced by COVID-19 in the patients' serum using an endothelial cell culture model. Results In 43 patients, mean syndecan-1 concentration was 40.96 ± 106.9 ng/mL with a 33.9% increase (49.96 ± 58.1 ng/mL) at day 10. Both increases were significant compared to healthy controls (Kruskal–Wallis p < 0.0001). We observed an increase in thrombomodulin, Angiopoietin-2, human vascular endothelial growth factor (VEGF), and human hepatocyte growth factor (HGF) concentrations during the first 24 h, with a decrease in human tissue inhibitor of metalloproteinases-2 (TIMP-2) that remained after 10 days. An increase in human Interleukin-8 (IL-8) on the 10th day accompanied by high HGF was also noted. The incidence of myocardial injury and pulmonary thromboembolism was 55.8 and 20%, respectively. The incidence of in-hospital deaths was 16.3%. Biomarkers showed differences in severity of COVID-19. Syndecan-1, human platelet-derived growth factor (PDGF), VEGF, and Ang-2 predicted mortality. A multiple logistic regression model with TIMP-2 and PDGF had positive and negative predictive powers of 80.9 and 70%, respectively, for mortality. None of the biomarkers predicted myocardial injury or pulmonary thromboembolism. A proteome profiler array found changes in concentration in a large number of biomarkers of angiogenesis and chemoattractants. Finally, the serum samples from COVID-19 patients increased cell migration compared to that from healthy individuals. Conclusion We observed that early endothelial and angiogenic biomarkers predicted mortality in patients with COVID-19. Chemoattractants from patients with COVID-19 increase the migration of endothelial cells. Trials are needed for confirmation, as this poses a therapeutic target for SARS-CoV-2.
Collapse
Affiliation(s)
- Felipe Maldonado
- Department of Anaesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Diego Morales
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Catalina Díaz-Papapietro
- Department of Anaesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Catalina Valdés
- Department of Anaesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Christian Fernandez
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Nicolas Valls
- Department of Anaesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Marioli Lazo
- Critical Care Unit, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Carolina Espinoza
- Emergency Department, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Roberto González
- Department of Anaesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Rodrigo Gutiérrez
- Department of Anaesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile.,Centro de Investigación Clínica Avanzada, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Álvaro Jara
- Department of Anaesthesia and Perioperative Medicine, Faculty of Medicine, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Carlos Romero
- Critical Care Unit, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile
| | - Mónica Cáceres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
11
|
Age- and Sex-Adjusted Reference Intervals in Tear Cytokine Levels in Healthy Subjects. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11198958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alterations in tear cytokine levels have been associated with various ocular disorders as compared to those in healthy subjects. However, age and sex are not always considered in these comparisons. In this study we aimed to establish age and sex reference intervals (RIs) for tear cytokine levels in healthy people. Tear samples were taken from 75 males and 82 females, aged 18–88 years, and tear cytokine levels were determined. Age- and sex-adjusted RIs for epidermal growth factor (EGF), fractalkine, interleukin (IL)-1 receptor antagonist (RA), IL-7, IL-8, interferon inducible protein (IP)-10, monocyte chemotactic protein (MCP)-1, and vascular endothelial growth factor (VEGF) tear cytokine levels in a healthy sample were established using generalized additive for location, scale and shape (GAMLSS) models. RIs were tested in two external samples: a validation sample of 40 individuals with normal results at four Dry Eye Disease (DED) clinical diagnostic tests (OSDI, T-BUT, corneal staining and Schirmer test); and a utility sample of 13 severe DED cases. IL-1RA, IL-8, IP-10, and MCP-1 levels showed a positive association with age, while EGF was negatively correlated. IL-7 concentration increased up to 40 years and again after 70 years, observing a quasi-linear decrease between them. For VEGF, higher levels were observed in the middle-aged range. Regarding sex-influence, fractalkine tear levels were higher in men, whereas those of IL-7, IL-8, and IP-10 were higher in women. Using the estimated age- and sex-adjusted RIs, more than 92% of the validation sample was correctly classified, and 100% of the severe DED patients in the utility sample had concentrations outside the RIs in at least two of the cytokines evaluated.
