1
|
Han Y, Zhang J, Liang W, Lv Y, Luo X, Li C, Qu X, Zhang Y, Gu W, Chen X, Jin Y. Follicular fluid exosome-derived miR-339-5p enhances in vitro maturation of porcine oocytes via targeting SFPQ, a regulator of the ERK1/2 pathway. Theriogenology 2024; 225:107-118. [PMID: 38805993 DOI: 10.1016/j.theriogenology.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
In this study, we aimed to investigate cytoplasmic maturation and miRNA expression of mature oocytes cultured in porcine follicular fluid exosomes. We also examined the effect of miR-339-5p on oocyte maturation. Twenty eight differentially expressed miRNAs were detected using miRNA-seq. We then transfected cumulus oocyte complexes with miR-339-5p mimics and inhibitor during culture. The results showed that exosomes increased endoplasmic reticulum levels and the amount of lipid droplets, and decreased ROS levels, lipid droplet size, and percentage of oocytes with abnormal cortical granule distribution. Overexpressing miR-339-5p significantly decreased cumulus expansion genes, oocyte maturation-related genes, target gene proline/glutamine-rich splicing factor (SFPQ), ERK1/2 phosphorylation levels, oocyte maturation rate, blastocyst rate, and lipid droplet number, but increased lipid droplet size and the ratio of oocytes with abnormal cortical granule distribution. Inhibiting miR-339-5p reversed the decrease observed during overexpression. Mitochondrial membrane potential and ROS levels did not differ significantly between groups. In summary, exosomes promote oocyte cytoplasmic maturation and miR-339-5p regulating ERK1/2 activity through SFPQ expression, thereby elevating oocyte maturation and blastocyst formation rate in vitro.
Collapse
Affiliation(s)
- Yue Han
- Yanbian University, Jilin, Yanji, 133000, China
| | | | | | - Yanqiu Lv
- Yanbian University, Jilin, Yanji, 133000, China
| | - Xiaotong Luo
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Jilin, Gongzhuling, 136100, China
| | - Chunyu Li
- Yanbian University, Jilin, Yanji, 133000, China
| | - Xinglin Qu
- Yanbian University, Jilin, Yanji, 133000, China
| | | | - Weiyu Gu
- Yanbian University, Jilin, Yanji, 133000, China
| | - Xuan Chen
- Yanbian University, Jilin, Yanji, 133000, China.
| | - Yi Jin
- Yanbian University, Jilin, Yanji, 133000, China.
| |
Collapse
|
2
|
Cassandri M, Porrazzo A, Pomella S, Noce B, Zwergel C, Aiello FA, Vulcano F, Milazzo L, Camero S, Pajalunga D, Spada M, Manzi V, Gravina GL, Codenotti S, Piccione M, Tomaciello M, Signore M, Barillari G, Marchese C, Fanzani A, De Angelis B, Quintarelli C, Vakoc CR, Chen EY, Megiorni F, Locatelli F, Valente S, Mai A, Rota R, Marampon F. HDAC3 genetic and pharmacologic inhibition radiosensitizes fusion positive rhabdomyosarcoma by promoting DNA double-strand breaks. Cell Death Discov 2024; 10:351. [PMID: 39107280 PMCID: PMC11303816 DOI: 10.1038/s41420-024-02115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024] Open
Abstract
Radiotherapy (RT) plays a critical role in the management of rhabdomyosarcoma (RMS), the prevalent soft tissue sarcoma in childhood. The high risk PAX3-FOXO1 fusion-positive subtype (FP-RMS) is often resistant to RT. We have recently demonstrated that inhibition of class-I histone deacetylases (HDACs) radiosensitizes FP-RMS both in vitro and in vivo. However, HDAC inhibitors exhibited limited success on solid tumors in human clinical trials, at least in part due to the presence of off-target effects. Hence, identifying specific HDAC isoforms that can be targeted to radiosensitize FP-RMS is imperative. We, here, found that only HDAC3 silencing, among all class-I HDACs screened by siRNA, radiosensitizes FP-RMS cells by inhibiting colony formation. Thus, we dissected the effects of HDAC3 depletion using CRISPR/Cas9-dependent HDAC3 knock-out (KO) in FP-RMS cells, which resulted in Endoplasmatic Reticulum Stress activation, ERK inactivation, PARP1- and caspase-dependent apoptosis and reduced stemness when combined with irradiation compared to single treatments. HDAC3 loss-of-function increased DNA damage in irradiated cells augmenting H2AX phosphorylation and DNA double-strand breaks (DSBs) and counteracting irradiation-dependent activation of ATM and DNA-Pkcs as well as Rad51 protein induction. Moreover, HDAC3 depletion hampers FP-RMS tumor growth in vivo and maximally inhibits the growth of irradiated tumors compared to single approaches. We, then, developed a new HDAC3 inhibitor, MC4448, which showed specific cell anti-tumor effects and mirrors the radiosensitizing effects of HDAC3 depletion in vitro synergizing with ERKs inhibition. Overall, our findings dissect the pro-survival role of HDAC3 in FP-RMS and suggest HDAC3 genetic or pharmacologic inhibition as a new promising strategy to overcome radioresistance in this tumor.
