1
|
Kayahan M. Can Skin Sparing Mastectomy and Immediate Submuscular Implant-Based Reconstruction Be a Better Choice in Treatment of Early-Stage Breast Cancer? Eur J Breast Health 2022; 18:55-62. [DOI: 10.4274/ejbh.galenos.2021.2021-6-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/05/2021] [Indexed: 12/01/2022]
|
2
|
Shallis RM, Weiss JJ, Deziel NC, Gore SD. Challenging the concept of de novo acute myeloid leukemia: Environmental and occupational leukemogens hiding in our midst. Blood Rev 2020; 47:100760. [PMID: 32988660 DOI: 10.1016/j.blre.2020.100760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/28/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022]
Abstract
Myeloid neoplasms like acute myeloid leukemia (AML) originate from genomic disruption, usually in a multi-step fashion. Hematopoietic stem/progenitor cell acquisition of abnormalities in vital cellular processes, when coupled with intrinsic factors such as germline predisposition or extrinsic factors such as the marrow microenvironment or environmental agents, can lead to requisite pre-leukemic clonal selection, expansion and evolution. Several of these entities have been invoked as "leukemogens." The known leukemogens are numerous and are found in the therapeutic, occupational and ambient environments, however they are often difficult to implicate for individual patients. Patients treated with particular chemotherapeutic agents or radiotherapy accept a calculated risk of therapy-related AML. Occupational exposures to benzene, dioxins, formaldehyde, electromagnetic and particle radiation have been associated with an increased risk of AML. Although regulatory agencies have established acceptable exposure limits in the workplace, accidental exposures and even ambient exposures to leukemogens are possible. It is plausible that inescapable exposure to non-anthropogenic ambient leukemogens may be responsible for many cases of non-inherited de novo AML. In this review, we discuss the current understanding of leukemogens as they relate to AML, assess to what extent the term "de novo" leukemia is meaningful, and describe the potential to identify and characterize new leukemogens.
Collapse
Affiliation(s)
- Rory M Shallis
- Section of Hematology, Department of Medicine, Yale University School of Medicine, New Haven, USA.
| | - Julian J Weiss
- Section of Hematology, Department of Medicine, Yale University School of Medicine, New Haven, USA
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Steven D Gore
- Section of Hematology, Department of Medicine, Yale University School of Medicine, New Haven, USA
| |
Collapse
|
3
|
Park SJ, Bejar R. Clonal hematopoiesis in cancer. Exp Hematol 2020; 83:105-112. [PMID: 32044376 DOI: 10.1016/j.exphem.2020.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 12/16/2022]
Abstract
Clonal hematopoiesis is a common premalignant condition defined by the abnormal expansion of clonally derived hematopoietic stem cells carrying somatic mutations in leukemia-associated genes. Apart from increasing age, this phenomenon occurs with higher frequency in individuals with lymphoid or solid tumors and is associated with exposures to genotoxic stress. Clonal hematopoiesis in this context confers a greater risk for developing therapy-related myeloid neoplasms and appears to contribute to adverse cancer-related survival through a variety of potential mechanisms. These include alterations of the bone marrow microenvironment, inflammatory changes in clonal effector cells and modulation of immune responses. Understanding how clonal hematopoiesis drives therapy-related myeloid neoplasm initiation and interactions with non-myeloid malignancies will inform screening and surveillance approaches and suggest targeted therapies in this vulnerable population. Here, we examine the clinical implications of clonal hematopoiesis in the cancer setting and discuss potential strategies to mitigate the adverse consequences of clonal expansion.