Collapse
|
12
|
Fernandez C, Burgos A, Morales D, Rosales-Rojas R, Canelo J, Vergara-Jaque A, Vieira GV, da Silva RAA, Sales KU, Conboy MJ, Bae EJ, Park KS, Torres VA, Garrido M, Cerda O, Conboy IM, Cáceres M. TMPRSS11a is a novel age-altered, tissue specific regulator of migration and wound healing. FASEB J 2021; 35:e21597. [PMID: 33908663 DOI: 10.1096/fj.202002253rrr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 01/11/2023]
Abstract
Aging is a gradual biological process characterized by a decrease in cellular and organism functions. Aging-related processes involve changes in the expression and activity of several proteins. Here, we identified the transmembrane protease serine 11a (TMPRSS11a) as a new age-specific protein that plays an important role in skin wound healing. TMPRSS11a levels increased with age in rodent and human skin and gingival samples. Strikingly, overexpression of TMPRSS11a decreased cell migration and spreading, and inducing cellular senescence. Mass spectrometry, bioinformatics, and functional analyses revealed that TMPRSS11a interacts with integrin β1 through an RGD sequence contained within the C-terminal domain and that this motif was relevant for cell migration. Moreover, TMPRSS11a was associated with cellular senescence, as shown by overexpression and downregulation experiments. In agreement with tissue-specific expression of TMPRSS11a, shRNA-mediated downregulation of this protein improved wound healing in the skin, but not in the skeletal muscle of old mice, where TMPRSS11a is undetectable. Collectively, these findings indicate that TMPRSS11a is a tissue-specific factor relevant for wound healing, which becomes elevated with aging, promoting cellular senescence and inhibiting cell migration and skin repair.
Collapse
Affiliation(s)
- Christian Fernandez
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andres Burgos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Diego Morales
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Roberto Rosales-Rojas
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile
| | - Javiera Canelo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ariela Vergara-Jaque
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Gabriel Viliod Vieira
- Departament of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Katiuchia Uzzun Sales
- Departament of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Michael J Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, USA
| | - Eun Ji Bae
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Kang-Sik Park
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Vicente A Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Mauricio Garrido
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Santiago, Chile
| | - Irina M Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, USA
| | - Mónica Cáceres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|
13
|
Garrido M, Morales D, Saldías MP, Fernández C, Villalobos V, Cerda O, Cáceres M. Cellular response of human apical papilla cells to calcium hydroxide and tricalcium silicate-based cements. BMC Oral Health 2021; 21:106. [PMID: 33750358 PMCID: PMC7941877 DOI: 10.1186/s12903-021-01467-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/24/2021] [Indexed: 01/09/2023] Open
Abstract
Background This study aimed to evaluate the biological response of human apical papilla cells to different calcium hydroxide formulations and three tricalcium silicate-based materials. Methods Primary cells were obtained from explants of young immature premolars. 20,000 cells adhered for 24 h over discs of Biodentine™, ProRoot®MTA, BioRoot®RCS and calcium hydroxide mixed either with sodium chloride 0.9%w/v or polyethylene glycol and UltraCal® were used to evaluate cell adhesion by scanning electron microscopy and cell viability by MTT assay. Results Cells adhered to ProRoot®MTA showed an increase of F-actin like protrusions, suggesting bioactivity. Cells adhered to UltraCal® show protrusion such as filopodia. On the contrary, cells adhered to BioRoot®RCS showed no signs of any cellular protrusion. Regarding viability between the materials, we found a higher percentage of viability in cells cultured over discs of Biodentine™ and ProRoot®MTA. Conclusion ProRoot®MTA and Biodentine™ exhibit a better cellular response of human apical papilla cells in vitro conditions compared to BioRoot® and calcium hydroxide diluted in sodium chloride.
