1
|
Kusi KA, Amoah LE, Acquah FK, Ennuson NA, Frempong AF, Ofori EA, Akyea-Mensah K, Kyei-Baafour E, Osei F, Frimpong A, Singh SK, Theisen M, Remarque EJ, Faber BW, Belmonte M, Ganeshan H, Huang J, Villasante E, Sedegah M. Plasmodium falciparum AMA1 and CSP antigen diversity in parasite isolates from southern Ghana. Front Cell Infect Microbiol 2024; 14:1375249. [PMID: 38808064 PMCID: PMC11132687 DOI: 10.3389/fcimb.2024.1375249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/19/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction Diversity in malarial antigens is an immune evasion mechanism that gives malaria parasites an edge over the host. Immune responses against one variant of a polymorphic antigen are usually not fully effective against other variants due to altered epitopes. This study aimed to evaluate diversity in the Plasmodium falciparum antigens apical membrane antigen 1 (PfAMA1) and circumsporozoite protein (PfCSP) from circulating parasites in a malaria-endemic community in southern Ghana and to determine the effects of polymorphisms on antibody response specificity. Methods The study involved 300 subjects, whose P. falciparum infection status was determined by microscopy and PCR. Diversity within the two antigens was evaluated by msp2 gene typing and molecular gene sequencing, while the host plasma levels of antibodies against PfAMA1, PfCSP, and two synthetic 24mer peptides from the conserved central repeat region of PfCSP, were measured by ELISA. Results Of the 300 subjects, 171 (57%) had P. falciparum infection, with 165 of the 171 (96.5%) being positive for either or both of the msp2 allelic families. Gene sequencing of DNA from 55 clonally infected samples identified a total of 56 non-synonymous single nucleotide polymorphisms (SNPs) for the Pfama1 gene and these resulted in 44 polymorphic positions, including two novel positions (363 and 365). Sequencing of the Pfcsp gene from 69 clonal DNA samples identified 50 non-synonymous SNPs that resulted in 42 polymorphic positions, with half (21) of these polymorphic positions being novel. Of the measured antibodies, only anti-PfCSP antibodies varied considerably between PCR parasite-positive and parasite-negative persons. Discussion These data confirm the presence of a considerable amount of unique, previously unreported amino acid changes, especially within PfCSP. Drivers for this diversity in the Pfcsp gene do not immediately seem apparent, as immune pressure will be expected to drive a similar level of diversity in the Pfama1 gene.
Collapse
Affiliation(s)
- Kwadwo A. Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Linda E. Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Festus Kojo Acquah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Nana Aba Ennuson
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Abena F. Frempong
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Ebenezer A. Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Kwadwo Akyea-Mensah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Eric Kyei-Baafour
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Frank Osei
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Augustina Frimpong
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Susheel K. Singh
- Center for Medical Parasitology at the Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
| | - Michael Theisen
- Center for Medical Parasitology at the Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
| | - Edmond J. Remarque
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| | - Bart W. Faber
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| | - Maria Belmonte
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Malaria Department, Naval Medical Research Command, Silver Spring, MD, United States
| | - Harini Ganeshan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Malaria Department, Naval Medical Research Command, Silver Spring, MD, United States
| | - Jun Huang
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Malaria Department, Naval Medical Research Command, Silver Spring, MD, United States
| | - Eileen Villasante
- Malaria Department, Naval Medical Research Command, Silver Spring, MD, United States
| | - Martha Sedegah
- Malaria Department, Naval Medical Research Command, Silver Spring, MD, United States
| |
Collapse
|
2
|
Dieng CC, Ford CT, Lerch A, Doniou D, Vegesna K, Janies D, Cui L, Amoah L, Afrane Y, Lo E. Genetic variations of Plasmodium falciparum circumsporozoite protein and the impact on interactions with human immunoproteins and malaria vaccine efficacy. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 110:105418. [PMID: 36841398 DOI: 10.1016/j.meegid.2023.105418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
In October 2021, the world's first malaria vaccine RTS,S was endorsed by WHO for broad use in children, despite its low efficacy. This study examined polyclonal infections and the associations of parasite genetic variations with binding affinity to human leukocyte antigen (HLA). Multiplicity of infection was determined by amplicon deep sequencing of PfMSP1. Genetic variations in PfCSP were examined across 88 samples from Ghana and analyzed together with 1655 PfCSP sequences from other African and non-African isolates. Binding interactions of PfCSP peptide variants and HLA were predicted using NetChop and HADDOCK. High polyclonality was detected among infections, with each infection harboring multiple non-3D7 PfCSP variants. Twenty-seven PfCSP haplotypes were detected in the Ghanaian samples, and they broadly represented PfCSP diversity across Africa. The number of genetic differences between 3D7 and non-3D7 PfCSP variants does not influence binding to HLA. However, CSP peptide length after proteolytic degradation significantly affects its molecular weight and binding affinity to HLA. Despite the high diversity of HLA, the majority of the HLAI and II alleles interacted/bound with all Ghana CSP peptides. Multiple non-3D7 strains among P. falciparum infections could impact the effectiveness of RTS,S. Longer peptides of the Th2R/Th3R CSP regions should be considered in future versions of RTS,S.