Collapse
Affiliation(s)
- Soo J Park
- Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Rafael Bejar
- Moores Cancer Center, University of California San Diego, La Jolla, CA.
| |
Collapse
|
4
|
Shallis RM, Wang R, Davidoff A, Ma X, Zeidan AM. Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges. Blood Rev 2019; 36:70-87. [PMID: 31101526 DOI: 10.1016/j.blre.2019.04.005] [Citation(s) in RCA: 446] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/06/2019] [Accepted: 04/26/2019] [Indexed: 01/08/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant disorder of the bone marrow which is characterized by the clonal expansion and differentiation arrest of myeloid progenitor cells. The age-adjusted incidence of AML is 4.3 per 100,000 annually in the United States (US). Incidence increases with age with a median age at diagnosis of 68 years in the US. The etiology of AML is heterogeneous. In some patients, prior exposure to therapeutic, occupational or environmental DNA-damaging agents is implicated, but most cases of AML remain without a clear etiology. AML is the most common form of acute leukemia in adults and has the shortest survival (5-year survival = 24%). Curative therapies, including intensive chemotherapy and allogeneic stem cell transplantation, are generally applicable to a minority of patients who are younger and fit, while most older individuals exhibit poor prognosis and survival. Differences in patient outcomes are influenced by disease characteristics, access to care including active therapies and supportive care, and other factors. After many years without therapeutic advances, several new therapies have been approved and are expected to impact patient outcomes, especially for older patients and those with refractory disease.
Collapse
Affiliation(s)
- Rory M Shallis
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, USA
| | - Rong Wang
- Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, USA; Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, USA
| | - Amy Davidoff
- Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, USA; Department of Health Policy and Management, School of Public Health, Yale University, New Haven, USA
| | - Xiaomei Ma
- Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, USA; Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, USA; Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, USA.
| |
Collapse
|
5
|
Zeidan AM, Shallis RM, Wang R, Davidoff A, Ma X. Epidemiology of myelodysplastic syndromes: Why characterizing the beast is a prerequisite to taming it. Blood Rev 2019; 34:1-15. [DOI: 10.1016/j.blre.2018.09.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/01/2018] [Accepted: 09/17/2018] [Indexed: 02/08/2023]
|
6
|
Myeloid disorders after autoimmune disease. Best Pract Res Clin Haematol 2019; 32:74-88. [PMID: 30927978 DOI: 10.1016/j.beha.2019.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/02/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022]
Abstract
Autoimmune diseases (ADs) are associated with an increased risk not only of lymphoproliferative disorders but also of myeloid malignancies. The excess risk of myelodysplastic syndromes and/or acute myeloid leukemia is observed across several AD types, including systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disorders, multiple sclerosis, among others. The risk of developing myeloid neoplasms (MNs) is dependent on several variables, including the specific AD type, chronicity and severity of the AD, type and duration of exposure of disease modifying anti-rheumatic drugs or cytotoxics/immunosuppressives, and genetic predisposition risk. Putative triggering factors linking AD to elevated MN risk include AD-directed medications, shared genetic susceptibilities between the two disease entities, and chronic immune stimulation or bone marrow infiltration by the AD. Molecular mechanisms underpinning leukemogenesis remain largely speculative and warrant further investigation. Leukemias arising in patients with AD are not always 'therapy-related' in that MNs may develop in certain AD subtypes even among patients with no prior therapy exposure. Only a few studies have attempted to determine factors associated with MN development in AD but failed to demonstrate consistent characteristic clinical or paraclinical features. These reports have failed to demonstrate a clear correlation between individual agent exposure and subsequent leukemia development due to the low rates of therapy exposure compounded by the rarity of MN occurrence. Notwithstanding, the leukemogenic potential is best documented with agents such as azathioprine, cyclophosphamide, and mitoxantrone; this risk of MN development does not appear to be shared by biologic approaches such as anti-tumor necrosis factors-alpha inhibitors. In this article, we discuss plausible biologic mechanisms underlying MN pathogenesis in AD and review the data available on the development of MNs in patients with AD.
