1
|
Ni C, Hong M. Oligomerization of drug transporters: Forms, functions, and mechanisms. Acta Pharm Sin B 2024; 14:1924-1938. [PMID: 38799641 PMCID: PMC11119549 DOI: 10.1016/j.apsb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 05/29/2024] Open
Abstract
Drug transporters are essential players in the transmembrane transport of a wide variety of clinical drugs. The broad substrate spectra and versatile distribution pattern of these membrane proteins infer their pharmacological and clinical significance. With our accumulating knowledge on the three-dimensional structure of drug transporters, their oligomerization status has become a topic of intense study due to the possible functional roles carried out by such kind of post-translational modification (PTM). In-depth studies of oligomeric complexes formed among drug transporters as well as their interactions with other regulatory proteins can help us better understand the regulatory mechanisms of these membrane proteins, provide clues for the development of novel drugs, and improve the therapeutic efficacy. In this review, we describe different oligomerization forms as well as their structural basis of major drug transporters in the ATP-binding cassette and solute carrier superfamilies, summarize our current knowledge on the influence of oligomerization for protein expression level and transport function of these membrane proteins, and discuss the regulatory mechanisms of oligomerization. Finally, we highlight the challenges associated with the current oligomerization studies and propose some thoughts on the pharmaceutical application of this important drug transporter PTM.
Collapse
Affiliation(s)
- Chunxu Ni
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Jin YW, Ma YR, Zhang MK, Xia WB, Yuan P, Li BX, Wei YH, Wu XA. Identification and characterization of endogenous biomarkers for hepatic vectorial transport (OATP1B3-P-gp) function using metabolomics with serum pharmacology. Amino Acids 2024; 56:11. [PMID: 38319413 PMCID: PMC10847190 DOI: 10.1007/s00726-023-03363-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/18/2023] [Indexed: 02/07/2024]
Abstract
The organic anion-transporting polypeptide 1B3 and P-glycoprotein (P-gp) provide efficient directional transport (OATP1B3-P-gp) from the blood to the bile that serves as a key determinant of hepatic disposition of the drug. Unfortunately, there is still a lack of effective means to evaluate the disposal ability mediated by transporters. The present study was designed to identify a suitable endogenous biomarker for the assessment of OATP1B3-P-gp function in the liver. We established stably transfected HEK293T-OATP1B3 and HEK293T-P-gp cell lines. Results showed that azelaic acid (AzA) was an endogenous substrate for OATP1B3 and P-gp using serum pharmacology combined with metabolomics. There is a good correlation between the serum concentration of AzA and probe drugs of rOATP1B3 and rP-gp when rats were treated with their inhibitors. Importantly, after 5-fluorouracil-induced rat liver injury, the relative mRNA level and expression of rOATP1B3 and rP-gp were markedly down-regulated in the liver, and the serum concentration of AzA was significantly increased. These observations suggest that AzA is an endogenous substrate of both OATP1B3 and P-gp, and may serve as a potential endogenous biomarker for the assessment of the function of OATP1B3-P-gp for the prediction of changes in the pharmacokinetics of drugs transported by OATP1B3-P-gp in liver disease states.
Collapse
Affiliation(s)
- Yong-Wen Jin
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Yan-Rong Ma
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | | | - Wen-Bin Xia
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Pei Yuan
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Bo-Xia Li
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yu-Hui Wei
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Xin-An Wu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| |
Collapse
|
3
|
Powell JT, Kayesh R, Ballesteros-Perez A, Alam K, Niyonshuti P, Soderblom EJ, Ding K, Xu C, Yue W. Assessing Trans-Inhibition of OATP1B1 and OATP1B3 by Calcineurin and/or PPIase Inhibitors and Global Identification of OATP1B1/3-Associated Proteins. Pharmaceutics 2023; 16:63. [PMID: 38258074 PMCID: PMC10818623 DOI: 10.3390/pharmaceutics16010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are key determinants of drug-drug interactions (DDIs). Various drugs including the calcineurin inhibitor (CNI) cyclosporine A (CsA) exert preincubation-induced trans-inhibitory effects upon OATP1B1 and/or OATP1B3 (abbreviated as OATP1B1/3) by unknown mechanism(s). OATP1B1/3 are phosphoproteins; calcineurin, which dephosphorylates and regulates numerous phosphoproteins, has not previously been investigated in the context of preincubation-induced trans-inhibition of OATP1B1/3. Herein, we compare the trans-inhibitory effects exerted on OATP1B1 and OATP1B3 by CsA, the non-analogous CNI tacrolimus, and the non-CNI CsA analogue SCY-635 in transporter-overexpressing human embryonic kidney (HEK) 293 stable cell lines. Preincubation (10-60 min) with tacrolimus (1-10 µM) rapidly and significantly reduces OATP1B1- and OATP1B3-mediated transport up to 0.18 ± 0.03- and 0.20 ± 0.02-fold compared to the control, respectively. Both CsA and SCY-635 can trans-inhibit OATP1B1, with the inhibitory effects progressively increasing over a 60 min preincubation time. At each equivalent preincubation time, CsA has greater trans-inhibitory effects toward OATP1B1 than SCY-635. Preincubation with SCY-635 for 60 min yielded IC50 of 2.2 ± 1.4 µM against OATP1B1, which is ~18 fold greater than that of CsA (0.12 ± 0.04 µM). Furthermore, a proteomics-based screening for protein interactors was used to examine possible proteins and processes contributing to OATP1B1/3 regulation and preincubation-induced inhibition by CNIs and other drugs. A total of 861 and 357 proteins were identified as specifically associated with OATP1B1 and OATP1B3, respectively, including various protein kinases, ubiquitin-related enzymes, the tacrolimus (FK506)-binding proteins FKBP5 and FKBP8, and several known regulatory targets of calcineurin. The current study reports several novel findings that expand our understanding of impaired OATP1B1/3 function; these include preincubation-induced trans-inhibition of OATP1B1/3 by the CNI tacrolimus, greater preincubation-induced inhibition by CsA compared to its non-CNI analogue SCY-635, and association of OATP1B1/3 with various proteins relevant to established and candidate OATP1B1/3 regulatory processes.
