1
|
Fiecke C, Crimmins M, Hameed A, Sims C, Williams DK, Bode L, Martinez A, Andres A, Ferruzzi MG. Dietary modulation of human milk bioactives is associated with maternal FUT2 secretor phenotype: an exploratory analysis of carotenoids and polyphenol metabolites. Front Nutr 2024; 11:1463969. [PMID: 39444568 PMCID: PMC11496265 DOI: 10.3389/fnut.2024.1463969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Maternal diet modifies profiles of human milk oligosaccharides (HMOs), carotenoids, and polyphenols in human milk (HM). However, substantial variability in profiles exists between women, highlighting the complexity of non-dietary factors modulating these profiles. The objective of this study was to carry out a secondary analysis exploring the effect of maternal diet on HM carotenoids and polyphenols and relationships between dietary modulation of HM bioactives (carotenoids, polyphenols, and oligosaccharides) and maternal α1,2-fucosyltransferase 2 (FUT2) secretor phenotype. Methods In this pilot study, 16 exclusively breastfeeding women with obesity were enrolled between 4 and 5 months postpartum. The women were provided a 4-week meal plan consistent with the 2020 Dietary Guidelines for Americans (DGA). HM was collected for 24 h at baseline and post-intervention. Maternal FUT2 secretor phenotype was determined by 2'-fucosyllactose concentration in HM (non-secretor: < 100 nmol/ml; secretor: ≥100 nmol/ml). Concentrations of carotenoids and HMOs were determined by LC and polyphenol metabolites by UPLC-MS/MS. Results Thirteen women completed the study (6 secretors, 7 non-secretors). The change in HM concentrations of the HMOs lacto-N-tetraose (LNT, p = 0.007), lacto-N-fucopentaose II (LNFP II, p = 0.02), difucosyllacto-N-tetraose (DFLNT, p = 0.003), and disialyllacto-N-tetraose (DSLNT, p = 0.003) and polyphenol metabolites 4-hydroxybenzoic acid (4-HBA, p = 0.08) and ferulic acid (p = 0.02) over the intervention time frame was differentially associated with maternal secretor status. 4-HBA and ferulic acid positively correlated with HMOs LNT and DSLNT (rrm = 0.82-0.90, p = 0.03-0.06) for secretors but not for non-secretors. Only secretors demonstrated a negative correlation between 4-HBA and DFLNT (rrm = -0.94, p = 0.001). Discussion The influence of maternal diet on composition of HMOs and polyphenol metabolites in HM differs based on maternal secretor status. Consideration of non-dietary factors is needed to evaluate differences in response of HM bioactives to dietary modulation.
Collapse
Affiliation(s)
- Chelsey Fiecke
- Arkansas Children’s Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Meghan Crimmins
- Arkansas Children’s Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ahsan Hameed
- Arkansas Children’s Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Clark Sims
- Arkansas Children’s Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - D. Keith Williams
- Arkansas Children’s Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California, San Diego, La Jolla, CA, United States
| | - Audrey Martinez
- Arkansas Children’s Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Aline Andres
- Arkansas Children’s Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mario G. Ferruzzi
- Arkansas Children’s Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
2
|
Lu Z, Chan YT, Lo KKH, Wong VWS, Ng YF, Li SY, Ho WW, Wong MS, Zhao D. Levels of polyphenols and phenolic metabolites in breast milk and their association with plant-based food intake in Hong Kong lactating women. Food Funct 2021; 12:12683-12695. [PMID: 34825914 DOI: 10.1039/d1fo02529e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dietary polyphenols are phytonutrients exhibiting multiple health benefits in humans including those in infants. However, data on breast milk (poly)phenolic composition are limited, especially among Asian populations. This study aimed to assess the levels of dietary polyphenols and their microbial-derived metabolites in the breast milk of Hong Kong lactating women, and how maternal diet correlated with the phenolic composition in breast milk. Breast milk samples from 89 healthy Hong Kong lactating women (aged 19-40 years) were collected. Maternal intake of plant-based foods and polyphenols was estimated through 3-day dietary records and the Phenol-Explorer database. Twelve commonly consumed polyphenols including their microbial-derived metabolites in breast milk were quantified using an optimized and validated UHPLC-MS/MS method. The effect of maternal intake on breast milk phenolic levels was then examined via the Pearson correlation test. The mean concentrations of individual phenolic compounds ranged from 5.1 nmol L-1 (chlorogenic acid) to 731.5 nmol L-1 (3,4-dihydroxybenzoic acid). Despite suboptimal intake of fruits and vegetables among our participants, breast milk phenolic levels were comparable to those of foreign populations. Significant correlations were found between dietary intake and multiple phenolics, particularly legume and daidzein (r = 0.33, P = 0.001), and tea and epicatechin (r = 0.30, P = 0.03). Regarding phenolic metabolites, 3,4-dihydroxyphenylacetic acid was significantly correlated with several polyphenols, particularly quercetin (r = 0.34, P = 0.002), and equol was exclusively correlated with daidzein (r = 0.46, P < 0.001). Our findings support that intake of plant-based foods significantly affects breast milk phenolic composition. Future investigation on the bioavailability and health outcomes in infants is warranted to substantiate the transferability of these bioactive phytonutrients from mother to child through lactation, and to promote maternal intake of polyphenol-rich foods.