Collapse
Affiliation(s)
- Cheikh Cambel Dieng
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Colby T Ford
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA; School of Data Science, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Anita Lerch
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Dickson Doniou
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kovidh Vegesna
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Daniel Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Linda Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana; West Africa Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Yaw Afrane
- Department of Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA; School of Data Science, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
3
|
Ayanful-Torgby R, Sarpong E, Abagna HB, Donu D, Obboh E, Mensah BA, Adjah J, Williamson KC, Amoah LE. Persistent Plasmodium falciparum infections enhance transmission-reducing immunity development. Sci Rep 2021; 11:21380. [PMID: 34725428 PMCID: PMC8560775 DOI: 10.1038/s41598-021-00973-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/21/2021] [Indexed: 11/09/2022] Open
Abstract
Subclinical infections that serve as reservoir populations to drive transmission remain a hurdle to malaria control. Data on infection dynamics in a geographical area is required to strategically design and implement malaria interventions. In a longitudinal cohort, we monitored Plasmodium falciparum infection prevalence and persistence, and anti-parasite immunity to gametocyte and asexual antigens for 10 weeks. Of the 100 participants, only 11 were never infected, whilst 16 had persistent infections detected by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), and one participant had microscopic parasites at all visits. Over 70% of the participants were infected three or more times, and submicroscopic gametocyte prevalence was high, ≥ 48% of the parasite carriers. Naturally induced responses against recombinant Pfs48/45.6C, Pfs230proC, and EBA175RIII-V antigens were not associated with either infection status or gametocyte carriage, but the antigen-specific IgG titers inversely correlated with parasite and gametocyte densities consistent with partial immunity. Longitudinal analysis of gametocyte diversity indicated at least four distinct clones circulated throughout the study period. The high prevalence of children infected with distinct gametocyte clones coupled with marked variation in infection status at the individual level suggests ongoing transmission and should be targeted in malaria control programs.
Collapse
Affiliation(s)
- Ruth Ayanful-Torgby
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | | | - Hamza B Abagna
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dickson Donu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Benedicta A Mensah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joshua Adjah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kim C Williamson
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Linda E Amoah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| |
Collapse
|
4
|
Bonam SR, Rénia L, Tadepalli G, Bayry J, Kumar HMS. Plasmodium falciparum Malaria Vaccines and Vaccine Adjuvants. Vaccines (Basel) 2021; 9:1072. [PMID: 34696180 PMCID: PMC8541031 DOI: 10.3390/vaccines9101072] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
Malaria-a parasite vector-borne disease-is a global health problem, and Plasmodium falciparum has proven to be the deadliest among Plasmodium spp., which causes malaria in humans. Symptoms of the disease range from mild fever and shivering to hemolytic anemia and neurological dysfunctions. The spread of drug resistance and the absence of effective vaccines has made malaria disease an ever-emerging problem. Although progress has been made in understanding the host response to the parasite, various aspects of its biology in its mammalian host are still unclear. In this context, there is a pressing demand for the development of effective preventive and therapeutic strategies, including new drugs and novel adjuvanted vaccines that elicit protective immunity. The present article provides an overview of the current knowledge of anti-malarial immunity against P. falciparum and different options of vaccine candidates in development. A special emphasis has been made on the mechanism of action of clinically used vaccine adjuvants.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, F-75006 Paris, France;
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, 8A Biomedical Grove, Singapore 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Ganesh Tadepalli
- Vaccine Immunology Laboratory, Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India;
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, F-75006 Paris, France;
- Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad 678623, India