Collapse
Affiliation(s)
- Matteo Cassandri
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonella Porrazzo
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Pomella
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Beatrice Noce
- Department of Drug Chemistry and Technologies, "Sapienza" University of Rome, Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, "Sapienza" University of Rome, Rome, Italy
| | - Francesca Antonella Aiello
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Vulcano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Luisa Milazzo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Camero
- Department of Life Sciences, Health and Health Professions, Link Campus University, Rome, Italy
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Deborah Pajalunga
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Spada
- Center of Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Valeria Manzi
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Piccione
- Confocal Microscopy Core Facility, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Miriam Tomaciello
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Biagio De Angelis
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Concetta Quintarelli
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Eleanor Y Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Francesca Megiorni
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, "Sapienza" University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, "Sapienza" University of Rome, Rome, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, "Sapienza" University of Rome, Rome, Italy
| | - Rossella Rota
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Marampon
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Montazersaheb S, Farahzadi R, Fathi E, Alizadeh M, Abdolalizadeh Amir S, Khodaei Ardakan A, Jafari S. Investigation the apoptotic effect of silver nanoparticles (Ag-NPs) on MDA-MB 231 breast cancer epithelial cells via signaling pathways. Heliyon 2024; 10:e26959. [PMID: 38455550 PMCID: PMC10918200 DOI: 10.1016/j.heliyon.2024.e26959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Background The discovery of novel cancer therapeutic strategies leads to the development of nanotechnology-based methods for cancer treatment. Silver nanoparticles (Ag-NPs) have garnered considerable interest owing to their size, shape, and capacity to modify chemical, optical, and photonic properties. This study aimed to investigate the impact of Ag-NPs on inducing of apoptosis in MDA-MB 231 cells by examining specific signaling pathways. Materials and methods The cytotoxicity of Ag-NPs was determined using an MTT assay in MDA-MB 231 cells. The apoptotic effects were assessed using the Annexin-V/PI assay. Real-time PCR and western blotting were conducted to analyze the expression of apoptosis-related genes and proteins, respectively. Levels of ERK1/2 and cyclin D1 were measured using ELISA. Cell cycle assay was determined by flow cytometry. Cell migration was evaluated by scratch assay. Results The results revealed that Ag-NPs triggered apoptosis and cell cycle arrest in MDA-MB 231 cells. The expression level of Bax (pro-apoptotic gene) was increased, while Bcl-2 (anti-apoptotic gene) expression was decreased. Increased apoptosis was correlated with increased levels of p53 and PTEN. Additionally, notable alterations were observed in protein expression related to the Janus kinase/Signal transducers (JAK/STAT) pathway, including p-AKT. Additionally, reduced expression of h-TERT was observed following exposure to Ag-NPs. ELISA results demonstrated a significant reduction in p-ERK/Total ERK and cyclin D1 levels in Ag-NPs-exposed MDA-MB 231 cells. Western blotting analysis also confirmed the reduction of p-ERK/Total ERK and cyclin D1. Decreased level of cyclin D is associated with suppression of cell cycle progression. The migratory ability of MDA-MB-231 cells was reduced upon treatment with Ag-NPs. Conclusions Our findings revealed that Ag-NPs influenced the proliferation, apoptosis, cell cycle, and migration in MDA-MB 231 cells, possibly by modulating protein expression of the AKT/ERK/Cyclin D1 axis.
Collapse
Affiliation(s)
- Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mahsan Alizadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Shahabaddin Abdolalizadeh Amir
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Alireza Khodaei Ardakan
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Sahoo PK, Krishnamoorthy C, Wood JR, Hanson C, Anderson-Berry A, Mott JL, Natarajan SK. Palmitate induces integrated stress response and lipoapoptosis in trophoblasts. Cell Death Dis 2024; 15:31. [PMID: 38212315 PMCID: PMC10784287 DOI: 10.1038/s41419-023-06415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Maternal obesity increases the risk of childhood obesity and programs the offspring to develop metabolic syndrome later in their life. Palmitate is the predominant saturated free fatty acid (FFA) that is transported across the placenta to the fetus. We have recently shown that saturated FFA in the maternal circulation as a result of increased adipose tissue lipolysis in third trimester of pregnancy induces trophoblast lipoapoptosis. Here, we hypothesized that palmitate induces integrated stress response by activating mitogen-activated protein kinases (MAPKs), endoplasmic reticulum (ER) stress and granular stress and lipoapoptosis in trophoblasts. Choriocarcinoma-derived third-trimester placental trophoblast-like cells (JEG-3 and JAR) referred as trophoblasts were exposed to various concentrations of palmitate (PA). Apoptosis was assessed by nuclear morphological changes and caspase 3/7 activity. Immunoblot and immunofluorescence analysis was performed to measure the activation of MAPKs, ER stress and granular stress response pathways. Trophoblasts exposed to pathophysiological concentrations of PA showed a concentration-dependent increase in trophoblast lipoapoptosis. PA induces a caspase-dependent trophoblast lipoapoptosis. Further, PA induces MAPK activation (JNK and ERK) via phosphorylation, and activation of ER stress as evidenced by an increased phosphorylation eIF2α & IRE1α. PA also induces the activation of stress granules formation. Two pro-apoptotic transcriptional mediators of PA-induced trophoblast lipoapoptosis, CHOP and FoxO3 have increased nuclear translocation. Mechanistically, PA-induced JNK is critical for trophoblast lipoapoptosis. However, PA-induced activation of ERK and stress granule formation were shown to be cell survival signals to combat subcellular stress due to PA exposure. In conclusion, PA induces the activation of integrated stress responses, among which small molecule inhibition of JNK demonstrated that activation of JNK is critical for PA-induced trophoblast lipoapoptosis and small molecule activation of stress granule formation significantly prevents PA-induced trophoblast lipoapoptosis.