Collapse
Affiliation(s)
- John T. Powell
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Ruhul Kayesh
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Alexandra Ballesteros-Perez
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Pascaline Niyonshuti
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Erik J. Soderblom
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC 27708, USA
| | - Kai Ding
- Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.D.); (C.X.)
| | - Chao Xu
- Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.D.); (C.X.)
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| |
Collapse
|
4
|
Duranti E, Villa C. Influence of DUX4 Expression in Facioscapulohumeral Muscular Dystrophy and Possible Treatments. Int J Mol Sci 2023; 24:ijms24119503. [PMID: 37298453 DOI: 10.3390/ijms24119503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) represents the third most common form of muscular dystrophy and is characterized by muscle weakness and atrophy. FSHD is caused by the altered expression of the transcription factor double homeobox 4 (DUX4), which is involved in several significantly altered pathways required for myogenesis and muscle regeneration. While DUX4 is normally silenced in the majority of somatic tissues in healthy individuals, its epigenetic de-repression has been linked to FSHD, resulting in DUX4 aberrant expression and cytotoxicity in skeletal muscle cells. Understanding how DUX4 is regulated and functions could provide useful information not only to further understand FSHD pathogenesis, but also to develop therapeutic approaches for this disorder. Therefore, this review discusses the role of DUX4 in FSHD by examining the possible molecular mechanisms underlying the disease as well as novel pharmacological strategies targeting DUX4 aberrant expression.
Collapse
Affiliation(s)
- Elisa Duranti
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
5
|
Kayesh R, Tambe V, Xu C, Yue W. Differential Preincubation Effects of Nicardipine on OATP1B1- and OATP1B3-Mediated Transport in the Presence and Absence of Protein: Implications in Assessing OATP1B1- and OATP1B3-Mediated Drug-Drug Interactions. Pharmaceutics 2023; 15:1020. [PMID: 36986880 PMCID: PMC10052025 DOI: 10.3390/pharmaceutics15031020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Impaired transport activity of hepatic OATP1B1 and OATP1B3 due to drug-drug interactions (DDIs) often leads to increased systemic exposure to substrate drugs (e.g., lipid-lowering statins). Since dyslipidemia and hypertension frequently coexist, statins are often concurrently used with antihypertensives, including calcium channel blockers (CCBs). OATP1B1/1B3-related DDIs in humans have been reported for several CCBs. To date, the OATP1B1/1B3-mediated DDI potential of CCB nicardipine has not been assessed. The current study was designed to assess the OATP1B1- and OATP1B3-mediated DDI potential of nicardipine using the R-value model, following the US-FDA guidance. IC50 values of nicardipine against OATP1B1 and OATP1B3 were determined in transporter-overexpressing human embryonic kidney 293 cells using [3H]-estradiol 17β-D-glucuronide and [3H]-cholecystokinin-8 as substrates, respectively, with or without nicardipine-preincubation in protein-free Hanks' Balanced Salt Solution (HBSS) or in fetal bovine serum (FBS)-containing culture medium. Preincubation with nicardipine for 30 min in protein-free HBSS buffer produced lower IC50 and higher R-values for both OATP1B1 and OATP1B3 compared to in FBS-containing medium, yielding IC50 values of 0.98 and 1.63 µM and R-values of 1.4 and 1.3 for OATP1B1 and OATP1B3, respectively. The R-values were higher than the US-FDA cut-off value of 1.1, supporting that nicardipine has the potential to cause OATP1B1/3-mediated DDIs. Current studies provide insight into the consideration of optimal preincubation conditions when assessing the OATP1B1/3-mediated DDIs in vitro.