| | - Halmuthur Mahabalarao Sampath Kumar
- Vaccine Immunology Laboratory, Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India;
| |
Collapse
|
5
|
Kyei-Baafour E, Oppong M, Kusi KA, Frempong AF, Aculley B, Arthur FKN, Tiendrebeogo RW, Singh SK, Theisen M, Kweku M, Adu B, Hviid L, Ofori MF. Suitability of IgG responses to multiple Plasmodium falciparum antigens as markers of transmission intensity and pattern. PLoS One 2021; 16:e0249936. [PMID: 33886601 PMCID: PMC8062017 DOI: 10.1371/journal.pone.0249936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/27/2021] [Indexed: 12/05/2022] Open
Abstract
Detection of antibody reactivity to appropriate, specific parasite antigens may constitute a sensitive and cost-effective alternative to current tools to monitor malaria transmission across different endemicity settings. This study aimed to determine the suitability of IgG responses to a number of P. falciparum antigens as markers of transmission intensity and pattern. Antibody responses to multiple malaria antigens were determined in 905 participants aged 1–12 years from three districts with low (Keta), medium (Hohoe) and high (Krachi) transmission intensity in the Volta region of Ghana. Blood film microscopy slides and dry blood spots (DBS) were obtained for parasitaemia detection and antibody measurement, respectively. Sera were eluted from DBS and levels of IgG specific for 10 malaria antigens determined by a multiplex assay. Results were compared within and among the districts. Total IgG responses to MSPDBL1, MSPDBLLeucine, MSP2-FC27, RAMA, and PfRh2a and PfRh2b were higher in Krachi than in Hohoe and Keta. Seroprevalence of IgG specific for MSPDBLLeucine, RON4, and PfRh2b were also highest in Krachi. Responses to RALP-1, PfRh2a and PfRh2b were associated with patent but asymptomatic parasitaemia in Keta, while responses to MSPDBL1, MSPDBLLeucine, MSP2-FC27, RAMA, Rh2-2030, and PfRh2b were associated with parasite carriage in Hohoe, but not in Krachi. Using ROC analysis, only PfRh2b was found to predict patent, but asymptomatic, parasitaemia in Keta and Hohoe. Antibody breadth correlated positively with age (r = 0.29, p<0.0001) and parasitaemia (β = 3.91; CI = 1.53 to 6.29), and medium to high transmission (p<0.0001). Our findings suggest differences in malaria-specific antibody responses across the three transmission zones and that PfRh2b has potential as a marker of malaria transmission intensity and pattern. This could have implications for malaria control programs and vaccine trials.
Collapse
Affiliation(s)
- Eric Kyei-Baafour
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry and Biotechnology, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Mavis Oppong
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Abena Fremaah Frempong
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Belinda Aculley
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Fareed K. N. Arthur
- Department of Biochemistry and Biotechnology, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Regis Wendpayangde Tiendrebeogo
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, and at Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Susheel K. Singh
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, and at Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Michael Theisen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, and at Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Margaret Kweku
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, and at Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Michael Fokuo Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- * E-mail:
| |
Collapse
|
6
|
Bamgbose T, Anvikar AR, Alberdi P, Abdullahi IO, Inabo HI, Bello M, Cabezas-Cruz A, de la Fuente J. Functional Food for the Stimulation of the Immune System Against Malaria. Probiotics Antimicrob Proteins 2021; 13:1254-1266. [PMID: 33791994 PMCID: PMC8012070 DOI: 10.1007/s12602-021-09780-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
Drug resistance has become a threat to global health, and new interventions are needed to control major infectious diseases. The composition of gut microbiota has been linked to human health and has been associated with severity of malaria. Fermented foods contribute to the community of healthy gut bacteria. Despite the studies connecting gut microbiota to the prevention of malaria transmission and severity, research on developing functional foods for the purpose of manipulating the gut microbiota for malaria control is limited. This review summarizes recent knowledge on the role of the gut microbiota in malaria prevention and treatment. This information should encourage the search for lactic acid bacteria expressing α-Gal and those that exhibit the desired immune stimulating properties for the development of functional food and probiotics for malaria control.