Collapse
Affiliation(s)
- Prakash Kumar Sahoo
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Chandan Krishnamoorthy
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jennifer R Wood
- Department of Animal Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Corrine Hanson
- College of Allied Health Professions Medical Nutrition Education, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ann Anderson-Berry
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Justin L Mott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
- College of Allied Health Professions Medical Nutrition Education, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
5
|
Lin S, Wang J, Cao B, Huang Y, Sheng X, Zhu Y. Cofilin-1 induces acute kidney injury via the promotion of endoplasmic reticulum stress-mediated ferroptosis. Hum Cell 2023; 36:1928-1937. [PMID: 37548903 PMCID: PMC10587211 DOI: 10.1007/s13577-023-00949-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023]
Abstract
Ischemia-reperfusion injury (IRI) leads to acute kidney injury (AKI), which poses serious threat to public health and society. Many clinical studies were conducted to evaluate several biomarkers in AKI, among which Cofilin-1 remains to be a very promising one. To explore the potential mechanism of Cofilin-1 in AKI, we established an oxygen-glucose-deprivation (OGD)-induced AKI cell model. The overexpression and knock-down Cofilin-1 were used for gain- and loss-of-function. Pharmacological inhibitors were employed to study the related pathways. The results showed that Cofilin-1 was significantly upregulated in AKI cells, knocking down Cofilin-1 protected cells against the effect of OGD treatment and alleviated AKI phenotypes. Overexpression of Cofilin-1 might induce AKI by triggering ferroptosis, inhibiting NF-κB signaling or ER stress pathway attenuated Cofilin-1 induced lipid peroxidation and AKI. We also validated our findings in IRI-induced AKI mouse models in vivo. Our work elucidated that Cofilin-1 might induce AKI via promoting ER stress-mediated ferroptosis and argues it as a biomarker for early diagnosis of AKI. We also expect to offer novel insights on future therapeutic interventions.
Collapse
Affiliation(s)
- Sihao Lin
- Department of Urology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 800 Huangjiahuayuan Road, Shanghai, 201803, People's Republic of China
| | - Jie Wang
- Department of Urology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 800 Huangjiahuayuan Road, Shanghai, 201803, People's Republic of China
| | - Bin Cao
- Department of Urology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 800 Huangjiahuayuan Road, Shanghai, 201803, People's Republic of China
| | - Yang Huang
- Department of Urology, Chengmai County People Hospital, Hainan, 571900, People's Republic of China
| | - Xujun Sheng
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China.
| | - Yingjian Zhu
- Department of Urology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 800 Huangjiahuayuan Road, Shanghai, 201803, People's Republic of China.
| |
Collapse
|
6
|
Zhou J, Zhao Y, An P, Zhao H, Li X, Xiong Y. Hsa_circ_0002348 regulates trophoblast proliferation and apoptosis through miR-126-3p/BAK1 axis in preeclampsia. J Transl Med 2023; 21:509. [PMID: 37507742 PMCID: PMC10375637 DOI: 10.1186/s12967-023-04240-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/31/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Preeclampsia is a common pregnancy complication characterized by high blood pressure and damage to organs. Abnormal placenta and vascular function can lead to preeclampsia. Accumulating evidence has suggested a potential link between circular RNAs (circRNAs) and preeclampsia. As a placenta and endothelial-expressed circRNA, hsa_circ_0002348, may be promising to be the novel molecular target for preeclampsia. However, the function and mechanism of hsa_circ_0002348 in preeclampsia has not been elucidated. MATERIALS AND METHODS An overlap analysis of two circRNA profiles from placenta and endothelial cells was used to identify a functionally unknown circRNA, hsa_circ_0002348. Quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH) were used to detect its expression in the trophoblast cells and placental tissues. The mouse model of lipopolysaccharide (LPS)-induced preeclampsia was established to determine the in vivo role of hsa_circ_0002348. RNA immunoprecipitation (RIP), Luciferase reporter assay, qRT-PCR, western blot, gain- and loss-of-function and rescue experiments were conducted to uncover the role of hsa_circ_0002348 and its interaction with miR-126-3p and BAK1 in regulating trophoblast proliferation and apoptosis. Fluorescence in situ hybridization (FISH) and Immunohistochemistry (IHC) were performed to examine the expression of miR-126-3p and BAK1 in mice and human placentas, respectively. RESULTS Hsa_circ_0002348 was significantly increased in the preeclampsia placentas, and positively correlated with the severity of preeclampsia patients' clinical manifestations. Its overexpression exacerbated preeclampsia-like features in the mouse model of LPS-induced preeclampsia. Functionally, hsa_circ_0002348 was found to inhibit trophoblast proliferation and promote trophoblast apoptosis. Mechanistically, hsa_circ_0002348, as an endogenous miR-126-3p sponge, upregulated the expression of BAK1. Additionally, both hsa_circ_0002348 knockdown and miR-126-3p overexpression enhanced the mammalian target of rapamycin (mTOR) and ERK1/2 signaling pathway. CONCLUSIONS Hsa_circ_0002348 might be a novel regulator of trophoblast proliferation and apoptosis through miR-126-3p/BAK1 axis in preeclampsia, which may serve as a potential target for detecting and treating preeclampsia.
