1
|
Kamei K, Yahara Y, Kim JD, Tsuji M, Iwasaki M, Takemori H, Seki S, Makino H, Futakawa H, Hirokawa T, Nguyen TCT, Nakagawa T, Kawaguchi Y. Impact of the SIK3 pathway inhibition on osteoclast differentiation via oxidative phosphorylation. J Bone Miner Res 2024; 39:1340-1355. [PMID: 39030684 DOI: 10.1093/jbmr/zjae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024]
Abstract
Maintenance of bone homeostasis and the balance between bone resorption and formation are crucial for maintaining skeletal integrity. This study sought to investigate the role of salt-inducible kinase 3 (SIK3), a key regulator in cellular energy metabolism, during the differentiation of osteoclasts. Despite osteoclasts being high energy-consuming cells essential for breaking down mineralized bone tissue, the specific function of SIK3 in this process remains unclear. To address this issue, we generated osteoclast-specific SIK3 conditional knockout mice and assessed the impact of SIK3 deletion on bone homeostasis. Our findings revealed that SIK3 conditional knockout mice exhibited increased bone mass and an osteopetrosis phenotype, suggesting a pivotal role for SIK3 in bone resorption. Moreover, we assessed the impact of pterosin B, a SIK3 inhibitor, on osteoclast differentiation. The treatment with pterosin B inhibited osteoclast differentiation, reduced the numbers of multinucleated osteoclasts, and suppressed resorption activity in vitro. Gene expression analysis demonstrated that SIK3 deletion and pterosin B treatment influence a common set of genes involved in osteoclast differentiation and bone resorption. Furthermore, pterosin B treatment altered intracellular metabolism, particularly affecting key metabolic pathways, such as the tricarboxylic acid cycle and oxidative phosphorylation. These results provide valuable insights into the involvement of SIK3 in osteoclast differentiation and the molecular mechanisms underlying osteoclast function and bone diseases.
Collapse
Affiliation(s)
- Katsuhiko Kamei
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yasuhito Yahara
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jun-Dal Kim
- Division of Complex Bioscience Research, Department of Research and Development, Institute of National Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Mamiko Tsuji
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Mami Iwasaki
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shoji Seki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hiroto Makino
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hayato Futakawa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tatsuro Hirokawa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tran Canh Tung Nguyen
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Department of Trauma and Orthopaedic Surgery, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoshiharu Kawaguchi
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
2
|
Hayes ET, Hassan M, Lakomy O, Filzen R, Armouti M, Foretz M, Tsumaki N, Takemori H, Stocco C. SIK2 and SIK3 Differentially Regulate Mouse Granulosa Cell Response to Exogenous Gonadotropins In Vivo. Endocrinology 2024; 165:bqae107. [PMID: 39158086 PMCID: PMC11362621 DOI: 10.1210/endocr/bqae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Salt-inducible kinases (SIKs), a family of serine/threonine kinases, were found to be critical determinants of female fertility. SIK2 silencing results in increased ovulatory response to gonadotropins. In contrast, SIK3 knockout results in infertility, gonadotropin insensitivity, and ovaries devoid of antral and preovulatory follicles. This study hypothesizes that SIK2 and SIK3 differentially regulate follicle growth and fertility via contrasting actions in the granulosa cells (GCs), the somatic cells of the follicle. Therefore, SIK2 or SIK3 GC-specific knockdown (SIK2GCKD and SIK3GCKD, respectively) mice were generated by crossing SIK floxed mice with Cyp19a1pII-Cre mice. Fertility studies revealed that pup accumulation over 6 months and the average litter size of SIK2GCKD mice were similar to controls, although in SIK3GCKD mice were significantly lower compared to controls. Compared to controls, gonadotropin stimulation of prepubertal SIK2GCKD mice resulted in significantly higher serum estradiol levels, whereas SIK3GCKD mice produced significantly less estradiol. Cyp11a1, Cyp19a1, and StAR were significantly increased in the GCs of gonadotropin-stimulated SIK2GCKD mice. However, Cyp11a1 and StAR remained significantly lower than controls in SIK3GCKD mice. Interestingly, Cyp19a1 stimulation in SIK3GCKD was not statistically different compared to controls. Superovulation resulted in SIK2GCKD mice ovulating significantly more oocytes, whereas SIK3GCKD mice ovulated significantly fewer oocytes than controls. Remarkably, SIK3GCKD superovulated ovaries contained significantly more preantral follicles than controls. SIK3GCKD ovaries contained significantly more apoptotic cells and fewer proliferating cells than controls. These data point to the differential regulation of GC function and follicle development by SIK2 and SIK3 and supports the therapeutic potential of targeting these kinases for treating infertility or developing new contraceptives.