Collapse
Affiliation(s)
- Mauricio Garrido
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Diego Morales
- Program of Molecular and Cell Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millenium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Paz Saldías
- Program of Molecular and Cell Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millenium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Christian Fernández
- Program of Molecular and Cell Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millenium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Veronica Villalobos
- Program of Molecular and Cell Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millenium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Oscar Cerda
- Program of Molecular and Cell Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millenium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mónica Cáceres
- Program of Molecular and Cell Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile. .,Millenium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile. .,Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
14
|
Vergara-Llanos D, Koning T, Pavicic MF, Bello-Toledo H, Díaz-Gómez A, Jaramillo A, Melendrez-Castro M, Ehrenfeld P, Sánchez-Sanhueza G. Antibacterial and cytotoxic evaluation of copper and zinc oxide nanoparticles as a potential disinfectant material of connections in implant provisional abutments: An in-vitro study. Arch Oral Biol 2021; 122:105031. [PMID: 33412420 DOI: 10.1016/j.archoralbio.2020.105031] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/09/2023]
Abstract
OBJECTIVE This study evaluates the antibacterial activity against mono and multispecies bacterial models and the cytotoxic effects of zinc oxide and copper nanoparticles(ZnO-NPs/Cu-NPs) in cell cultures of human gingival fibroblasts(HGFs). DESIGN The antibacterial activities of ZnO-NPs and Cu-NPs against 4 bacteria species were tested according to their minimum inhibitory concentrations(MICs) and against mature multispecies anaerobic model by spectral confocal laser scanning microscopy. The viabilities and cytotoxic effects of ZnO-NPs and Cu-NPs to HGFs cell cultures were tested by MTT, LDH assays, production of ROS, and the activation of caspase-3. The results were analyzed using one-way ANOVA followed by Tukey tests, considering p < 0.05 as statistically significant. RESULTS For all strains, MICs of ZnO-NPs and Cu-NPs were in the range of 78.3 μg/mL-3906 μg/mL and 125 μg/mL-625 ug/mL, respectively. In a multispecies model, a significant decrease in the total biomass volume(μ3) was observed in response to exposure to 125 μg/mL of each NPs for which there was bactericidal activity. Significant differences were found between the volumes of viable and nonviable biomass exposed to nanostructures with Cu-NPs compared to ZnO-NPs. Both NPs induced mitochondrial dose-dependent cytotoxicity, ZnO-NPs increases LDH release and intracellular ROS generation. Cu-NPs at a concentration of 50 μg/mL induced production of cleaved caspase-3, activating the apoptotic pathway early and at low doses. CONCLUSIONS After 24 h, ZnO-NPs are biocompatible between 78-100 μg/mL and Cu-NPs below 50 μg/mL. Antibacterial activity in a monospecies model is strain dependent, and in a multispecies model was a lower doses after 10 min of exposure.
Collapse
Affiliation(s)
- Diego Vergara-Llanos
- Implantology & Rehabilitation Program, Department of Restorative Dentistry, Faculty of Dentistry, Universidad de Concepción, Chile; Dentist Specialist in Implantology, Department of Dentistry, Health Service of Valdivia, Chile
| | - Tania Koning
- Institute of Inmunology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Maria Francisca Pavicic
- Institute of Anatomy, Histology and Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Helia Bello-Toledo
- Department of Microbiology, Faculty of Biological Science, Universidad de Concepción, Concepción, Chile; Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Andrés Díaz-Gómez
- Advanced Nanocomposites Research Group (GINA), Hybrid Materials Laboratory (HML), Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, Chile
| | - Andrés Jaramillo
- Department of Mechanical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Manuel Melendrez-Castro
- Advanced Nanocomposites Research Group (GINA), Hybrid Materials Laboratory (HML), Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, Chile
| | - Pamela Ehrenfeld
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile; Institute of Anatomy, Histology and Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.
| | | |
Collapse
|
15
|
Johnson BZ, Stevenson AW, Prêle CM, Fear MW, Wood FM. The Role of IL-6 in Skin Fibrosis and Cutaneous Wound Healing. Biomedicines 2020; 8:biomedicines8050101. [PMID: 32365896 PMCID: PMC7277690 DOI: 10.3390/biomedicines8050101] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
The timely resolution of wound healing is critical for restoring the skin as a protective barrier. The switch from a proinflammatory to a reparative microenvironment must be tightly regulated. Interleukin (IL)-6 is a key modulator of the inflammatory and reparative process: it is involved in the differentiation, activation, and proliferation of leukocytes, endothelial cells, keratinocytes, and fibroblasts. This review examines the role of IL-6 in the healing of cutaneous wounds, and how dysregulation of IL-6 signaling can lead to either fibrosis or a failure to heal. The role of an IL-6/TGF-β feedback loop is discussed in the context of fibrogenesis, while IL-6 expression and responses in advanced age, diabetes, and obesity is outlined regarding the development of chronic wounds. Current research on therapies that modulate IL-6 is explored. Here, we consider IL-6′s diverse impact on cutaneous wound healing.
Collapse
Affiliation(s)
- Blair Z. Johnson
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (A.W.S.); (C.M.P.); (M.W.F.); (F.M.W.)
- Correspondence:
| | - Andrew W. Stevenson
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (A.W.S.); (C.M.P.); (M.W.F.); (F.M.W.)
| | - Cecilia M. Prêle
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (A.W.S.); (C.M.P.); (M.W.F.); (F.M.W.)
- Institute for Respiratory Health, University of Western Australia, Crawley, WA 6009, Australia
| | - Mark W. Fear
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (A.W.S.); (C.M.P.); (M.W.F.); (F.M.W.)
| | - Fiona M. Wood
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (A.W.S.); (C.M.P.); (M.W.F.); (F.M.W.)
