1
|
Asahi H, Niikura M, Inoue SI, Sendo F, Kobayashi F, Wada A. Dihydroartemisinin Disrupts Zinc Homeostasis in Plasmodium falciparum To Potentiate Its Antimalarial Action via Pyknosis. ACS Infect Dis 2023; 9:1303-1309. [PMID: 37321567 PMCID: PMC10353546 DOI: 10.1021/acsinfecdis.3c00031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Artemisinins have been used as first-line drugs worldwide to treat malaria caused by Plasmodium falciparum; however, its underlying mechanism is still unclear. This study aimed to identify the factors inducing growth inhibition via pyknosis, a state of intraerythrocytic developmental arrest, when exposing the parasite to dihydroartemisinin (DHA). Changes in the expression of genome-wide transcripts were assessed in the parasites treated with antimalarials, revealing the specific downregulation of zinc-associated proteins by DHA. The quantification of zinc levels in DHA-treated parasite indicated abnormal zinc depletion. Notably, the zinc-depleted condition in the parasite produced by a zinc chelator induced the generation of a pyknotic form and the suppression of its proliferation. The evaluation of the antimalarial activity of DHA or a glutathione-synthesis inhibitor in the zinc-depleted state showed that the disruption of zinc and glutathione homeostasis synergistically potentiated the growth inhibition of P. falciparum through pyknosis. These findings could help further understand the antimalarial actions of artemisinins for advancing malaria therapy.
Collapse
Affiliation(s)
- Hiroko Asahi
- Laboratory
for Nonnatural Amino Acid Technology, RIKEN
Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mamoru Niikura
- Division
of Tropical Diseases and Parasitology, Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Shin-Ichi Inoue
- Division
of Immunology, Department of Molecular Microbiology and Immunology,
Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Fujiro Sendo
- Kojunosato,
Geriatric Health Service Facilities, 8-1 Azahonmaru, Oazamizonobe, Kahoku-cho, Yamagata 999-3522, Japan
| | - Fumie Kobayashi
- Department
of Environmental Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Akira Wada
- Laboratory
for Nonnatural Amino Acid Technology, RIKEN
Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
2
|
Niu J, An G, Gu Z, Li P, Liu Q, Bai R, Sun J, Du Q. Analysis of sensitivity and specificity: precise recognition of neutrophils during regeneration of contused skeletal muscle in rats. Forensic Sci Res 2020; 7:228-237. [PMID: 35784418 PMCID: PMC9245985 DOI: 10.1080/20961790.2020.1713432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this report, we applied the TissueFAXS 200 digital pathological analysis system to rapidly and accurately identify neutrophils during regeneration of contused skeletal muscle, and to provide information for follow-up studies on neutrophils to estimate wound age. Rat injury model was established, and skeletal muscle samples were obtained from the control group and contusion groups at 1, 1.5, 2, 3, 4, and 6 h, as well as at 1, 3, 5, and 15 d post-injury (n = 5 per group). The expression of nuclei and neutrophils was detected by hematoxylin and eosin (HE) staining and immunohistochemical (IHC) staining. A total of 20 injury site areas of 0.25 mm2 (0.5 mm × 0.5 mm) were then randomly selected at all time points. A TissueFAXS 200 digital pathological analysis system was used to identify the positive and negative numbers. Knowledge of five professional medical workers were considered the gold standard to measure the false positive rate (FPR), false negative rate (FNR), sensitivity, specificity, and area under the curve (AUC) of receiver operating characteristic (ROC) curves. As a result, with a staining area of neutrophils from 8 µm2 to 15 µm2, the FPR was 4.28%–12.14%, the FNR was 12.42%–64.08%, the sensitivity was 35.92%–87.58%, the specificity was 87.86%–95.72%, the Youden index was 0.316–0.754, the accuracy was 82.80%–88.30%, and the AUC was 0.771–0.826. The AUC was largest when the cut-off value of the staining area was 12 µm2. Our results show that this software-based method is more accurate than the human eye in evaluating neutrophil infiltration. Based on the sensitivity and specificity, neutrophils can be accurately identified during regeneration of contused skeletal muscle. The TissueFAXS 200 digital pathological analysis system can also be used to optimize conditions for different cell types under various injury conditions to determine the optimal cut-off value of the staining area and provide optimal conditions for further study. Furthermore, it will provide evidence for forensic pathology cases.
Collapse
Affiliation(s)
- Jiajia Niu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Guoshuai An
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Zhen Gu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Peng Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Qiqing Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
- Criminal Investigation Brigade, Zhuji Public Security Bureau, Zhuji, China
| | - Rufeng Bai
- 2011 Cooperative Innovation Center of Judicial Civilization, Beijing, China
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China
| | - Junhong Sun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Qiuxiang Du
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| |
Collapse
|
3
|
Kutsumura N, Koyama Y, Saitoh T, Yamamoto N, Nagumo Y, Miyata Y, Hokari R, Ishiyama A, Iwatsuki M, Otoguro K, Ōmura S, Nagase H. Structure-Activity Relationship between Thiol Group-Trapping Ability of Morphinan Compounds with a Michael Acceptor and Anti-Plasmodium falciparum Activities. Molecules 2020; 25:molecules25051112. [PMID: 32131542 PMCID: PMC7179212 DOI: 10.3390/molecules25051112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 11/26/2022] Open
Abstract
7-Benzylidenenaltrexone (BNTX) and most of its derivatives showed in vitro antimalarial activities against chloroquine-resistant and -sensitive Plasmodium falciparum strains (K1 and FCR3, respectively). In addition, the time-dependent changes of the addition reactions of the BNTX derivatives with 1-propanethiol were examined by 1H-NMR experiments to estimate their thiol group-trapping ability. The relative chemical reactivity of the BNTX derivatives to trap the thiol group of 1-propanethiol was correlated highly with the antimalarial activity. Therefore, the measurements of the thiol group-trapping ability of the BNTX derivatives with a Michael acceptor is expected to become an alternative method for in vitro malarial activity and related assays.
Collapse
Affiliation(s)
- Noriki Kutsumura
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; (N.K.); (T.S.); (N.Y.); (Y.N.)
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan;
| | - Yasuaki Koyama
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan;
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; (N.K.); (T.S.); (N.Y.); (Y.N.)
| | - Naoshi Yamamoto
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; (N.K.); (T.S.); (N.Y.); (Y.N.)
| | - Yasuyuki Nagumo
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; (N.K.); (T.S.); (N.Y.); (Y.N.)
| | - Yoshiyuki Miyata
- School of Medicine, Keio University, 35, Shinanomachi, Shinjuku, Tokyo 160-8582, Japan;
| | - Rei Hokari
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (R.H.); (A.I.); (M.I.); (K.O.); (S.Ō.)
| | - Aki Ishiyama
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (R.H.); (A.I.); (M.I.); (K.O.); (S.Ō.)
| | - Masato Iwatsuki
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (R.H.); (A.I.); (M.I.); (K.O.); (S.Ō.)
| | - Kazuhiko Otoguro
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (R.H.); (A.I.); (M.I.); (K.O.); (S.Ō.)
| | - Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; (R.H.); (A.I.); (M.I.); (K.O.); (S.Ō.)
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; (N.K.); (T.S.); (N.Y.); (Y.N.)
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan;
- Correspondence: ; Tel.: +81-29-853-6437
| |
Collapse
|
4
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|