Collapse
Affiliation(s)
- Emily T Hayes
- Department of Physiology and Biophysics, School of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mariam Hassan
- Department of Physiology and Biophysics, School of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Oliwia Lakomy
- Department of Physiology and Biophysics, School of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rachael Filzen
- Department of Physiology and Biophysics, School of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Marah Armouti
- Department of Physiology and Biophysics, School of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Marc Foretz
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Noriyuki Tsumaki
- Department of Tissue Biochemistry, Graduate School of Medicine and Frontier Biosciences, The University of Osaka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Carlos Stocco
- Department of Physiology and Biophysics, School of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Tian K, He X, Lin X, Chen X, Su Y, Lu Z, Chen Z, Zhang L, Li P, Ma L, Lan Z, Zhao X, Fen G, Hai Q, Xue D, Jin Q. Unveiling the Role of Sik1 in Osteoblast Differentiation: Implications for Osteoarthritis. Mol Cell Biol 2024; 44:411-428. [PMID: 39169784 PMCID: PMC11485870 DOI: 10.1080/10985549.2024.2385633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease characterized by subchondral osteosclerosis, mainly due to osteoblast activity. This research investigates the function of Sik1, a member of the AMP-activated protein kinase family, in OA. Proteomic analysis was conducted on clinical samples from 30 OA patients, revealing a negative correlation between Sik1 expression and OA. In vitro experiments utilized BMSCs to examine the effect of Sik1 on osteogenic differentiation. BMSCs were cultured and induced toward osteogenesis with specific media. Sik1 overexpression was achieved through lentiviral transfection, followed by analysis of osteogenesis-associated proteins using Western blotting, RT-qPCR, and alkaline phosphate staining. In vivo experiments involved destabilizing the medial meniscus in mice to establish an OA model, assessing the therapeutic potential of Sik1. The CT scans and histological staining were used to analyze subchondral bone alterations and cartilage damage. The findings show that Sik1 downregulation correlates with advanced OA and heightened osteogenic differentiation in BMSCs. Sik1 overexpression inhibits osteogenesis-related markers in vitro and reduces cartilage damage and subchondral osteosclerosis in vivo. Mechanistically, Sik1 modulates osteogenesis and subchondral bone changes through Runx2 activity regulation. The research emphasizes Sik1 as a promising target for treating OA, suggesting its involvement in controlling bone formation and changes in the subchondral osteosclerosis.
Collapse
Affiliation(s)
- Kuanmin Tian
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xiaoxin He
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xue Lin
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xiaolei Chen
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yajing Su
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Zhidong Lu
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Zhirong Chen
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Liang Zhang
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Peng Li
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Long Ma
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Zhibin Lan
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xin Zhao
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Gangning Fen
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Qinqin Hai
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Di Xue
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Qunhua Jin
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
- First Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| |
Collapse
|
4
|
Green JR, Mahalingaiah PKS, Gopalakrishnan SM, Liguori MJ, Mittelstadt SW, Blomme EAG, Van Vleet TR. Off-target pharmacological activity at various kinases: Potential functional and pathological side effects. J Pharmacol Toxicol Methods 2023; 123:107468. [PMID: 37553032 DOI: 10.1016/j.vascn.2023.107468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/16/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
In drug discovery, during the lead optimization and candidate characterization stages, novel small molecules are frequently evaluated in a battery of in vitro pharmacology assays to identify potential unintended, off-target interactions with various receptors, transporters, ion channels, and enzymes, including kinases. Furthermore, these screening panels may also provide utility at later stages of development to provide a mechanistic understanding of unexpected safety findings. Here, we present a compendium of the most likely functional and pathological outcomes associated with interaction(s) to a panel of 95 kinases based on an extensive curation of the scientific literature. This panel of kinases was designed by AbbVie based on safety-related data extracted from the literature, as well as from over 20 years of institutional knowledge generated from discovery efforts. For each kinase, the scientific literature was reviewed using online databases and the most often reported functional and pathological effects were summarized. This work should serve as a practical guide for small molecule drug discovery scientists and clinical investigators to predict and/or interpret adverse effects related to pharmacological interactions with these kinases.
Collapse
Affiliation(s)
- Jonathon R Green
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States.
| | | | - Sujatha M Gopalakrishnan
- Drug Discovery Science and Technology, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Michael J Liguori
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Scott W Mittelstadt
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Eric A G Blomme
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Terry R Van Vleet
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| |
Collapse
|
5
|
Xu H, Tong G, Yan T, Dong L, Yang X, Dou D, Sun Z, Liu T, Zheng X, Yang J, Sun X, Zhou Y, Kuang Y. Transcriptomic Analysis Provides Insights to Reveal the bmp6 Function Related to the Development of Intermuscular Bones in Zebrafish. Front Cell Dev Biol 2022; 10:821471. [PMID: 35646941 PMCID: PMC9135397 DOI: 10.3389/fcell.2022.821471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
Intermuscular bones (IBs) are small, hard-boned spicules located in the muscle tissue that mainly exist in the myosepta of lower teleosts, which hurt the edibleness and economic value of fish. The study of the development of IBs is very important for freshwater aquaculture fish, but the molecular mechanism of its formation and the key regulatory genes remain unclear. In this study, we first constructed two types of zebrafish mutants (the mutants losing IBs and the mutants with partial deletion of IBs) by knocking out bmp6. We then carried out a transcriptomic analysis to reveal the role of bmp6 in the developmental mechanism of IBs; we used the caudal musculoskeletal tissues of these mutants and wild-type zebrafish at three development stages (20, 45, and 60 dph) to perform transcriptomic analysis. The results showed that the deficiency of bmp6 upregulated sik1 and activated the TNF-A signaling via the NF-KB pathway, which inhibited the development of osteoblasts and promoted osteoclast formation, thereby inhibiting the formation of IBs. These results provided insights to understand the role of bmp6 in the development of IBs in zebrafish and are useful for selective breeding of IBs in cyprinids.