Collapse
Affiliation(s)
- Zhou Lu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Yat-Tin Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Kenneth Ka-Hei Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
| | - Vincy Wing-Si Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Yuk-Fan Ng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Shi-Ying Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wing-Wa Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Man-Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Danyue Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
3
|
Agrawal PK, Agrawal C, Blunden G. Naringenin as a Possible Candidate Against SARS-CoV-2 Infection and in the Pathogenesis of COVID-19. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211066723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Naringenin, widely distributed in fruits and vegetables, is endowed with antiviral and other health beneficial activities, such as immune-stimulating and anti-inflammatory actions that could play a role in contributing, to some extent, to either preventing or alleviating coronavirus infection. Several computational studies have identified naringenin as one of the prominent flavonoids that can possibly inhibit internalization of the virus, virus-host interactions that trigger the cytokine storm, and replication of the virus. This review highlights the antiviral potential of naringenin in COVID-19 associated risk factors and its predicted therapeutic targets against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Pawan K. Agrawal
- Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH 43081, USA
| | - Chandan Agrawal
- Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH 43081, USA
| | | |
Collapse
|
4
|
Cortés-Martín A, García-Villalba R, García-Mantrana I, Rodríguez-Varela A, Romo-Vaquero M, Collado MC, Tomás-Barberán FA, Espín JC, Selma MV. Urolithins in Human Breast Milk after Walnut Intake and Kinetics of Gordonibacter Colonization in Newly Born: The Role of Mothers' Urolithin Metabotypes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12606-12616. [PMID: 33135412 DOI: 10.1021/acs.jafc.0c04821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The maternal-infant transmission of several urolithins through breast milk and the gut colonization of infants by the urolithin-producing bacterium Gordonibacter during their first year of life were explored. Two trials (proof-of-concept study: n = 11; validation study: n = 30) were conducted, where breastfeeding mothers consumed walnuts as a dietary source of urolithin precursors. An analytical method was developed and validated to characterize the urolithin profile in breast milk. Total urolithins ranged from 8.5 to 176.9 nM, while they were not detected in breast milk of three mothers. The mothers' urolithin metabotypes governed the urolithin profile in breast milk, which might have biological significance on infants. A specific quantitative polymerase chain reaction method allowed monitoring the gut colonization of infants by Gordonibacter during their first year of life, and neither breastfeeding nor vaginal delivery was essential for this. The pattern of Gordonibacter establishment in babies was conditioned by their mother's urolithin metabotype, probably because of mother-baby close contact.
Collapse
Affiliation(s)
- Adrián Cortés-Martín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia 30100, Spain
| | - Rocío García-Villalba
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia 30100, Spain
| | - Izaskun García-Mantrana
- Group of Lactic Bacteria and Probiotics, Department of Biotechnology, IATA-CSIC, Valencia 46980, Spain
| | | | - María Romo-Vaquero
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia 30100, Spain
| | - María Carmen Collado
- Group of Lactic Bacteria and Probiotics, Department of Biotechnology, IATA-CSIC, Valencia 46980, Spain
| | - Francisco A Tomás-Barberán
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia 30100, Spain
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia 30100, Spain
| | - María Victoria Selma
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia 30100, Spain
| |
Collapse
|
5
|
Alberca RW, Teixeira FME, Beserra DR, de Oliveira EA, Andrade MMDS, Pietrobon AJ, Sato MN. Perspective: The Potential Effects of Naringenin in COVID-19. Front Immunol 2020; 11:570919. [PMID: 33101291 PMCID: PMC7546806 DOI: 10.3389/fimmu.2020.570919] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), was declared a pandemic by the World Health Organization in March 2020. Severe COVID-19 cases develop severe acute respiratory syndrome, which can result in multiple organ failure, sepsis, and death. The higher risk group includes the elderly and subjects with pre-existing chronic illnesses such as obesity, hypertension, and diabetes. To date, no specific treatment or vaccine is available for COVID-19. Among many compounds, naringenin (NAR) a flavonoid present in citrus fruits has been investigated for antiviral and anti-inflammatory properties like reducing viral replication and cytokine production. In this perspective, we summarize NAR potential anti-inflammatory role in COVID-19 associated risk factors and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ricardo Wesley Alberca
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | | | - Danielle Rosa Beserra
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Emily Araujo de Oliveira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Milena Mary de Souza Andrade
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | | | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| |
Collapse
|