Collapse
Affiliation(s)
- Timothy Bamgbose
- ICMR, -National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India
- Department of Microbiology, Ahmadu Bello University, Samaru Zaria, Kaduna, Nigeria
| | - Anupkumar R Anvikar
- ICMR, -National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Isa O Abdullahi
- Department of Microbiology, Ahmadu Bello University, Samaru Zaria, Kaduna, Nigeria
| | - Helen I Inabo
- Department of Microbiology, Ahmadu Bello University, Samaru Zaria, Kaduna, Nigeria
| | - Mohammed Bello
- Department of Veterinary Public Health and Preventive Medicine, Ahmadu Bello University, Samaru Zaria, Kaduna, Nigeria
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire D'Alfort, Université Paris-Est, 94700, Maisons-Alfort, France
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain.
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
7
|
Coelho CH, Jore MM, Canepa GE, Barillas-Mury C, Bousema T, Duffy PE. Antibody Therapy Goes to Insects: Monoclonal Antibodies Can Block Plasmodium Transmission to Mosquitoes. Trends Parasitol 2020; 36:880-883. [PMID: 33036937 DOI: 10.1016/j.pt.2020.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022]
Abstract
Malaria eradication is a global priority but requires innovative strategies. Humoral immune responses attack different parasite stages, and antibody-based therapy may prevent malaria infection or transmission. Here, we discuss targets of monoclonal antibodies in mosquito sexual stages of Plasmodium.
Collapse
Affiliation(s)
- Camila H Coelho
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Matthijs M Jore
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gaspar E Canepa
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Variations in killer-cell immunoglobulin-like receptor and human leukocyte antigen genes and immunity to malaria. Cell Mol Immunol 2020; 17:799-806. [PMID: 32541835 PMCID: PMC7294524 DOI: 10.1038/s41423-020-0482-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/19/2020] [Indexed: 12/29/2022] Open
Abstract
Malaria is one of the deadliest infectious diseases in the world. Immune responses to Plasmodium falciparum malaria vary among individuals and between populations. Human genetic variation in immune system genes is likely to play a role in this heterogeneity. Natural killer (NK) cells produce inflammatory cytokines in response to malaria infection, kill intraerythrocytic Plasmodium falciparum parasites by cytolysis, and participate in the initiation and development of adaptive immune responses to plasmodial infection. These functions are modulated by interactions between killer-cell immunoglobulin-like receptors (KIRs) and human leukocyte antigens (HLAs). Therefore, variations in KIR and HLA genes can have a direct impact on NK cell functions. Understanding the role of KIRs and HLAs in immunity to malaria can help to better characterize antimalarial immune responses. In this review, we summarize the different KIRs and HLAs associated with immunity to malaria thus far.
Collapse
|
9
|
Acquah FK, Lo AC, Akyea-Mensah K, Abagna HB, Faye B, Theisen M, Gyan BA, Amoah LE. Stage-specific Plasmodium falciparum immune responses in afebrile adults and children living in the Greater Accra Region of Ghana. Malar J 2020; 19:64. [PMID: 32041620 PMCID: PMC7011432 DOI: 10.1186/s12936-020-3146-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/30/2020] [Indexed: 12/02/2022] Open
Abstract
Background Asymptomatic carriage of Plasmodium falciparum is widespread in adults and children living in malaria-endemic countries. This study identified the prevalence of malaria parasites and the corresponding levels of naturally acquired anti-parasite antibody levels in afebrile adults living in two communities in the Greater Accra Region of Ghana. Methods Two cross-sectional studies conducted in January and February 2016 and repeated in July and August 2016 recruited subjects aged between 6 and 75 years from high parasite prevalence (Obom) and low parasite prevalence (Asutsuare) communities. Whole blood (5 ml) was collected from each volunteer, plasma was aliquoted and frozen until needed. An aliquot (10 µl) of the blood was used to prepare thick and thin blood smears, 100 µl was preserved in Trizol and the rest was separated into plasma and blood cells and each stored at − 20 °C until needed. Anti-MSP3 and Pfs230 antibody levels were measured using ELISA. Results Asexual parasite and gametocyte prevalence were higher in Obom than Asutsuare. Antibody (IgG, IgG1, IgG3, IgM) responses against the asexual parasite antigen MSP3 and gametocyte antigen Pfs230 were higher in Obom during the course of the study except for IgM responses against Pfs230, which was higher in Asutsuare than in Obom during the rainy season. Antibody responses in Asutsuare were more significantly associated with age than the responses measured in Obom. Conclusion The pattern of antibody responses measured in people living in the high and low malaria transmission setting was similar. All antibody responses measured against the asexual antigen MSP3 increased, however, IgG and IgG1 responses against gametocyte antigen Pfs230 decreased in moving from the dry to the peak season in both sites. Whilst asexual and gametocyte prevalence was similar between the seasons in the low transmission setting, in the high transmission setting asexual parasite prevalence increased but gametocyte prevalence decreased in the rainy season relative to the dry season.