Collapse
Affiliation(s)
- Huan Xu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangxiang Tong
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Ting Yan
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Le Dong
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaoxing Yang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Dongyu Dou
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
| | - Zhipeng Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Tianqi Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Xianhu Zheng
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Jian Yang
- Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
| | - Xiaowen Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Yi Zhou
- Stem Cell Program of Boston Children’s Hospital, Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Youyi Kuang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
| |
Collapse
|
6
|
Shen M, Lian N, Song C, Qin C, Yu Y, Yu Y. Different Anesthetic Drugs Mediate Changes in Neuroplasticity During Cognitive Impairment in Sleep-Deprived Rats via Different Factors. Med Sci Monit 2021; 27:e932422. [PMID: 34564688 PMCID: PMC8482804 DOI: 10.12659/msm.932422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Perioperative neuro-cognitive disorders (PND) are preoperative and postoperative complications of multiple nervous systems, typically manifested as decreased memory and learning ability after surgery. It was used to replace the original definition of postoperative cognitive dysfunctions (POCD) from 2018. Our previous studies have shown that sevoflurane inhalation can lead to cognitive dysfunction in Sprague-Dawley rats, but the specific mechanism is still unclear. Material/Methods Thirty-six male Sprague-Dawley rats were randomly divided into 6 groups (n=6): the SD group was given 24-h acute sleep deprivation; Sevoflurane was inhaled for 2 h in the Sevo group. Two mL propofol was injected into the tail vein of rats in the Prop group. The rats in the SD+Sevo group and SD+Prop group were deprived of sleep before intervention in the same way as before. Results We noted significant behavioral changes in rats treated with SIK3 inhibitors or tau phosphorylation agonists before propofol injection or sevoflurane inhalation, with associated protein levels and dendritic spine density documented. Sevoflurane anesthesia-induced cognitive impairment following acute sleep deprivation was more pronounced than sleep deprivation-induced cognitive impairment alone and resulted in increased brain SIK3 levels, increased phosphorylation of total tau and tau, and decreased acetylation modifications. After using propofol, the cognitive function returned to baseline levels with a series of reversals of cognitive dysfunction. Conclusions These results suggest that sevoflurane inhalation via the SIK3 pathway aggravates cognitive impairment after acute sleep deprivation and that propofol anesthesia reverses the effects of sleep deprivation by affecting modifications of tau protein.
Collapse
Affiliation(s)
- Mengxi Shen
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Institute of Anesthesiology, Tianjin, China (mainland)
| | - Naqi Lian
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Institute of Anesthesiology, Tianjin, China (mainland)
| | - Chengcheng Song
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Institute of Anesthesiology, Tianjin, China (mainland)
| | - Chao Qin
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Institute of Anesthesiology, Tianjin, China (mainland)
| | - Yang Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Institute of Anesthesiology, Tianjin, China (mainland)
| | - Yonghao Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Institute of Anesthesiology, Tianjin, China (mainland)
| |
Collapse
|
7
|
Ntari L, Nikolaou C, Kranidioti K, Papadopoulou D, Christodoulou-Vafeiadou E, Chouvardas P, Meier F, Geka C, Denis MC, Karagianni N, Kollias G. Combination of subtherapeutic anti-TNF dose with dasatinib restores clinical and molecular arthritogenic profiles better than standard anti-TNF treatment. J Transl Med 2021; 19:165. [PMID: 33892739 PMCID: PMC8063445 DOI: 10.1186/s12967-021-02764-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND New medications for Rheumatoid Arthritis (RA) have emerged in the last decades, including Disease Modifying Antirheumatic Drugs (DMARDs) and biologics. However, there is no known cure, since a significant proportion of patients remain or become non-responders to current therapies. The development of new mode-of-action treatment schemes involving combination therapies could prove successful for the treatment of a greater number of RA patients. METHODS We investigated the effect of the Tyrosine Kinase inhibitors (TKIs) dasatinib and bosutinib, on the human TNF-dependent Tg197 arthritis mouse model. The inhibitors were administered either as a monotherapy or in combination with a subtherapeutic dose of anti-hTNF biologics and their therapeutic effect was assessed clinically, histopathologically as well as via gene expression analysis and was compared to that of an efficient TNF monotherapy. RESULTS Dasatinib and, to a lesser extent, bosutinib inhibited the production of TNF and proinflammatory chemokines from arthritogenic synovial fibroblasts. Dasatinib, but not bosutinib, also ameliorated significantly and in a dose-dependent manner both the clinical and histopathological signs of Tg197 arthritis. Combination of dasatinib with a subtherapeutic dose of anti-hTNF biologic agents, resulted in a synergistic inhibitory effect abolishing all arthritis symptoms. Gene expression analysis of whole joint tissue of Tg197 mice revealed that the combination of dasatinib with a low subtherapeutic dose of Infliximab most efficiently restores the pathogenic gene expression profile to that of the healthy state compared to either treatment administered as a monotherapy. CONCLUSION Our findings show that dasatinib exhibits a therapeutic effect in TNF-driven arthritis and can act in synergy with a subtherapeutic anti-hTNF dose to effectively treat the clinical and histopathological signs of the pathology. The combination of dasatinib and anti-hTNF exhibits a distinct mode of action in restoring the arthritogenic gene signature to that of a healthy profile. Potential clinical applications of combination therapies with kinase inhibitors and anti-TNF agents may provide an interesting alternative to high-dose anti-hTNF monotherapy and increase the number of patients responding to treatment.