- WA Department of Health, 189 Royal St, East Perth, WA 6004, Australia
| |
Collapse
|
16
|
Kang Y, Yang R, Wei Z, Zhu D, Tang T, Zhu L, Hu X, Zha G. Phenytoin sodium-ameliorated gingival fibroblast aging is associated with autophagy. J Periodontal Res 2020; 55:642-650. [PMID: 32281104 DOI: 10.1111/jre.12750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/01/2020] [Accepted: 03/15/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Human gingival fibrolasts aging is an important cause of periodontal disease. Phenytoin sodium (phenytoin) has a side effect of gingival hyperplasia and an effect on the autophagy progress. This study investigated whether the effect of phenytoin on aging gingival fibroblast is related to the autophagy pathway. MATERIAL AND METHODS The aging model of gingival fibroblast cell line HGF-1 was induced by hydrogen peroxide (H2 O2 ), and the treatment of phenytoin and 3-methyladenine (3-MA) was performed simultaneously. Cell viability, cell cycle, and intracellular calcium ion were measured by flow cytometry. Changes in expression of basic fibroblast growth factor (bFGF), P16INK4A , P21cip1 , and bFGF, P16INK4A , P21cip1 , LC3II, p62, and Beclin were tested by using reverse transcription polymerase chain reaction, western blot, and immunofluorescence staining. RESULTS The results showed that aging HGF-1 proliferation was inhibited by H2 O2 , gene, protein expression of bFGF, P16INK4A , and P21cip1 were decreased, autophagy-related proteins LC3II, p62, and Becline were decreased, and the proportion of G0/G1 phase and intracellular calcium ion of cell cycle was increased. Phenytoin treatment could recovery above changes, but the effect of phenytoin could be blocked by 3-MA. CONCLUSION We propose that phenytoin alleviates the aging of gingival fibroblasts induced by H2 O2 . This condition is related to the enhancement of autophagy pathway.
Collapse
Affiliation(s)
- Yi Kang
- Laboratory of Stomatology, First-class Subjects of Zhejiang Province, College of Medicine and Health, Lishui University, Lishui, China
| | - Ruhui Yang
- Laboratory of Stomatology, First-class Subjects of Zhejiang Province, College of Medicine and Health, Lishui University, Lishui, China.,Department of Pharmacology, College of Medicine and Health, Lishui University, Lishui, China
| | - Zhe Wei
- Department of Pharmacology, College of Medicine and Health, Lishui University, Lishui, China
| | - Daqun Zhu
- Laboratory of Stomatology, First-class Subjects of Zhejiang Province, College of Medicine and Health, Lishui University, Lishui, China
| | - Tingbing Tang
- Department of Anatomy, College of Medicine and Health, Lishui University, Lishui, China
| | - Licheng Zhu
- Department of Pharmacology, College of Medicine and Health, Lishui University, Lishui, China
| | - Xiaoxia Hu
- Department of Pharmacology, College of Medicine and Health, Lishui University, Lishui, China
| | - Guangyu Zha
- Laboratory of Stomatology, First-class Subjects of Zhejiang Province, College of Medicine and Health, Lishui University, Lishui, China
| |
Collapse
|
17
|
Liu X, Zhang F, Chai Y, Wang L, Yu B. The role of bone-derived PDGF-AA in age-related pancreatic β cell proliferation and function. Biochem Biophys Res Commun 2020; 524:22-27. [DOI: 10.1016/j.bbrc.2019.12.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 12/12/2019] [Indexed: 12/25/2022]
|
18
|
Maldonado F, Fábregas N, Aldecoa I, González J, García M, Belda I, Hurtado P, Gracia I, de Riva N, Tercero J, Carrero E, Valero R. Association between pre-operative serum lactate concentrate with tumour cell proliferative index in primary brain tumour. J Neurosurg Sci 2019; 66:91-95. [PMID: 31565905 DOI: 10.23736/s0390-5616.19.04715-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Elevated preoperative lactate levels have been reported in patients admitted for resection of brain tumors. As histologic type and tumor grade have also been linked to lactate concentration, we hypothesized that preoperative lactate concentration in patients with brain tumors may be associated with tumor proliferation. We describe the relationship between preoperative plasma lactate levels, and the cell proliferation marker Ki-67 in brain tumor surgery. METHODS In this cross-sectional study, records of patients who underwent craniotomy between June 2017 and February 2018 at our Hospital were reviewed to select glioma and meningioma cases in which lactate concentrations in plasma and degree of cell proliferation were registered. Bivariable and linear regression analyses were used to assess the association between lactate concentrations and the Ki-67 index. RESULTS Lactate concentrations in plasma and Ki-67 index were available in 55 patients. Meningioma cases had a mean concentration of 1.2 (0.1) mmol/L compared to diffuse astrocytic and oligodendroglial tumours cases with 1.7 (0.1) mmol/L (p<.01). Both variables had a low positive correlation in meningiomas (Spearman's r, 0.29; 95% CI, -0.10-0.61; p=.13) and a high correlation in gliomas (Spearman's r, 0.64; 95% CI, 0.33-0.82; p<.01). The pooled analysis showed a high correlation index (Spearman's r, 0.61; 95% CI, 0.40-0.76; p<.01). A linear regression model showed that the Ki-67 index explained 43% of the variation in lactate (p<.01). CONCLUSIONS Brain tumors with higher rates of cell proliferation have higher plasma lactate levels. In this scenario, lactate concentrations may not only reflect systemic perfusion.