Collapse
Affiliation(s)
- Festus K Acquah
- Immunology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Aminata C Lo
- Immunology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,Parasitology Department, University Cheikh Anta Diop, Dakar, Senegal
| | - Kwadwo Akyea-Mensah
- Immunology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana
| | - Hamza B Abagna
- Immunology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana
| | - Babacar Faye
- Parasitology Department, University Cheikh Anta Diop, Dakar, Senegal
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ben A Gyan
- Immunology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana
| | - Linda E Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana. .,West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.
| |
Collapse
|
10
|
Adadey SM, Ayee R, Languon S, Quansah D, Quaye O. Patterns of Frequently Diagnosed Pediatric Morbidities in Hospitalized Children in the Volta Region of Ghana. Glob Pediatr Health 2019; 6:2333794X19889230. [PMID: 31799337 PMCID: PMC6868572 DOI: 10.1177/2333794x19889230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/19/2019] [Accepted: 10/22/2019] [Indexed: 11/30/2022] Open
Abstract
Background. The aim of this study was to identify the frequently diagnosed pediatric diseases in the Volta Region of Ghana, as well as to examine the burden of these diseases. The top pediatric diseases that were frequently diagnosed were malaria, gastroenteritis, systemic infection, anemia, pneumonia, and respiratory tract infection. Methods. Clearance was obtained from the Volta Regional Directorate of the Ghana Health Service to collect primary data on pediatric hospitalizations in the major hospitals in the Region. Diseases with more than 1000 recorded cases of hospitalizations were considered among the top frequently diagnosed childhood morbidities. Results. The data suggest that the Northern sector had different seasonal patterns of recorded diagnosed pediatric cases compared with the Central and Southern sectors, which had similar patterns of the reported diseases. Most of the pediatric diseases in the Volta Region were more prevalent during the dry seasons compared with the rainy seasons and resulting in seasonal patterns of hospitalizations. Conclusion. Although the frequently diagnosed pediatric diseases can be prevented and/or treated, many children are hospitalized, with a proportion of them dying. It is, therefore, important that efforts are made to reduce the burden of pediatric hospitalization.
Collapse
|
11
|
Olsen RW, Ecklu-Mensah G, Bengtsson A, Ofori MF, Kusi KA, Koram KA, Hviid L, Adams Y, Jensen ATR. Acquisition of IgG to ICAM-1-Binding DBLβ Domains in the Plasmodium falciparum Erythrocyte Membrane Protein 1 Antigen Family Varies between Groups A, B, and C. Infect Immun 2019; 87:e00224-19. [PMID: 31308082 PMCID: PMC6759304 DOI: 10.1128/iai.00224-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is an important malaria virulence factor. The protein family can be divided into clinically relevant subfamilies. ICAM-1-binding group A PfEMP1 proteins also bind endothelial protein C receptor and have been associated with cerebral malaria in children. IgG to these PfEMP1 proteins is acquired later in life than that to group A PfEMP1 not binding ICAM-1. The kinetics of acquisition of IgG to group B and C PfEMP1 proteins binding ICAM-1 is unclear and was studied here. Gene sequences encoding group B and C PfEMP1 with DBLβ domains known to bind ICAM-1 were used to identify additional binders. Levels of IgG specific for DBLβ domains from group A, B, and C PfEMP1 binding or not binding ICAM-1 were measured in plasma from Ghanaian children with or without malaria. Seven new ICAM-1-binding DBLβ domains from group B and C PfEMP1 were identified. Healthy children had higher levels of IgG specific for ICAM-1-binding DBLβ domains from group A than from groups B and C. However, the opposite pattern was found in children with malaria, particularly among young patients. Acquisition of IgG specific for DBLβ domains binding ICAM-1 differs between PfEMP1 groups.
