1
|
Guida M, Tammaro C, Quaranta M, Salvucci B, Biava M, Poce G, Consalvi S. Amino Acid Biosynthesis Inhibitors in Tuberculosis Drug Discovery. Pharmaceutics 2024; 16:725. [PMID: 38931847 PMCID: PMC11206623 DOI: 10.3390/pharmaceutics16060725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
According to the latest World Health Organization (WHO) report, an estimated 10.6 million people were diagnosed with tuberculosis (TB) in 2022, and 1.30 million died. A major concern is the emergence of multi-drug-resistant (MDR) and extensively drug-resistant (XDR) strains, fueled by the length of anti-TB treatment and HIV comorbidity. Innovative anti-TB agents acting with new modes of action are the only solution to counteract the spread of resistant infections. To escape starvation and survive inside macrophages, Mtb has evolved to become independent of the host by synthesizing its own amino acids. Therefore, targeting amino acid biosynthesis could subvert the ability of the mycobacterium to evade the host immune system, providing innovative avenues for drug discovery. The aim of this review is to give an overview of the most recent progress in the discovery of amino acid biosynthesis inhibitors. Among the hits discovered over the past five years, tryptophan (Trp) inhibitors stand out as the most advanced and have significantly contributed to demonstrating the feasibility of this approach for future TB drug discovery. Future efforts should be directed at prioritizing the chemical optimization of these hits to enrich the TB drug pipeline with high-quality leads.
Collapse
Affiliation(s)
| | | | | | | | | | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Rome, Italy; (M.G.); (C.T.); (M.Q.); (B.S.); (M.B.)
| | - Sara Consalvi
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Rome, Italy; (M.G.); (C.T.); (M.Q.); (B.S.); (M.B.)
| |
Collapse
|
2
|
Ghosh S, Kundu R, Chandana M, Das R, Anand A, Beura S, Bobde RC, Jain V, Prabhu SR, Behera PK, Mohanty AK, Chakrapani M, Satyamoorthy K, Suryawanshi AR, Dixit A, Padmanaban G, Nagaraj VA. Distinct evolution of type I glutamine synthetase in Plasmodium and its species-specific requirement. Nat Commun 2023; 14:4216. [PMID: 37452051 PMCID: PMC10349072 DOI: 10.1038/s41467-023-39670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Malaria parasite lacks canonical pathways for amino acid biosynthesis and depends primarily on hemoglobin degradation and extracellular resources for amino acids. Interestingly, a putative gene for glutamine synthetase (GS) is retained despite glutamine being an abundant amino acid in human and mosquito hosts. Here we show Plasmodium GS has evolved as a unique type I enzyme with distinct structural and regulatory properties to adapt to the asexual niche. Methionine sulfoximine (MSO) and phosphinothricin (PPT) inhibit parasite GS activity. GS is localized to the parasite cytosol and abundantly expressed in all the life cycle stages. Parasite GS displays species-specific requirement in Plasmodium falciparum (Pf) having asparagine-rich proteome. Targeting PfGS affects asparagine levels and inhibits protein synthesis through eIF2α phosphorylation leading to parasite death. Exposure of artemisinin-resistant Pf parasites to MSO and PPT inhibits the emergence of viable parasites upon artemisinin treatment.