Collapse
Affiliation(s)
- Felipe Maldonado
- Department of Anaesthesiology and Perioperative Medicine, Faculty of Medicine, Hospital Clínico Universidad de Chile, University of Chile, Santiago, Chile
| | - Neus Fábregas
- Department of Anaesthesiology, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Iban Aldecoa
- Department of Pathology-Brain Bank, Hospital Clinic de Barcelona-CDB-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Josep González
- Department of Neurosurgery, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Marta García
- Department of Anaesthesiology, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Isabel Belda
- Department of Anaesthesiology, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Paola Hurtado
- Department of Anaesthesiology, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Isabel Gracia
- Department of Anaesthesiology, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Nicolás de Riva
- Department of Anaesthesiology, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Javier Tercero
- Department of Anaesthesiology, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Enrique Carrero
- Department of Anaesthesiology, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Ricard Valero
- Department of Anaesthesiology, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain -
| |
Collapse
|
19
|
The Analysis of In Vivo Aging in Human Bone Marrow Mesenchymal Stromal Cells Using Colony-Forming Unit-Fibroblast Assay and the CD45 lowCD271 + Phenotype. Stem Cells Int 2019; 2019:5197983. [PMID: 31467563 PMCID: PMC6701348 DOI: 10.1155/2019/5197983] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/28/2019] [Accepted: 07/14/2019] [Indexed: 12/13/2022] Open
Abstract
Uncultured mesenchymal stromal cells (MSCs) are increasingly used in therapies; however, the effects of donor age on their biological characteristics and gene expression remain unclear. The aim of this study was to investigate age-related changes in bone marrow (BM) MSCs following minimal or no culture manipulation. Iliac crest BM was aspirated from 67 healthy donors (19-89 years old) and directly used for the colony-forming unit-fibroblast (CFU-F) assay or CD45lowCD271+ cell enumeration. The colonies were analysed for colony area and integrated density (ID) when grown in standard MSC media or media supplemented with human serum from young (YS) or old (OS) donors. There was a notable age-related decline in the number of MSCs per millilitre of BM aspirate revealed by the CFU-F assay (r = −0.527, p < 0.0001) or flow cytometry (r = −0.307, p = 0.0116). Compared to young donors (19-40 years old), colony IDs were significantly lower in older donors (61-89 years old), particularly for smaller-sized colonies (42% lower, p < 0.01). When cultured in media supplemented with OS, young and old donor MSCs formed colonies with lower IDs, by 21%, p < 0.0001, and 27%, p < 0.05, respectively, indicating the formation of smaller sparser colonies. No significant differences in the expression of selected adipogenic, osteogenic, stromal, and bone remodelling genes as well as CD295, CD146, CD106, and connexin 43 surface molecules were found in sorted CD45lowCD271+ MSCs from young and old donors (n = 8 donors each). Altogether, these results show similar trends for age-related decline in BM MSC numbers measured by the CFU-F assay and flow cytometry and reveal age-related effects of human serum on MSC colony formation. No significant differences in selected gene expression in uncultured CD45lowCD271+ MSCs suggest that old donor MSCs may not be inferior in regard to their multipotential functions. Due to large donor-to-donor variation in all donor groups, our data indicate that an individual's chronological age is not a reliable predictor of their MSC number or potency.
Collapse
|
20
|
Correction: Aged blood factors decrease cellular responses associated with delayed gingival wound repair. PLoS One 2018; 13:e0189566. [PMID: 29360864 PMCID: PMC5779646 DOI: 10.1371/journal.pone.0189566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0184189.].
Collapse
|