Collapse
MESH Headings
- Antibodies, Protozoan/biosynthesis
- Child
- Child, Preschool
- Erythrocytes/immunology
- Erythrocytes/parasitology
- Female
- Gene Expression
- Ghana
- Humans
- Immunoglobulin G/biosynthesis
- Infant
- Intercellular Adhesion Molecule-1/genetics
- Intercellular Adhesion Molecule-1/immunology
- Malaria, Cerebral/genetics
- Malaria, Cerebral/immunology
- Malaria, Cerebral/parasitology
- Malaria, Cerebral/pathology
- Malaria, Falciparum/genetics
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/pathology
- Male
- Plasmodium falciparum/immunology
- Plasmodium falciparum/pathogenicity
- Polymorphism, Genetic
- Protein Binding
- Protein Domains
- Protozoan Proteins/classification
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Seasons
- Severity of Illness Index
Collapse
Affiliation(s)
- Rebecca W Olsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gertrude Ecklu-Mensah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Anja Bengtsson
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael F Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kwadwo A Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kwadwo A Koram
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja T R Jensen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Antigenicity and immune correlate assessment of seven Plasmodium falciparum antigens in a longitudinal infant cohort from northern Ghana. Sci Rep 2019; 9:8621. [PMID: 31197225 PMCID: PMC6565625 DOI: 10.1038/s41598-019-45092-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/30/2019] [Indexed: 11/23/2022] Open
Abstract
The current global malaria control and elimination agenda requires development of additional effective disease intervention tools. Discovery and characterization of relevant parasite antigens is important for the development of new diagnostics and transmission monitoring tools and for subunit vaccine development. This study assessed the natural antibody response profile of seven novel Plasmodium falciparum pre-erythrocytic antigens and their potential association with protection against clinical malaria. Antigen-specific antibody levels in plasma collected at six time points from a longitudinal cohort of one-to-five year old children resident in a seasonal malaria transmission area of northern Ghana were assessed by ELISA. Antibody levels were compared between parasite-positive and parasite-negative individuals and the association of antibody levels with malaria risk assessed using a regression model. Plasma antibody levels against five of the seven antigens were significantly higher in parasite-positive children compared to parasite-negative children, especially during low transmission periods. None of the antigen-specific antibodies showed an association with protection against clinical malaria. The study identified five of the seven antigens as markers of exposure to malaria, and these will have relevance for the development of disease diagnostic and monitoring tools. The vaccine potential of these antigens requires further assessment.