Collapse
Affiliation(s)
- Jizi Zhou
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Ying Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Ping An
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Huanqiang Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xiaotian Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.
- Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Yu Xiong
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.
| |
Collapse
|
7
|
Abstract
Yang J, Shao X, Wang L, et al. Angelica polysaccharide exhibits antitumor effect in neuroblastoma cell line SH-SY5Y by up-regulation of miR-205. BioFactors. 2023;49:201. https://doi.org/10.1002/biof.1586 This article, published online on 23 November 2019 in Wiley Online Library, has been retracted by agreement between the International Union of Biochemistry and Molecular Biology, the Editor in Chief (Dr. Angelo Azzi), and Wiley Periodicals LLC. The retraction has been agreed following an investigation based on allegations raised by a third party. Evidence for image manipulation was found in figures 1, 2, 3, 4, 5 and 6. As a result, the conclusions of this article are considered to be invalid.
Collapse
|
8
|
Lichlyter DA, Krumm ZA, Golde TA, Doré S. Role of CRF and the hypothalamic-pituitary-adrenal axis in stroke: revisiting temporal considerations and targeting a new generation of therapeutics. FEBS J 2022; 290:1986-2010. [PMID: 35108458 DOI: 10.1111/febs.16380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
Ischaemic neurovascular stroke represents a leading cause of death in the developed world. Preclinical and human epidemiological evidence implicates the corticotropin-releasing factor (CRF) family of neuropeptides as mediators of acute neurovascular injury pathology. Preclinical investigations of the role of CRF, CRF receptors and CRF-dependent activation of the hypothalamic-pituitary-adrenal (HPA) axis have pointed toward a tissue-specific and temporal relationship between activation of these pathways and physiological outcomes. Based on the literature, the major phases of ischaemic stroke aetiology may be separated into an acute phase in which CRF and anti-inflammatory stress signalling are beneficial and a chronic phase in which these contribute to neural degeneration, toxicity and apoptotic signalling. Significant gaps in knowledge remain regarding the pathway, temporality and systemic impact of CRF signalling and stress biology in neurovascular injury progression. Heterogeneity among experimental designs poses a challenge to defining the apparent reciprocal relationship between neurological injury and stress metabolism. Despite these challenges, it is our opinion that the elucidated temporality may be best matched with an antibody against CRF with a half-life of days to weeks as opposed to minutes to hours as with small-molecule CRF receptor antagonists. This state-of-the-art review will take a multipronged approach to explore the expected potential benefit of a CRF antibody by modulating CRF and corticotropin-releasing factor receptor 1 signalling, glucocorticoids and autonomic nervous system activity. Additionally, this review compares the modulation of CRF and HPA axis activity in neuropsychiatric diseases and their counterpart outcomes post-stroke and assess lessons learned from antibody therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel A Lichlyter
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Zachary A Krumm
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Todd A Golde
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Departments of Neurology, Psychiatry, Pharmaceutics, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
9
|
Jee HY, Lee YG, Lee S, Elvira R, Seo HE, Lee JY, Han J, Lee K. Activation of ERK and p38 Reduces AZD8055-Mediated Inhibition of Protein Synthesis in Hepatocellular Carcinoma HepG2 Cell Line. Int J Mol Sci 2021; 22:ijms222111824. [PMID: 34769253 PMCID: PMC8584319 DOI: 10.3390/ijms222111824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Protein synthesis is important for maintaining cellular homeostasis under various stress responses. In this study, we screened an anticancer drug library to select compounds with translational repression functions. AZD8055, an ATP-competitive mechanistic target of rapamycin complex 1/2 (mTORC1/2) inhibitor, was selected as a translational suppressor. AZD8055 inhibited protein synthesis in mouse embryonic fibroblasts and hepatocellular carcinoma HepG2 cells. Extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) were activated during the early phase of mTORC1/2 inhibition by AZD8055 treatment. Combined treatment of AZD8055 with the MAPK kinase1/2 (MEK1/2) inhibitor refametinib or the p38 inhibitor SB203580 markedly decreased translation in HepG2 cells. Thus, the inhibition of ERK1/2 or p38 may enhance the efficacy of AZD8055-mediated inhibition of protein synthesis. In addition, AZD8055 down-regulated the phosphorylation of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), and AZD8055-induced phosphorylation of ERK1/2 and p38 had no effect on phosphorylation status of 4E-BP1. Interestingly, AZD8055 modulated the 4E-BP1 mRNA pool by up-regulating ERK1/2 and p38 pathways. Together, these results suggest that AZD8055-induced activation of MAPKs interferes with inhibition of protein synthesis at an early stage of mTORC1/2 inhibition, and that it may contribute to the development of resistance to mTORC1/2 inhibitors.