Collapse
Affiliation(s)
| | - Christoforos Nikolaou
- Institute for Bioinnovation, Biomedical Sciences Research Center (BSRC), Alexander Fleming, 34 Alexander Fleming Street, 16672, Vari, Greece
| | | | - Dimitra Papadopoulou
- Institute for Bioinnovation, Biomedical Sciences Research Center (BSRC), Alexander Fleming, 34 Alexander Fleming Street, 16672, Vari, Greece
| | | | - Panagiotis Chouvardas
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Florian Meier
- Division of Rheumatology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| | | | | | | | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Center (BSRC), Alexander Fleming, 34 Alexander Fleming Street, 16672, Vari, Greece.
- Department of Physiology and Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
8
|
Tang CC, Castro Andrade CD, O'Meara MJ, Yoon SH, Sato T, Brooks DJ, Bouxsein ML, Martins JDS, Wang J, Gray NS, Misof B, Roschger P, Blouin S, Klaushofer K, Velduis-Vlug A, Vegting Y, Rosen CJ, O'Connell D, Sundberg TB, Xavier RJ, Ung P, Schlessinger A, Kronenberg HM, Berdeaux R, Foretz M, Wein MN. Dual targeting of salt inducible kinases and CSF1R uncouples bone formation and bone resorption. eLife 2021; 10:67772. [PMID: 34160349 PMCID: PMC8238509 DOI: 10.7554/elife.67772] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
Bone formation and resorption are typically coupled, such that the efficacy of anabolic osteoporosis treatments may be limited by bone destruction. The multi-kinase inhibitor YKL-05-099 potently inhibits salt inducible kinases (SIKs) and may represent a promising new class of bone anabolic agents. Here, we report that YKL-05-099 increases bone formation in hypogonadal female mice without increasing bone resorption. Postnatal mice with inducible, global deletion of SIK2 and SIK3 show increased bone mass, increased bone formation, and, distinct from the effects of YKL-05-099, increased bone resorption. No cell-intrinsic role of SIKs in osteoclasts was noted. In addition to blocking SIKs, YKL-05-099 also binds and inhibits CSF1R, the receptor for the osteoclastogenic cytokine M-CSF. Modeling reveals that YKL-05-099 binds to SIK2 and CSF1R in a similar manner. Dual targeting of SIK2/3 and CSF1R induces bone formation without concomitantly increasing bone resorption and thereby may overcome limitations of most current anabolic osteoporosis therapies.
Collapse
Affiliation(s)
- Cheng-Chia Tang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | | | - Maureen J O'Meara
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Sung-Hee Yoon
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Tadatoshi Sato
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Daniel J Brooks
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States,Center for Advanced Orthopaedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States,Center for Advanced Orthopaedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | | | - Jinhua Wang
- Dana Farber Cancer Institute, Harvard Medical SchoolBostonUnited States
| | - Nathanael S Gray
- Dana Farber Cancer Institute, Harvard Medical SchoolBostonUnited States
| | - Barbara Misof
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre, Meidling, 1st Medical Department Hanusch HospitalViennaAustria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre, Meidling, 1st Medical Department Hanusch HospitalViennaAustria
| | - Stephane Blouin
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre, Meidling, 1st Medical Department Hanusch HospitalViennaAustria
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre, Meidling, 1st Medical Department Hanusch HospitalViennaAustria
| | - Annegreet Velduis-Vlug
- Center for Bone Quality, Leiden University Medical CenterLeidenNetherlands,Center for Clinical and Translational Research, Maine Medical Center Research InstituteScarboroughCanada
| | - Yosta Vegting
- Department of Endocrinology and Metabolism, Academic Medical CenterAmsterdamNetherlands
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research InstituteScarboroughCanada
| | | | | | - Ramnik J Xavier
- Broad Institute of MIT and HarvardCambridgeUnited States,Center for Computational and Integrative Biology, Massachusetts General HospitalBostonUnited States
| | - Peter Ung
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth)HoustonUnited States
| | - Marc Foretz
- Université de Paris, Institut Cochin, CNRSParisFrance
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States,Broad Institute of MIT and HarvardCambridgeUnited States,Harvard Stem Cell InstituteCambridgeUnited States
| |
Collapse
|
9
|
Sun Z, Jiang Q, Li J, Guo J. The potent roles of salt-inducible kinases (SIKs) in metabolic homeostasis and tumorigenesis. Signal Transduct Target Ther 2020; 5:150. [PMID: 32788639 PMCID: PMC7423983 DOI: 10.1038/s41392-020-00265-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/22/2020] [Indexed: 01/26/2023] Open
Abstract
Salt-inducible kinases (SIKs) belong to AMP-activated protein kinase (AMPK) family, and functions mainly involve in regulating energy response-related physiological processes, such as gluconeogenesis and lipid metabolism. However, compared with another well-established energy-response kinase AMPK, SIK roles in human diseases, especially in diabetes and tumorigenesis, are rarely investigated. Recently, the pilot roles of SIKs in tumorigenesis have begun to attract more attention due to the finding that the tumor suppressor role of LKB1 in non-small-cell lung cancers (NSCLCs) is unexpectedly mediated by the SIK but not AMPK kinases. Thus, here we tend to comprehensively summarize the emerging upstream regulators, downstream substrates, mouse models, clinical relevance, and candidate inhibitors for SIKs, and shed light on SIKs as the potential therapeutic targets for cancer therapies.