Collapse
|
7
|
Brandenburg NA, Phillips S, Wells KE, Woodcroft KJ, Amend KL, Enger C, Oliveria SA. Validating an algorithm for multiple myeloma based on administrative data using a SEER tumor registry and medical record review. Pharmacoepidemiol Drug Saf 2019; 28:256-263. [PMID: 30719785 DOI: 10.1002/pds.4711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 11/11/2022]
Abstract
PURPOSE Large numbers of multiple myeloma patients can be studied in real-world clinical settings using administrative databases. The validity of these studies is contingent upon accurate case identification. Our objective was to develop and evaluate algorithms to use with administrative data to identify multiple myeloma cases. METHODS Patients aged ≥18 years with ≥1 International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) code for multiple myeloma (203.0x) were identified at two study sites. At site 1, several algorithms were developed and validated by comparing results to tumor registry cases. An algorithm with a reasonable positive predictive value (PPV) (0.81) and sensitivity (0.73) was selected and then validated at site 2 where results were compared with medical chart data. The algorithm required that ICD-9-CM codes 203.0x occur before and after the diagnostic procedure codes for multiple myeloma. RESULTS At site 1, we identified 1432 patients. The PPVs of algorithms tested ranged from 0.54 to 0.88. Sensitivities ranged from 0.30 to 0.88. At site 2, a random sample (n = 400) was selected from 3866 patients, and medical charts were reviewed by a clinician for 105 patients. Algorithm PPV was 0.86 (95% CI, 0.79-0.92). CONCLUSIONS We identified cases of multiple myeloma with adequate validity for claims database analyses. At least two ICD-9-CM diagnosis codes 203.0x preceding diagnostic procedure codes for multiple myeloma followed by ICD-9-CM codes within a specific time window after diagnostic procedure codes were required to achieve reasonable algorithm performance.
Collapse
Affiliation(s)
- Nancy A Brandenburg
- Global Drug Safety and Risk Management, Celgene Corporation, Summit, New Jersey, USA
| | | | - Karen E Wells
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, USA
| | - Kimberley J Woodcroft
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, USA
| | | | - Cheryl Enger
- Department of Epidemiology, Optum, Ann Arbor, Michigan, USA
| | | |
Collapse
|
8
|
Liu X, Hu J, Li Y, Cao W, Wang Y, Ma Z, Li F. Mesenchymal stem cells expressing interleukin-18 inhibit breast cancer in a mouse model. Oncol Lett 2018; 15:6265-6274. [PMID: 29725393 PMCID: PMC5920279 DOI: 10.3892/ol.2018.8166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/31/2017] [Indexed: 12/14/2022] Open
Abstract
Development of an improved breast cancer therapy has been an elusive goal of cancer gene therapy for a long period of time. Human mesenchymal stem cells derived from umbilical cord (hUMSCs) genetically modified with the interleukin (IL)-18 gene (hUMSCs/IL-18) were previously demonstrated to be able to suppress the proliferation, migration and invasion of breast cancer cells in vitro. In the present study, the effect of hUMSCs/IL-18 on breast cancer in a mouse model was investigated. A total of 128 mice were divided into 2 studies (the early-effect study and the late-effect study), with 4 groups in each, including the PBS-, hUMSC-, hUMSC/vector- and hUMSC/IL-18-treated groups. All treatments were injected along with 200 µl PBS. Following therapy, the tumor size, histological examination, and expression of lymphocytes, Ki-67, cluster of differentiation 31 and cytokines [interleukin (IL)-18, IL-12, interferon (IFN)-γ and TNF-α] in each group were analyzed. Proliferation of cells (assessed by measuring tumor size and Ki-67 expression) and metastasis, (by determining pulmonary and hepatic metastasis) of breast cancer cells in the hUMSC/IL-18 group were significantly decreased compared with all other groups. hUMSCs/IL-18 suppressed tumor cell proliferation by activating immunocytes and immune cytokines, decreasing the proliferation index of proliferation marker protein Ki-67 of tumor cells and inhibiting tumor angiogenesis. Furthermore, hUMSCs/IL-18 were able to induce a more marked and improved therapeutic effect in the tumor sites, particularly in early tumors. The results of the present study indicate that hUMSCs/IL-18 were able to inhibit the proliferation and metastasis of breast cancer cells in vivo, possibly leading to an approach for a novel antitumor therapy in breast cancer.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jianxia Hu
- Stem Cell Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yueyun Li
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Weihong Cao
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yu Wang
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Zhongliang Ma
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Funian Li
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|