Collapse
Affiliation(s)
- Ha-yeon Jee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
| | - Yoon-Gyeong Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
| | - Sol Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
| | - Rosalie Elvira
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea; (R.E.); (J.H.)
| | - Hye-eun Seo
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
| | - Ji-Yeon Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
| | - Jaeseok Han
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea; (R.E.); (J.H.)
| | - Kyungho Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
- Korea Hemp Institute, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-450-3423; Fax: +82-2-3436-5432
| |
Collapse
|
10
|
Tao Z, Loo S, Su L, Tan S, Tee G, Gan SU, Zhang J, Chen X, Ye L. Angiopoietin-1 enhanced myocyte mitosis, engraftment, and the reparability of hiPSC-CMs for treatment of myocardial infarction. Cardiovasc Res 2021; 117:1578-1591. [PMID: 32666104 DOI: 10.1093/cvr/cvaa215] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 01/11/2023] Open
Abstract
AIMS To examine whether transient over-expression of angiopoietin-1 (Ang-1) increases the potency of hiPSC-CMs for treatment of heart failure. METHODS AND RESULTS Atrial hiPSC-CMs (hiPSC-aCMs) were differentiated from hiPSCs and purified by lactic acid and were transfected with Ang-1 (Ang-1-hiPSC-aCMs) plasmid using lipoSTEM. Ang-1 gene transfection efficiency was characterized in vitro. Gene transfected CMs (1×106) were seeded into a fibrin/thrombin patch and implanted on the rat-infarcted left ventricular (LV) anterior wall after myocardial infarction (MI). Echo function was determined at 1- and 6 weeks post-MI. Immunohistochemistry study was performed at 6 weeks post-MI. Ang-1 (20 and 40 ng/mL) protected hiPSC-aCMs from hypoxia through up-regulating pERK1/2 and inhibiting Bax protein expressions. Ang-1-hiPSC-aCMs transiently secreted Ang-1 protein up to 14 days, with peak level on day-2 post-transfection (24.39 ± 13.02 ng/mL) in vitro. Animal study showed that transplantation of Ang-1-hiPSC-aCM seeded patch more effectively limited rat heart apoptosis at 1 day post-MI as compared with LipoSTEM-Ang-1 or hiPSC-aCMs transplantation. Ang-1-hiPSC-aCMs transplantation induced host (rat) and donor (human) CM mitosis and arteriole formation, improved cell engraftment rate, more effectively limited LV dilation (EDV = 460.7 ± 96.1 μL and ESV = 219.8 ± 72.9 μL) and improved LV global pump function (EF = 53.1 ± 9%) as compared with the MI (EDV = 570.9 ± 91.8 μL, P = 0.033; ESV = 331.6 ± 71.2 μL, P = 0.011; EF = 42.3 ± 4.1%, P = 0.02) or the LipoSTEM-Ang-1 injected (EDV = 491.4 ± 100.4 μL, P = 0.854; ESV = 280.9 ± 71.5 μL, P = 0.287; EF = 43.2 ± 4.6, P = 0.039) or hiPSC-CM transplanted (EDV = 547.9 ± 55.5 μL, P = 0.095; ESV = 300.2 ± 88.4 μL, P = 0.075; EF = 46 ± 10.9%, P = 0.166) animal groups at 6 weeks post-MI and treatment. CONCLUSION Transient over-expression of Ang-1 enhanced hiPSC-aCM mitosis and engraftment and increased the reparability potency of hiPSC-aCMs for treatment of MI.
Collapse
Affiliation(s)
- Zhonghao Tao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, Jiangsu, PR China
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609 Singapore
| | - Szejie Loo
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609 Singapore
| | - Liping Su
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609 Singapore
| | - Shihua Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609 Singapore
| | - Guizhen Tee
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609 Singapore
| | - Shu Uin Gan
- Department of Surgery, National University of Singapore, 1E Kent Ridge Road, 119228 Singapore
| | - Jianyi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL 35294-2182, USA
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, 210006 Nanjing, Jiangsu, PR China
| | - Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609 Singapore
| |
Collapse
|
11
|
Safi A, Heidarian E, Ahmadi R. Quercetin Synergistically Enhances the Anticancer Efficacy of Docetaxel through Induction of Apoptosis and Modulation of PI3K/AKT, MAPK/ERK, and JAK/STAT3 Signaling Pathways in MDA-MB-231 Breast Cancer Cell Line. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:11-22. [PMID: 34268250 PMCID: PMC8256834 DOI: 10.22088/ijmcm.bums.10.1.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/21/2021] [Indexed: 01/17/2023]
Abstract
Docetaxel is widely used in the treatment of metastatic breast cancer. However, its effectiveness is limited due to chemoresistance and its undesirable side effects. The combination of chemotherapeutic agents and natural compounds is an effective strategy to overcome drug resistance and the ensuing inevitable toxicities. Quercetin is a natural flavonoid with strong antioxidant and anticancer activities. This study aimed to evaluate the cytotoxic and modulatory effects of combined docetaxel and quercetin on the MDA-MB-231 human breast cancer cell line. The cell viability was assessed by MTT assay. The induction of apoptosis was examined using flow cytometry. The role of p53 in the apoptotic process was evaluated via qRT-PCR. The levels of BAX, BCL2, ERK1/2, AKT, and STAT3 proteins were measured by Western blot analysis. The results showed that the single-agent treatment with docetaxel or quercetin leads to a decrease in the viability of the MDA-MB-231 cells at 48 h. Furthermore, the combination of docetaxel (7 nM) and quercetin (95 μM) displayed the greatest synergistic effects with a combination index value of 0.76 accompanied by the up regulation of p53 and a significant increase in BAX level, as well as decrease in the levels of BCL2, pERK1/2, AKT, and STAT3 proteins (P < 0.05). The concomitant use of docetaxel and quercetin leads to the cell growth inhibition associated with the induction of apoptosis and inhibition of cell survival. Therefore, this study provides a promising therapeutic approach to enhance the efficacy of docetaxel in a less-toxic manner.