Collapse
Affiliation(s)
- Zicheng Sun
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.,Department of Breast and Thyroid Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Qiwei Jiang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Jie Li
- Department of Breast and Thyroid Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
| |
Collapse
|
10
|
Tong X, Ganta RR, Liu Z. AMP-activated protein kinase (AMPK) regulates autophagy, inflammation and immunity and contributes to osteoclast differentiation and functionabs. Biol Cell 2020; 112:251-264. [PMID: 32445585 DOI: 10.1111/boc.202000008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
Osteoclasts are multinucleated giant cells, responsible for bone resorption. Osteoclast differentiation and function requires a series of cytokines to remove the old bone, which coordinates with the induction of bone remodelling by osteoblast-mediated bone formation. Studies have demonstrated that AMP-activated protein kinase (AMPK) play a negative regulatory role in osteoclast differentiation and function. Research involving AMPK, a nutrient and energy sensor, has primarily focused on osteoclast differentiation and function; thus, its role in autophagy, inflammation and immunity remains poorly understood. Autophagy is a conservative homoeostatic mechanism of eukaryotic cells, and response to osteoclast differentiation and function; however, how it interacts with inflammation remains unclear. Additionally, based on the regulatory function of different AMPK subunits for osteoclast differentiation and function, its activation is regulated by upstream factors to perform bone metabolism. This review summarises the critical role of AMPK-mediated autophagy, inflammation and immunity by upstream and downstream signalling during receptor activator of nuclear factor kappa-B ligand-induced osteoclast differentiation and function. This pathway may provide therapeutic targets for bone-related diseases, as well as function as a biomarker for bone homoeostasis.
Collapse
Affiliation(s)
- Xishuai Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.,Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, 66502, USA.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Roman R Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, 66502, USA
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| |
Collapse
|
11
|
Xiong Y, Chen L, Yan C, Zhou W, Yu T, Sun Y, Cao F, Xue H, Hu Y, Chen D, Mi B, Liu G. M2 Macrophagy-derived exosomal miRNA-5106 induces bone mesenchymal stem cells towards osteoblastic fate by targeting salt-inducible kinase 2 and 3. J Nanobiotechnology 2020; 18:66. [PMID: 32345321 PMCID: PMC7189726 DOI: 10.1186/s12951-020-00622-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/21/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Osteoblast differentiation is a vital process for fracture healing, and exosomes are nanosized membrane vesicles that can deliver therapeutic drugs easily and safely. Macrophages participate in the regulation of various biological processes in vivo, and macrophage-derived exosomes (MD-Exos) have recently been a topic of increasing research interest. However, few study has explored the link between MD-Exos and osteoblast differentiation. Herein, we sought to identify miRNAs differentially expressed between M1 and M2 macrophage-derived exosomes, and to evaluate their roles in the context of osteoblast differentiation. RESULTS We found that microRNA-5106 (miR-5106) was significantly overexpressed in M2 macrophage-derived exosomes (M2D-Exos), while its expression was decreased in M1 macrophage-derived exosomes (M1D-Exos), and we found that this exosomal miRNA can induce bone mesenchymal stem cell (BMSC) osteogenic differentiation via directly targeting the Salt-inducible kinase 2 and 3 (SIK2 and SIK3) genes. In addition, the local injection of both a miR-5106 agonist or M2D-Exos to fracture sites was sufficient to accelerate healing in vivo. CONCLUSIONS Our study demonstrates that miR-5106 is highly enriched in M2D-Exos, and that it can be transferred to BMSCs wherein it targets SIK2 and SIK3 genes to promote osteoblast differentiation.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chenchen Yan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Yu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yun Sun
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hang Xue
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dong Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
12
|
Elter E, Wagner M, Buchenauer L, Bauer M, Polte T. Phthalate Exposure During the Prenatal and Lactational Period Increases the Susceptibility to Rheumatoid Arthritis in Mice. Front Immunol 2020; 11:550. [PMID: 32308655 PMCID: PMC7145968 DOI: 10.3389/fimmu.2020.00550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
The prenatal and early postnatal period is highly sensitive to environmental exposures that may interfere with the developmental programming of the immune system leading to an altered disease risk in later life. To clarify the role of early influences in activation or exacerbation of autoimmune diseases like rheumatoid arthritis (RA) we investigated the effect of maternal exposure during the prenatal and lactational period of DBA/1 mice to the plasticizer benzyl butyl phthalate (BBP) on the development of RA in the offspring. Using a mild collagen-induced arthritis (CIA) model, maternal BBP-exposure increased both the prevalence and the severity of RA in the progeny compared to un-exposed dams. Additionally, maternal BBP exposure led to elevated serum IgG1 and IgG2a level in the offspring and increased the IFN-γ and IL-17 release from collagen-re-stimulated spleen cells. Transcriptome analysis of splenocytes isolated from 3-week-old pups before RA-induction revealed considerable changes in gene expression in the offspring from BBP-exposed dams. Among them were regulator of G-protein signaling 1 (rgs1), interleukin-7 receptor (il-7r) and CXC chemokine 4 (cxcr4), all genes that have previously been described as associated with RA pathology. In summary, our results demonstrate that perinatal exposure to BBP increases the susceptibility of the offspring to RA, probably via a phthalate-induced disturbed regulation of RA-relevant genes or signaling pathways.