Collapse
|
13
|
Adamou R, Dechavanne C, Sadissou I, d'Almeida T, Bouraima A, Sonon P, Amoussa R, Cottrell G, Le Port A, Theisen M, Remarque EJ, Longacre S, Moutairou K, Massougbodji A, Luty AJF, Nuel G, Migot-Nabias F, Sanni A, Garcia A, Milet J, Courtin D. Plasmodium falciparum merozoite surface antigen-specific cytophilic IgG and control of malaria infection in a Beninese birth cohort. Malar J 2019; 18:194. [PMID: 31185998 PMCID: PMC6560827 DOI: 10.1186/s12936-019-2831-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/04/2019] [Indexed: 12/02/2022] Open
Abstract
Background Substantial evidence indicates that cytophilic IgG responses to Plasmodium falciparum merozoite antigens play a role in protection from malaria. The specific targets mediating immunity remain unclear. Evaluating antibody responses in infants naturally-exposed to malaria will allow to better understand the establishment of anti-malarial immunity and to contribute to a vaccine development by identifying the most appropriate merozoite candidate antigens. Methods The study was based on parasitological and clinical active follow-up of infants from birth to 18 months of age conducted in the Tori Bossito area of southern Benin. For 399 infants, plasma levels of cytophilic IgG antibodies with specificity for five asexual stage malaria vaccine candidate antigens were determined by ELISA in infants’ peripheral blood at 6, 9, 12 and 15 months of age. Multivariate mixed logistic model was used to investigate the association between antibody levels and anti-malarial protection in the trimester following the IgG quantification. Moreover, the concentrations of merozoite antigen-specific IgG were compared between a group of infants apparently able to control asymptomatic malaria infection (CAIG) and a group of infants with no control of malaria infection (Control group (NCIG)). Protective effect of antibodies was also assessed after 15 months of malaria exposure with a Cox regression model adjusted on environmental risk. Results Cytophilic IgG responses to AMA1, MSP1, MSP2-3D7, MSP2-FC27, MSP3 and GLURP R2 were associated with increasing malarial infection risk in univariate analysis. The multivariate mixed model showed that IgG1 and IgG3 to AMA1 were associated with an increased risk of malarial infection. However infants from CAIG (n = 53) had significantly higher AMA1-, MSP2-FC27-, MSP3-specific IgG1 and AMA1-, MSP1-, MSP2-FC27-, MSP3 and GLURP-R2-specific IgG3 than those from NCIG (n = 183). The latter IgG responses were not associated with protection against clinical malaria in the whole cohort when protective effect is assessed after 15 months of malaria exposition. Conclusion In this cohort, merozoite antigen-specific cytophilic IgG levels represent a marker of malaria exposure in infants from 6 to 18 months of age. However, infants with resolution of asymptomatic infection (CAIG) seem to have acquired naturally immunity against P. falciparum. This observation is encouraging in the context of the development of multitarget P. falciparum vaccines.
Collapse
Affiliation(s)
- Rafiou Adamou
- MERIT, IRD, Université de Paris, 75006, Paris, France. .,Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, Benin. .,Laboratoire de Biochimie et de Biologie Moléculaire, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Abomey Calavi, Benin.
| | | | - Ibrahim Sadissou
- MERIT, IRD, Université de Paris, 75006, Paris, France.,Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, Benin.,Laboratoire de Biologie et Physiologie Cellulaires, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin.,Division of Clinical Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Aziz Bouraima
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, Benin
| | - Paulin Sonon
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, Benin.,Laboratoire de Biologie et Physiologie Cellulaires, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin.,Division of Clinical Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Roukiyath Amoussa
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, Benin
| | | | - Agnès Le Port
- MERIT, IRD, Université de Paris, 75006, Paris, France
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Edmond J Remarque
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Shirley Longacre
- Laboratoire de Vaccinologie-Parasitaire, Institut Pasteur, Paris, France
| | - Kabirou Moutairou
- Laboratoire de Biologie et Physiologie Cellulaires, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin
| | - Achille Massougbodji
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, Benin
| | - Adrian J F Luty
- MERIT, IRD, Université de Paris, 75006, Paris, France.,Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, Benin
| | - Gregory Nuel
- Laboratoire de Probabilités et Modèles aléatoires (LPMA), UMR CNRS 7599, UPMC, Paris, France
| | | | - Ambaliou Sanni
- Laboratoire de Biochimie et de Biologie Moléculaire, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Abomey Calavi, Benin
| | - André Garcia
- MERIT, IRD, Université de Paris, 75006, Paris, France.,Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, Benin
| | | | - David Courtin
- MERIT, IRD, Université de Paris, 75006, Paris, France
| |
Collapse
|
14
|
Abukari Z, Okonu R, Nyarko SB, Lo AC, Dieng CC, Salifu SP, Gyan BA, Lo E, Amoah LE. The Diversity, Multiplicity of Infection and Population Structure of P. falciparum Parasites Circulating in Asymptomatic Carriers Living in High and Low Malaria Transmission Settings of Ghana. Genes (Basel) 2019; 10:genes10060434. [PMID: 31181699 PMCID: PMC6628376 DOI: 10.3390/genes10060434] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 11/24/2022] Open
Abstract
Background: Diversity in Plasmodium falciparum poses a major threat to malaria control and elimination interventions. This study utilized 12 polymorphic microsatellite (MS) markers and the Msp2 marker to examine diversity, multiplicity of infection (MOI) as well as the population structure of parasites circulating in two sites separated by about 92 km and with varying malaria transmission intensities within the Greater Accra Region of Ghana. Methods: The diversity and MOI of P. falciparum parasites in 160 non-symptomatic volunteers living in Obom (high malaria transmission intensity) and Asutsuare (low malaria transmission intensity) aged between 8 and 60 years was determined using Msp2 genotyping and microsatellite analysis. Results: The prevalence of asymptomatic P. falciparum carriers as well as the parasite density of infections was significantly higher in Obom than in Asutsuare. Samples from Asutsuare and Obom were 100% and 65% clonal, respectively, by Msp2 genotyping but decreased to 50% and 5%, respectively, when determined by MS analysis. The genetic composition of parasites from Obom and Asutsuare were highly distinct, with parasites from Obom being more diverse than those from Asutsuare. Conclusion: Plasmodium falciparum parasites circulating in Obom are genetically more diverse and distinct from those circulating in Asutsuare. The MOI in samples from both Obom and Asutsuare increased when assessed by MS analysis relative to MSP2 genotyping. The TA40 and TA87 loci are useful markers for estimating MOI in high and low parasite prevalence settings.