Collapse
Affiliation(s)
- Amir Safi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Esfandiar Heidarian
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Ahmadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
12
|
Proteotoxic Stress and Cell Death in Cancer Cells. Cancers (Basel) 2020; 12:cancers12092385. [PMID: 32842524 PMCID: PMC7563887 DOI: 10.3390/cancers12092385] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
To maintain proteostasis, cells must integrate information and activities that supervise protein synthesis, protein folding, conformational stability, and also protein degradation. Extrinsic and intrinsic conditions can both impact normal proteostasis, causing the appearance of proteotoxic stress. Initially, proteotoxic stress elicits adaptive responses aimed at restoring proteostasis, allowing cells to survive the stress condition. However, if the proteostasis restoration fails, a permanent and sustained proteotoxic stress can be deleterious, and cell death ensues. Many cancer cells convive with high levels of proteotoxic stress, and this condition could be exploited from a therapeutic perspective. Understanding the cell death pathways engaged by proteotoxic stress is instrumental to better hijack the proliferative fate of cancer cells.
Collapse
|
13
|
Devarakonda T, Mauro AG, Guzman G, Hovsepian S, Cain C, Das A, Praveen P, Hossain MA, Salloum FN. B7-33, a Functionally Selective Relaxin Receptor 1 Agonist, Attenuates Myocardial Infarction-Related Adverse Cardiac Remodeling in Mice. J Am Heart Assoc 2020; 9:e015748. [PMID: 32295457 PMCID: PMC7428518 DOI: 10.1161/jaha.119.015748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Human relaxin‐2 is a peptide hormone capable of pleiotropic effects in several organ systems. Its recombinant formulation (serelaxin) has been demonstrated to reduce infarct size and prevent excessive scar formation in animal models of cardiac ischemia‐reperfusion injury. B7‐33, a synthetically designed peptide analogous to B‐chain of relaxin‐2, invokes signaling at relaxin family peptide receptor 1 (cognate receptor for relaxin‐2) by preferentially phosphorylating the mitogen‐activated protein kinase extracellular signal‐regulated kinase 1/2. We sought to investigate the effects of B7‐33 treatment post ischemia‐reperfusion injury in mice. Methods and Results Adult male CD1 mice were subjected to ischemia‐reperfusion via ligation of left anterior descending artery for 30 minutes, followed by 24 hours or 7 days of reperfusion. Echocardiography was performed to assess cardiac function, and cardiac tissue was stained to determine infarct size at 24 hours. B7‐33 significantly reduced infarct size (21.99% versus 45.32%; P=0.02) and preserved fractional shortening (29% versus 23%; P=0.02) compared with vehicle. The difference in fractional shortening further increased at 7 days post myocardial infarction (29% versus 20% for B7‐33 and vehicle groups, respectively). In vitro, primary cardiomyocytes were isolated from adult hearts and subjected to simulated ischemia‐reperfusion injury (simulated ischemia reoxygenation). B7‐33 (50 and 100 nmol/L) improved cell survival and reduced the expression of GRP78 (glucose regulated protein), an endoplasmic reticulum stress marker. Subsequently, B7‐33 (100 nmol/L) reduced tunicamycin (2.5 μg/mL) induced upregulation of GRP78 in an extracellular signal‐regulated kinase 1/2–dependent manner. Conclusions B7‐33 confers acute cardioprotection and limits myocardial infarction–related adverse remodeling in mice by attenuating cardiomyocyte death and endoplasmic reticulum stress as well as preserving cardiac function.
Collapse
Affiliation(s)
- Teja Devarakonda
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Adolfo G Mauro
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Geronimo Guzman
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Sahak Hovsepian
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Chad Cain
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Anindita Das
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Praveen Praveen
- Florey Institute of Neuroscience and Mental Health University of Melbourne Parkville Australia
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health University of Melbourne Parkville Australia
| | - Fadi N Salloum
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| |
Collapse
|
14
|
Splice switching an oncogenic ratio of SmgGDS isoforms as a strategy to diminish malignancy. Proc Natl Acad Sci U S A 2020; 117:3627-3636. [PMID: 32019878 DOI: 10.1073/pnas.1914153117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The chaperone protein SmgGDS promotes cell-cycle progression and tumorigenesis in human breast and nonsmall cell lung cancer. Splice variants of SmgGDS, named SmgGDS-607 and SmgGDS-558, facilitate the activation of oncogenic members of the Ras and Rho families of small GTPases through membrane trafficking via regulation of the prenylation pathway. SmgGDS-607 interacts with newly synthesized preprenylated small GTPases, while SmgGDS-558 interacts with prenylated small GTPases. We determined that cancer cells have a high ratio of SmgGDS-607:SmgGDS-558 (607:558 ratio), and this elevated ratio is associated with reduced survival of breast cancer patients. These discoveries suggest that targeting SmgGDS splicing to lower the 607:558 ratio may be an effective strategy to inhibit the malignant phenotype generated by small GTPases. Here we report the development of a splice-switching oligonucleotide, named SSO Ex5, that lowers the 607:558 ratio by altering exon 5 inclusion in SmgGDS pre-mRNA (messenger RNA). Our results indicate that SSO Ex5 suppresses the prenylation of multiple small GTPases in the Ras, Rho, and Rab families and inhibits ERK activity, resulting in endoplasmic reticulum (ER) stress, the unfolded protein response, and ultimately apoptotic cell death in breast and lung cancer cell lines. Furthermore, intraperitoneal (i.p.) delivery of SSO Ex5 in MMTV-PyMT mice redirects SmgGDS splicing in the mammary gland and slows tumorigenesis in this aggressive model of breast cancer. Taken together, our results suggest that the high 607:558 ratio is required for optimal small GTPase prenylation, and validate this innovative approach of targeting SmgGDS splicing to diminish malignancy in breast and lung cancer.