Collapse
Affiliation(s)
- Elena Elter
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, Leipzig, Germany.,Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, Leipzig, Germany
| | - Marita Wagner
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, Leipzig, Germany.,Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, Leipzig, Germany
| | - Lisa Buchenauer
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, Leipzig, Germany.,Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, Leipzig, Germany
| | - Mario Bauer
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, Leipzig, Germany
| | - Tobias Polte
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, Leipzig, Germany.,Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
13
|
De Koning DJ, Dominguez-Gasca N, Fleming RH, Gill A, Kurian D, Law A, McCormack HA, Morrice D, Sanchez-Rodriguez E, Rodriguez-Navarro AB, Preisinger R, Schmutz M, Šmídová V, Turner F, Wilson PW, Zhou R, Dunn IC. An eQTL in the cystathionine beta synthase gene is linked to osteoporosis in laying hens. Genet Sel Evol 2020; 52:13. [PMID: 32093603 PMCID: PMC7038551 DOI: 10.1186/s12711-020-00532-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Skeletal damage is a challenge for laying hens because the physiological adaptations required for egg laying make them susceptible to osteoporosis. Previously, we showed that genetic factors explain 40% of the variation in end of lay bone quality and we detected a quantitative trait locus (QTL) of large effect on chicken chromosome 1. The aim of this study was to combine data from the commercial founder White Leghorn population and the F2 mapping population to fine-map this QTL and understand its function in terms of gene expression and physiology. RESULTS Several single nucleotide polymorphisms on chromosome 1 between 104 and 110 Mb (galGal6) had highly significant associations with tibial breaking strength. The alternative genotypes of markers of large effect that flanked the region had tibial breaking strengths of 200.4 vs. 218.1 Newton (P < 0.002) and, in a subsequent founder generation, the higher breaking strength genotype was again associated with higher breaking strength. In a subsequent generation, cortical bone density and volume were increased in individuals with the better bone genotype but with significantly reduced medullary bone quality. The effects on cortical bone density were confirmed in a further generation and was accompanied by increased mineral maturity of the cortical bone as measured by infrared spectrometry and there was evidence of better collagen cross-linking in the cortical bone. Comparing the transcriptome of the tibia from individuals with good or poor bone quality genotypes indicated four differentially-expressed genes at the locus, one gene, cystathionine beta synthase (CBS), having a nine-fold higher expression in the genotype for low bone quality. The mechanism was cis-acting and although there was an amino-acid difference in the CBS protein between the genotypes, there was no difference in the activity of the enzyme. Plasma homocysteine concentration, the substrate of CBS, was higher in the poor bone quality genotype. CONCLUSIONS Validated markers that predict bone strength have been defined for selective breeding and a gene was identified that may suggest alternative ways to improve bone health in addition to genetic selection. The identification of how genetic variants affect different aspects of bone turnover shows potential for translational medicine.
Collapse
Affiliation(s)
| | | | - Robert H Fleming
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Andrew Gill
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK.,School of Chemistry, The University of Lincoln, Lincoln, LN6 7TS, England, UK
| | - Dominic Kurian
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Andrew Law
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Heather A McCormack
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - David Morrice
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | | | | | | | | | - Veronica Šmídová
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Frances Turner
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Peter W Wilson
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Rongyan Zhou
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK.,Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ian C Dunn
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK.
| |
Collapse
|
14
|
Proteasome inhibition suppress microgravity elevated RANK signaling during osteoclast differentiation. Cytokine 2020; 125:154821. [DOI: 10.1016/j.cyto.2019.154821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 01/03/2023]
|
15
|
The Regulation of Bone Metabolism and Disorders by Wnt Signaling. Int J Mol Sci 2019; 20:ijms20225525. [PMID: 31698687 PMCID: PMC6888566 DOI: 10.3390/ijms20225525] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Wnt, a secreted glycoprotein, has an approximate molecular weight of 40 kDa, and it is a cytokine involved in various biological phenomena including ontogeny, morphogenesis, carcinogenesis, and maintenance of stem cells. The Wnt signaling pathway can be classified into two main pathways: canonical and non-canonical. Of these, the canonical Wnt signaling pathway promotes osteogenesis. Sclerostin produced by osteocytes is an inhibitor of this pathway, thereby inhibiting osteogenesis. Recently, osteoporosis treatment using an anti-sclerostin therapy has been introduced. In this review, the basics of Wnt signaling, its role in bone metabolism and its involvement in skeletal disorders have been covered. Furthermore, the clinical significance and future scopes of Wnt signaling in osteoporosis, osteoarthritis, rheumatoid arthritis and neoplasia are discussed.