Collapse
Affiliation(s)
- Sourav Ghosh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Rajib Kundu
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Manjunatha Chandana
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India
| | - Rahul Das
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Aditya Anand
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Subhashree Beura
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Ruchir Chandrakant Bobde
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Vishal Jain
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Sowmya Ramakant Prabhu
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | | | - Akshaya Kumar Mohanty
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Ispat General Hospital, Sector 19, Rourkela, 769005, Odisha, India
| | - Mahabala Chakrapani
- Department of Medicine, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | | | - Anshuman Dixit
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Govindarajan Padmanaban
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | | |
Collapse
|
3
|
Kalita A, Mishra RK, Kumar V, Arora A, Dutta D. An Intrinsic Alkalization Circuit Turns on mntP Riboswitch under Manganese Stress in Escherichia coli. Microbiol Spectr 2022; 10:e0336822. [PMID: 36190429 PMCID: PMC9603457 DOI: 10.1128/spectrum.03368-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 01/04/2023] Open
Abstract
The trace metal manganese in excess affects iron-sulfur cluster and heme-protein biogenesis, eliciting cellular toxicity. The manganese efflux protein MntP is crucial to evading manganese toxicity in bacteria. Recently, two Mn-sensing riboswitches upstream of mntP and alx in Escherichia coli have been reported to mediate the upregulation of their expression under manganese shock. As the alx riboswitch is also responsive to alkaline shock administered externally, it is intriguing whether the mntP riboswitch is also responsive to alkaline stress. Furthermore, how both manganese and alkaline pH simultaneously regulate these two riboswitches under physiological conditions is a puzzle. Using multiple approaches, we show that manganese shock activated glutamine synthetase (GlnA) and glutaminases (GlsA and GlsB) to spike ammonia production in E. coli. The elevated ammonia intrinsically alkalizes the cytoplasm. We establish that this alkalization under manganese stress is crucial for attaining the highest degree of riboswitch activation. Additional studies showed that alkaline pH promotes a 17- to 22-fold tighter interaction between manganese and the mntP riboswitch element. Our study uncovers a physiological linkage between manganese efflux and pH homeostasis that mediates enhanced manganese tolerance. IMPORTANCE Riboswitch RNAs are cis-acting elements that can adopt alternative conformations in the presence or absence of a specific ligand(s) to modulate transcription termination or translation initiation processes. In the present work, we show that manganese and alkaline pH are both necessary for maximal mntP riboswitch activation to mitigate the manganese toxicity. This study bridges the gap between earlier studies that separately emphasize the importance of alkaline pH and manganese in activating the riboswitches belonging to the yybP-ykoY family. This study also ascribes a physiological relevance as to how manganese can rewire cellular physiology to render cytoplasmic pH alkaline for its homeostasis.
Collapse
Affiliation(s)
- Arunima Kalita
- CSIR Institute of Microbial Technology, Chandigarh, India
| | | | - Vineet Kumar
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Amit Arora
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Dipak Dutta
- CSIR Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
4
|
Sundararajan S, Muniyan R. Latent tuberculosis: interaction of virulence factors in Mycobacterium tuberculosis. Mol Biol Rep 2021; 48:6181-6196. [PMID: 34351540 DOI: 10.1007/s11033-021-06611-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/29/2021] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) remains a prominent health concern worldwide. Besides extensive research and vaccinations available, attempts to control the pandemic are cumbersome due to the complex physiology of Mycobacterium tuberculosis (Mtb). Alongside the emergence of drug-resistant TB, latent TB has worsened the condition. The tubercle bacilli are unusually behaved and successful with its strategies to modulate genes to evade host immune system and persist within macrophages. Under latent/unfavorable conditions, Mtb conceals itself from immune system and modulates its genes. Among many intracellular modulated genes, important are those involved in cell entry, fatty acid degradation, mycolic acid synthesis, phagosome acidification inhibition, inhibition of phagosome-lysosome complex and chaperon protein modulation. Though the study on these genes date back to early times of TB, an insight on their inter-relation within and to newly evolved genes are still required. This review focuses on the findings and discussions on these genes, possible mechanism, credibility as target for novel drugs and repurposed drugs and their interaction that enables Mtb in survival, pathogenesis, resistance and latency.
Collapse
Affiliation(s)
- Sadhana Sundararajan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Rajiniraja Muniyan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
5
|
Potential therapeutic approaches for a sleeping pathogen: tuberculosis a case for bioinorganic chemistry. J Biol Inorg Chem 2020; 25:685-704. [PMID: 32676771 DOI: 10.1007/s00775-020-01803-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Mycobacterium tuberculosis (Mtb) has an old history as a human pathogen and still kills over one million people every year. One key feature of this bacterium is its dormancy: a phenomenon responsible for major changes in its metabolism and replication that have been associated with the need for a lengthy therapy for Mtb. This process is regulated by key heme-based sensors, particularly DosT and DevS (DosS), among other co-regulators, and also linked to nitrogen utilization (nitrate/nitrite) and stringent responses. In face of the current threat of tuberculosis, there is an urgent need to develop new therapeutic agents capable of targeting the dormant state, associated with the need for a lengthy therapy. Interestingly, many of those key proteins are indeed metallo-containing or metallo-dependent biomolecules, opening exciting bioinorganic opportunities. Here, we critically reviewed a series of small molecules targeting key proteins involved in these processes, including DosT/DevS/DevR, RegX3, MprA, MtrA, NarL, PknB, Rel, PPK, nitrate and nitrite reductases, GlnA1, aiming for new opportunities and alternative therapies. In the battle against Mycobacterium tuberculosis, new drug targets must be searched, in particular those involved in dormancy. A series of exciting cases for drug development involving metallo-containing or metallo-dependent biomolecules are reviewed, opening great opportunities for the bioinorganic chemistry community.