Collapse
|
15
|
Fu ZY, Wu ZJ, Zheng JH, Li N, Lu JY, Chen MH. Edaravone Ameliorates Renal Warm Ischemia-Reperfusion Injury by Downregulating Endoplasmic Reticulum Stress in a Rat Resuscitation Model. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:175-183. [PMID: 32021102 PMCID: PMC6970244 DOI: 10.2147/dddt.s211906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022]
Abstract
Background This study was conducted to explore whether the effect of edaravone (5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol3-one, EDR) can ameliorate renal warm ischemia-reperfusion injury (IRI) by modulating endoplasmic reticulum stress (ERS) and its downstream effector after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) in a rat model. Methods The rats (n=10) experienced anaesthesia and intubation followed by no CA inducement were defined as the Sham group. Transoesophageal alternating current stimulation was employed to establish 8 min of CA followed by conventional CPR for a resuscitation model. The rats with successful restoration of spontaneous circulation (ROSC) randomly received EDR (3 mg/kg, EDR group, n=10) or equal volume normal saline solution (the NS group, n=10). At 24 hr after ROSC, serum creatinine (SCR), blood urea nitrogen (BUN) levels, and cystatin-C (Cys-C) levels were determined and the protein level of glucose-regulated protein (GRP78), C/EBP homologous protein (CHOP), extracellular signal-regulated kinase (ERK), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), Bax/Bcl-2, and caspase-3 were detected by Western blot method. Results At 24 hrs after ROSC, SCR, BUN and Cys-C were obviously increased and the proteins expression, including GRP78, CHOP and p-ERK1/2, cleaved-caspase 3 Bax/Bcl-2 ratio, were significantly upregulated in the NS group compared with the Sham group (p<0.05). The remarkable improvement of these adverse outcomes was observed in the EDR group (p<0.05). Conclusion In conclusion, we found that EDR ameliorates renal warm IRI by downregulating ERS and its downstream effectors in a rat AKI model evoked by CA/CPR. These data may provide evidence for future therapeutic benefits of EDR against AKI induced by CA/CPR.
Collapse
Affiliation(s)
- Zhao-Yin Fu
- Department of Critical Care Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, People's Republic of China
| | - Zhi-Jiang Wu
- Department of Critical Care Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, People's Republic of China
| | - Jun-Hui Zheng
- Department of Critical Care Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, People's Republic of China
| | - Nuo Li
- Department of Critical Care Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, People's Republic of China
| | - Jun-Yu Lu
- Department of Critical Care Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, People's Republic of China
| | - Meng-Hua Chen
- Department of Critical Care Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, People's Republic of China
| |
Collapse
|
16
|
Wang Q, Cai H, Hu Z, Wu Y, Guo X, Li J, Wang H, Liu Y, Liu Y, Xie L, Xu K, Xu H, He H, Zhang H, Xiao J. Loureirin B Promotes Axon Regeneration by Inhibiting Endoplasmic Reticulum Stress: Induced Mitochondrial Dysfunction and Regulating the Akt/GSK-3β Pathway after Spinal Cord Injury. J Neurotrauma 2019; 36:1949-1964. [PMID: 30543130 DOI: 10.1089/neu.2018.5966] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Axon retraction greatly limits functional recovery after spinal cord injury (SCI) and neuron polarization, which affects processes including axon formation and development, is a promising target for promoting axon regeneration. Increasing microtubule stability has been demonstrated to improve intrinsic axon regeneration processes and is critically related to endoplasmic reticulum (ER)-mitochondria interactions. We used real-time polymerase chain reaction, Western blotting, and immunofluorescence to screen a variety of natural compounds, and found that Loureirin B (LrB) effectively promoted neuron polarization and axon regeneration in vitro and in vivo. LrB significantly inhibited ER stress and thereby promoted mitochondrial functions by regulating mitochondrial fusion. Further, LrB reactivated the Akt/GSK-3β pathway, which plays critical roles in cell survival and microtubule stabilization. Taken together, our results suggest that the effects of LrB on neuron regeneration involve the inhibition of ER stress-induced mitochondrial dysfunction and activation of the Akt/GSK-3β pathway, which further promotes microtubule stabilization. LrB may therefore be a promising candidate for facilitating recovery following SCI.