Collapse
|
16
|
Salt-inducible kinase 1 regulates bone anabolism via the CRTC1-CREB-Id1 axis. Cell Death Dis 2019; 10:826. [PMID: 31672960 PMCID: PMC6823377 DOI: 10.1038/s41419-019-1915-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/21/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022]
Abstract
New bone anabolic agents for the effective treatment of bone metabolic diseases like osteoporosis are of high clinical demand. In the present study, we reveal the function of salt-inducible kinase 1 (SIK1) in regulating osteoblast differentiation. Gene knockdown of SIK1 but not of SIK2 or SIK3 expression in primary preosteoblasts increased osteoblast differentiation and bone matrix mineralization. SIK1 also regulated the proliferation of osteoblastic precursor cells in osteogenesis. This negative control of osteoblasts required the catalytic activity of SIK1. SIK1 phosphorylated CREB regulated transcription coactivator 1 (CRTC1), preventing CRTC1 from enhancing CREB transcriptional activity for the expression of osteogenic genes like Id1. Furthermore, SIK1 knockout (KO) mice had higher bone mass, osteoblast number, and bone formation rate versus littermate wild-type (WT) mice. Preosteoblasts from SIK1 KO mice showed more osteoblastogenic potential than did WT cells, whereas osteoclast generation among KO and WT precursors was indifferent. In addition, bone morphogenic protein 2 (BMP2) suppressed both SIK1 expression as well as SIK1 activity by protein kinase A (PKA)–dependent mechanisms to stimulate osteogenesis. Taken together, our results indicate that SIK1 is a key negative regulator of preosteoblast proliferation and osteoblast differentiation and that the repression of SIK1 is crucial for BMP2 signaling for osteogenesis. Therefore, we propose SIK1 to be a useful therapeutic target for the development of bone anabolic strategies.
Collapse
|
17
|
Abstract
Rheumatoid arthritis (RA) is a chronic and progressive systemic disease of the connective tissue, which is particularly manifested with destructive alterations to the joints. Inflammatory reactions in the synovium lead to the influx of peripheral inflammatory cells as well as the activation of local cells. Released growth factors, chemokines and especially cytokines play a key role in chronic inflammatory responses. In addition to the central lymphocytes, the T and B cells and their subpopulations, locally resident cells, such as neutrophils, macrophages and fibroblasts as well as cells of bone metabolism are activated by the inflammatory milieu and contribute to and drive inflammation and tissue damage. The destruction of cartilage and bone substance by local tissue cells, synovial fibroblasts and osteoclasts is characteristic for this disease. Untreated, the local inflammatory and destructive processes as well as systemic inflammatory factors lead to progressive and irreversible joint destruction. Cellular and immunological processes in RA are closely interwoven; therefore, besides the general inhibition of immunological processes, specific inhibition of central key molecules can reduce or completely stop the inflammatory destructive processes; however, a high heterogeneity can be observed among RA patients and disease progression. Therefore, an expansion of the therapeutic options is desirable as not all patients are able to equally benefit from the therapeutic treatment. It is important to characterize new molecular mechanisms, which could lead to the development of new therapeutic options. Some of the more recent insights are summarized in this overview.
Collapse
Affiliation(s)
- E Neumann
- Rheumatologie und Klinische Immunologie, Campus Kerckhoff, Justus-Liebig-Universität Gießen, Benekestr. 2-8, 61231, Bad Nauheim, Deutschland.