Collapse
|
6
|
Wang J, Qu Q, Liu X, Cui W, Yu F, Chen X, Xing X, Zhou Y, Yang Y, Bello-Onaghise G, Chen X, Li X, Li Y. 1-Hydroxyanthraquinone exhibited antibacterial activity by regulating glutamine synthetase of Staphylococcus xylosus as a virulence factor. Biomed Pharmacother 2020; 123:109779. [PMID: 31918211 DOI: 10.1016/j.biopha.2019.109779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus xylosus (S. xylosus) is one of the emerging pathogens causing bovine mastitis with high rate of isolation in most of the reported clinical and field cases. To verify the role of glutamine synthetase (GS) in the pathogenesis of S. xylosus, we evaluated the virulence level of the wild-type strain and its glnA mutant strain in biofilm assays in vitro and murine infection model in vivo. From the results, it was observed that the glnA mutant strain was attenuated and could reduce tissue damage. 1-Hydroxyanthraquinone (1-HAQ) is a kind of anthraquinones, it exhibited a significant inhibitory effect on the growth of S. xylosus and biofilm formation in vitro and provided anti-inflammatory effects in vivo. In addition, the rate at which it inhibits the biofilm, inflammatory factors, and CFU of wild-type strains were significantly higher than that of the mutant strains, indicating that 1-hAQ might have pharmacological effects against S. xylosus through the regulation of GS protein. The effect of 1-hAQ on GS was further confirmed by the down-regulation of glnA expression, reduced GS activity, Gln content and the results of molecular docking. Taken together, these findings suggest that 1-hAQ facilitated a significant attenuation of S. xylosus pathogenicity by regulating the GS protein: a vital virulence factor. Therefore, it can be inferred that 1-hAQ may serve as a potential source of organic compound for the development of novel alternative drugs in mitigating the menace of bovine mastitis.
Collapse
Affiliation(s)
- Jinpeng Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China
| | - Qianwei Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China
| | - Xin Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China; Basic Medical School, Gui Zhou University of Traditional Chinese Medicine, Gui Zhou 550000, China
| | - Wenqiang Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China
| | - Fei Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China
| | - Xingru Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China
| | - Xiaoxu Xing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China
| | - Yonghui Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China
| | - Yanbei Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China
| | - God'spower Bello-Onaghise
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China
| | - Xueying Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China
| | - Xiubo Li
- Feed Research Institute Chinese Academy of Agricultural Science, Harbin, Heilongjiang 150030, China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
7
|
Mode-of-action profiling reveals glutamine synthetase as a collateral metabolic vulnerability of M. tuberculosis to bedaquiline. Proc Natl Acad Sci U S A 2019; 116:19646-19651. [PMID: 31501323 DOI: 10.1073/pnas.1907946116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Combination chemotherapy can increase treatment efficacy and suppress drug resistance. Knowledge of how to engineer rational, mechanism-based drug combinations, however, remains lacking. Although studies of drug activity have historically focused on the primary drug-target interaction, growing evidence has emphasized the importance of the subsequent consequences of this interaction. Bedaquiline (BDQ) is the first new drug for tuberculosis (TB) approved in more than 40 y, and a species-selective inhibitor of the Mycobacterium tuberculosis (Mtb) ATP synthase. Curiously, BDQ-mediated killing of Mtb lags significantly behind its inhibition of ATP synthase, indicating a mode of action more complex than the isolated reduction of ATP pools. Here, we report that BDQ-mediated inhibition of Mtb's ATP synthase triggers a complex metabolic response indicative of a specific hierarchy of ATP-dependent reactions. We identify glutamine synthetase (GS) as an enzyme whose activity is most responsive to changes in ATP levels. Chemical supplementation with exogenous glutamine failed to affect BDQ's antimycobacterial activity. However, further inhibition of Mtb's GS synergized with and accelerated the onset of BDQ-mediated killing, identifying Mtb's glutamine synthetase as a collateral, rather than directly antimycobacterial, metabolic vulnerability of BDQ. These findings reveal a previously unappreciated physiologic specificity of ATP and a facet of mode-of-action biology we term collateral vulnerability, knowledge of which has the potential to inform the development of rational, mechanism-based drug combinations.
Collapse
|