Collapse
Affiliation(s)
- Qingqing Wang
- 1 Department of Orthopedics, Second Affiliated Hospital and Yuying Children's Hospital, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,2 Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Hanxiao Cai
- 1 Department of Orthopedics, Second Affiliated Hospital and Yuying Children's Hospital, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,2 Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zhenxin Hu
- 1 Department of Orthopedics, Second Affiliated Hospital and Yuying Children's Hospital, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,2 Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yanqing Wu
- 3 The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Xin Guo
- 2 Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jiawei Li
- 2 Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Haoli Wang
- 1 Department of Orthopedics, Second Affiliated Hospital and Yuying Children's Hospital, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yani Liu
- 1 Department of Orthopedics, Second Affiliated Hospital and Yuying Children's Hospital, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yanlong Liu
- 2 Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Ling Xie
- 2 Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- 3 The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Huazi Xu
- 1 Department of Orthopedics, Second Affiliated Hospital and Yuying Children's Hospital, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Huacheng He
- 4 College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Hongyu Zhang
- 2 Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- 1 Department of Orthopedics, Second Affiliated Hospital and Yuying Children's Hospital, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,2 Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
17
|
Zhou Y, Liu X, Li W, Sun X, Xie Z. Endoplasmic reticulum stress contributes to the pathogenesis of stress urinary incontinence in postmenopausal women. J Int Med Res 2018; 46:5269-5277. [PMID: 30426803 PMCID: PMC6300970 DOI: 10.1177/0300060518807602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objective To investigate the relationship between endoplasmic reticulum stress (ERS) and the pathogenesis of stress urinary incontinence (SUI) in postmenopausal women. Methods Anterior vaginal wall tissue was collected from postmenopausal women with SUI and control subjects. Western blotting was performed for glucose-regulated protein (GRP78), inositol-requiring enzyme 1(IRE1), protein kinase-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), C/EBP-homologous protein (CHOP), and B-cell lymphoma 2 (Bcl-2). Additionally, mRNA expression levels of PERK, activating transcription factor 4 (ATF4), and CHOP were examined by real-time polymerase chain reaction. Results GRP78 protein and mRNA expression levels were significantly lower in women with SUI, compared with control subjects. PERK and p-PERK expression levels were higher in women with SUI than in control subjects. However, no differences in IRE1 or ATF6 expression levels were observed in either group. Notably, higher CHOP and lower Bcl-2 protein expression levels were detected in women with SUI, compared with control subjects. Furthermore, PERK, ATF4, and CHOP mRNA expression levels were significantly higher in women with SUI than in control subjects. Conclusions Alterations of ERS markers in SUI suggest that ERS may be involved in the development of SUI in postmenopausal women.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaoxia Liu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Wenjuan Li
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaoyan Sun
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Zhenwei Xie
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
18
|
Li C. The Role of Endoplasmic Reticulum Stress in the Development of Fibrosis in Crohn’s Disease. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2018; 3:33-41. [DOI: 10.14218/erhm.2018.00003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Paula FMM, Leite NC, Borck PC, Freitas-Dias R, Cnop M, Chacon-Mikahil MPT, Cavaglieri CR, Marchetti P, Boschero AC, Zoppi CC, Eizirik DL. Exercise training protects human and rodent β cells against endoplasmic reticulum stress and apoptosis. FASEB J 2018; 32:1524-1536. [PMID: 29133342 DOI: 10.1096/fj.201700710r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Prolonged exercise has positive metabolic effects in obese or diabetic individuals. These effects are usually ascribed to improvements in insulin sensitivity. We evaluated whether exercise also generates circulating signals that protect human and rodent β cells against endoplasmic reticulum (ER) stress and apoptosis. For this purpose, we obtained serum from humans or mice before and after an 8 wk training period. Exposure of human islets or mouse or rat β cells to human or rodent sera, respectively, obtained from trained individuals reduced cytokine (IL-1β+IFN-γ)- or chemical ER stressor-induced β-cell ER stress and apoptosis, at least in part via activation of the transcription factor STAT3. These findings indicate that exercise training improves human and rodent β-cell survival under diabetogenic conditions and support lifestyle interventions as a protective approach for both type 1 and 2 diabetes.-Paula, F. M. M., Leite, N. C., Borck, P. C., Freitas-Dias, R., Cnop, M., Chacon-Mikahil, M. P. T., Cavaglieri, C. R., Marchetti, P., Boschero, A. C., Zoppi, C. C., Eizirik, D. L. Exercise training protects human and rodent β cells against endoplasmic reticulum stress and apoptosis.
Collapse
Affiliation(s)
- Flavia M M Paula
- Center for Diabetes Research, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nayara C Leite
- Department of Structural and Functional Biology, Institute of Biology, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Patricia C Borck
- Department of Structural and Functional Biology, Institute of Biology, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Ricardo Freitas-Dias
- Department of Structural and Functional Biology, Institute of Biology, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Brazil.,Department of Physical Therapy, University of Pernambuco, Petrolina, Brazil
| | - Miriam Cnop
- Center for Diabetes Research, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mara P T Chacon-Mikahil
- Exercise Physiology Laboratory (FISEX), Faculty of Physical Education, University of Campinas (UNICAMP), Campinas, Brazil; and
| | - Claudia R Cavaglieri
- Exercise Physiology Laboratory (FISEX), Faculty of Physical Education, University of Campinas (UNICAMP), Campinas, Brazil; and
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio C Boschero
- Department of Structural and Functional Biology, Institute of Biology, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Claudio C Zoppi
- Department of Structural and Functional Biology, Institute of Biology, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Decio L Eizirik
- Center for Diabetes Research, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|