Collapse
Affiliation(s)
- Zakaria Abukari
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | - Ruth Okonu
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | - Samuel B Nyarko
- School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Aminata C Lo
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
- Department of Parasitology, University Cheikh Anta Diop, Dakar, Senegal.
| | - Cheikh C Dieng
- Department of Biological Sciences, University of North Carolina at Charlotte, NC 28223, USA.
| | - Samson P Salifu
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Ben A Gyan
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, NC 28223, USA.
| | - Linda E Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
- West Africa Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana.
| |
Collapse
|
15
|
Specificity of the IgG antibody response to Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale MSP1 19 subunit proteins in multiplexed serologic assays. Malar J 2018; 17:417. [PMID: 30413163 PMCID: PMC6230236 DOI: 10.1186/s12936-018-2566-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/01/2018] [Indexed: 11/21/2022] Open
Abstract
Background Multiplex bead assays (MBA) that measure IgG antibodies to the carboxy-terminal 19-kDa sub-unit of the merozoite surface protein 1 (MSP119) are currently used to determine malaria seroprevalence in human populations living in areas with both stable and unstable transmission. However, the species specificities of the IgG antibody responses to the malaria MSP119 antigens have not been extensively characterized using MBA. Methods Recombinant Plasmodium falciparum (3D7), Plasmodium malariae (China I), Plasmodium ovale (Nigeria I), and Plasmodium vivax (Belem) MSP119 proteins were covalently coupled to beads for MBA. Threshold cut-off values for the assays were estimated using sera from US citizens with no history of foreign travel and by receiver operator characteristic curve analysis using diagnostic samples. Banked sera from experimentally infected chimpanzees, sera from humans from low transmission regions of Haiti and Cambodia (N = 12), and elutions from blood spots from humans selected from a high transmission region of Mozambique (N = 20) were used to develop an antigen competition MBA for antibody cross-reactivity studies. A sub-set of samples was further characterized using antibody capture/elution MBA, IgG subclass determination, and antibody avidity measurement. Results Total IgG antibody responses in experimentally infected chimpanzees were species specific and could be completely suppressed by homologous competitor protein at a concentration of 10 μg/ml. Eleven of 12 samples from the low transmission regions and 12 of 20 samples from the high transmission area had antibody responses that were completely species specific. For 7 additional samples, the P. falciparum MSP119 responses were species specific, but various levels of incomplete heterologous competition were observed for the non-P. falciparum assays. A pan-malaria MSP119 cross-reactive antibody response was observed in elutions of blood spots from two 20–30 years old Mozambique donors. The antibody response from one of these two donors had low avidity and skewed almost entirely to the IgG3 subclass. Conclusions Even when P. falciparum, P. malariae, P. ovale, and P. vivax are co-endemic in a high transmission setting, most antibody responses to MSP119 antigens are species-specific and are likely indicative of previous infection history. True pan-malaria cross-reactive responses were found to occur rarely. Electronic supplementary material The online version of this article (10.1186/s12936-018-2566-0) contains supplementary material, which is available to authorized users.
Collapse
|