| | - K Frommer
- Rheumatologie und Klinische Immunologie, Campus Kerckhoff, Justus-Liebig-Universität Gießen, Benekestr. 2-8, 61231, Bad Nauheim, Deutschland
| | - M Diller
- Rheumatologie und Klinische Immunologie, Campus Kerckhoff, Justus-Liebig-Universität Gießen, Benekestr. 2-8, 61231, Bad Nauheim, Deutschland
| | - U Müller-Ladner
- Rheumatologie und Klinische Immunologie, Campus Kerckhoff, Justus-Liebig-Universität Gießen, Benekestr. 2-8, 61231, Bad Nauheim, Deutschland
| |
Collapse
|
18
|
Ricarte FR, Le Henaff C, Kolupaeva VG, Gardella TJ, Partridge NC. Parathyroid hormone(1-34) and its analogs differentially modulate osteoblastic Rankl expression via PKA/SIK2/SIK3 and PP1/PP2A-CRTC3 signaling. J Biol Chem 2018; 293:20200-20213. [PMID: 30377251 DOI: 10.1074/jbc.ra118.004751] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/17/2018] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis can result from the loss of sex hormones and/or aging. Abaloparatide (ABL), an analog of parathyroid hormone-related protein (PTHrP(1-36)), is the second osteoanabolic therapy approved by the United States Food and Drug Administration after teriparatide (PTH(1-34)). All three peptides bind PTH/PTHrP receptor type 1 (PTHR1), but the effects of PTHrP(1-36) or ABL in the osteoblast remain unclear. We show that, in primary calvarial osteoblasts, PTH(1-34) promotes a more robust cAMP response than PTHrP(1-36) and ABL and causes a greater activation of protein kinase A (PKA) and cAMP response element-binding protein (CREB). All three peptides similarly inhibited sclerostin (Sost). Interestingly, the three peptides differentially modulated two other PKA target genes, c-Fos and receptor activator of NF-κB ligand (Rankl), and the latter both in vitro and in vivo Knockdown of salt-inducible kinases (SIKs) 2 and 3 and CREB-regulated transcription coactivator 3 (CRTC3), indicated that all three are part of the pathway that regulates osteoblastic Rankl expression. We also show that the peptides differentially regulate the nuclear localization of CRTC2 and CRTC3, and that this correlates with PKA activation. Moreover, inhibition of protein phosphatases 1 and 2A (PP1/PP2A) activity revealed that they play a major role in both PTH-induced Rankl expression and the effects of PTH(1-34) on CRTC3 localization. In summary, in the osteoblast, the effects of PTH(1-34), PTHrP(1-36), and ABL on Rankl are mediated by differential stimulation of cAMP/PKA signaling and by their downstream effects on SIK2 and -3, PP1/PP2A, and CRTC3.
Collapse
Affiliation(s)
- Florante R Ricarte
- From the Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Carole Le Henaff
- the Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010, and
| | - Victoria G Kolupaeva
- the Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010, and
| | - Thomas J Gardella
- the Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Nicola C Partridge
- From the Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016,; the Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010, and.
| |
Collapse
|
19
|
Wein MN, Foretz M, Fisher DE, Xavier RJ, Kronenberg HM. Salt-Inducible Kinases: Physiology, Regulation by cAMP, and Therapeutic Potential. Trends Endocrinol Metab 2018; 29:723-735. [PMID: 30150136 PMCID: PMC6151151 DOI: 10.1016/j.tem.2018.08.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
Abstract
Salt-inducible kinases (SIKs) represent a subfamily of AMP-activated protein kinase (AMPK) family kinases. Initially named because SIK1 (the founding member of this kinase family) expression is regulated by dietary salt intake in the adrenal gland, it is now apparent that a major biological role of these kinases is to control gene expression in response to extracellular cues that increase intracellular levels of cAMP. Here, we review four physiologically relevant examples of how cAMP signaling impinges upon SIK cellular function. By focusing on examples of cAMP-mediated SIK regulation in gut myeloid cells, bone, liver, and skin, we highlight recent advances in G protein-coupled receptor (GPCR) signal transduction. New knowledge regarding the role of SIKs in GPCR signaling has led to therapeutic applications of novel small molecule SIK inhibitors.
Collapse
Affiliation(s)
- Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Cheng L, Zhou S, Zhao Y, Sun Y, Xu Z, Yuan B, Chen X. Tanshinone IIA attenuates osteoclastogenesis in ovariectomized mice by inactivating NF-kB and Akt signaling pathways. Am J Transl Res 2018; 10:1457-1468. [PMID: 29887959 PMCID: PMC5992540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Osteoporosis is a common disease associated with age and menopausal status. Postmenopausal osteoporosis is the most common type of primary osteoporosis and is accompanied by increased risk of osteoporotic fracture. Natural and herbal compounds have long been used to prevent and treat many human diseases. Here, we demonstrated that tanshinone IIA prevented ovariectomy-induced bone loss in an in vivo mouse model that closely mimics osteoporosis. In addition, we found that tanshinone IIA inhibited the receptor activator of nuclear factor NF-κB ligand (RANKL)-induced osteoclast differentiation and osteoclastogenesis in vitro. Tanshinone IIA treatment also abrogated RANKL-induced activation of the NF-κB pathway, PI3-kinase/Akt signaling, and the mitogen-activated protein kinase (MAPK) pathways, including nuclear translocation of NF-κB p65 and phosphorylation of IκB, extracellular signal-regulated kinase (ERK), p38, and Akt. Inactivation of these pathways resulted in deceased expression of osteoclastogenesis-related markers. These results suggest that tanshinone IIA, a natural drug, has the potential to treat and prevent bone loss diseases, including postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Li Cheng
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical UniversityShanghai 200003, China
- Department of Orthopaedics, Cixi People’s Hospital, Wenzhou Medical UniversityCixi 315300, Zhejiang, China
| | - Shengyuan Zhou
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical UniversityShanghai 200003, China
| | - Yin Zhao
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical UniversityShanghai 200003, China
| | - Yanqing Sun
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical UniversityShanghai 200003, China
| | - Zheng Xu
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical UniversityShanghai 200003, China
| | - Bo Yuan
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical UniversityShanghai 200003, China
| | - Xiongsheng Chen
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical UniversityShanghai 200003, China
| |
Collapse
|