Collapse
Affiliation(s)
- Ruhul Kayesh
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Vishakha Tambe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| |
Collapse
|
6
|
Michalska K, Balcerczak E, Jeleń A, Saed L, Pietrzak J, Żebrowska-Nawrocka M. Effects of the SLCO1B1 A388G single nucleotide polymorphism on the development, clinical parameters, treatment, and survival of multiple myeloma cases in a Polish population. Mol Biol Rep 2023; 50:1447-1458. [PMID: 36478296 PMCID: PMC9889417 DOI: 10.1007/s11033-022-08162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Multiple myeloma is one of the most common hematological malignancies worldwide. Genetic alterations may lead to the progression from monoclonal gammopathy to multiple myeloma. Additionally, the genetic background of the disease might influence therapy outcomes, including survival time. SLCO1B1, belonging to the OATPs family, is a membrane protein that mediates the uptake of a wide range of endogenous and exogenous (including drugs) compounds. METHODS AND RESULTS In this study, the A388G single nucleotide polymorphism in the SLCO1B1 gene in Polish multiple myeloma patients was determined. This polymorphism affects the amino acid change of the protein, so it may be responsible for treatment effectiveness or risk of disease development. A388G was evaluated by the PCR-RFLP method. The presented study showed a statistically significant association between the GG genotype with longer survival of patients with multiple myeloma with Melphalan-Prednisone therapy compared to other treatment regimens (p = 0.0271). There was no statistically significant association in the frequency of genotypes (p = 0.8211) and alleles: allele A (p = 0.5442); allele G (p = 0.8020) between multiple myeloma patients and a control group. CONCLUSIONS The A388G polymorphism does not seem to affect the increased risk of the development of multiple myeloma. However, the occurrence of the GG genotype may prolong of patients overall survival in the case of Melphalan-Prednisone therapy.
Collapse
Affiliation(s)
- Katarzyna Michalska
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Ewa Balcerczak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Agnieszka Jeleń
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Lias Saed
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Jacek Pietrzak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Marta Żebrowska-Nawrocka
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interfaculty Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
7
|
Puris E, Fricker G, Gynther M. The Role of Solute Carrier Transporters in Efficient Anticancer Drug Delivery and Therapy. Pharmaceutics 2023; 15:pharmaceutics15020364. [PMID: 36839686 PMCID: PMC9966068 DOI: 10.3390/pharmaceutics15020364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Transporter-mediated drug resistance is a major obstacle in anticancer drug delivery and a key reason for cancer drug therapy failure. Membrane solute carrier (SLC) transporters play a crucial role in the cellular uptake of drugs. The expression and function of the SLC transporters can be down-regulated in cancer cells, which limits the uptake of drugs into the tumor cells, resulting in the inefficiency of the drug therapy. In this review, we summarize the current understanding of low-SLC-transporter-expression-mediated drug resistance in different types of cancers. Recent advances in SLC-transporter-targeting strategies include the development of transporter-utilizing prodrugs and nanocarriers and the modulation of SLC transporter expression in cancer cells. These strategies will play an important role in the future development of anticancer drug therapies by enabling the efficient delivery of drugs into cancer cells.
Collapse
|
8
|
Dominant-negative p53-overexpression in skeletal muscle induces cell death and fiber atrophy in rats. Cell Death Dis 2022; 13:716. [PMID: 35977948 PMCID: PMC9385859 DOI: 10.1038/s41419-022-05160-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 01/21/2023]
Abstract
The tumor suppressor p53 is thought to play a key role in the maintenance of cell size and homeostasis, but relatively little is known about its role in skeletal muscle. Based on its ability to suppress cell growth, we hypothesized that inhibiting the function of wild-type p53 through the overexpression of a dominant-negative p53 mutant (DDp53) could result in muscle fiber hypertrophy. To test this hypothesis, we electroporated adult rat tibialis anterior muscles with DDp53 and collected the tissue three weeks later. We confirmed successful overexpression of DDp53 on a histological and biochemical level and found pronounced changes to muscle architecture, metabolism, and molecular signaling. Muscle mass, fiber cross-sectional area, and fiber diameter significantly decreased with DDp53 overexpression. We found histopathological changes in DDp53 transfected muscle which were accompanied by increased levels of proteins that are associated with membrane damage and repair. In addition, DDp53 decreased oxidative phosphorylation complex I and V protein levels, and despite its negative effects on muscle mass and fiber size, caused an increase in muscle protein synthesis as assessed via the SUnSET technique. Interestingly, the increase in muscle protein synthesis was concomitant with a decrease in phospho-S6K1 (Thr389). Furthermore, the muscle wasting in the DDp53 electroporated leg was accompanied by a decrease in global protein ubiquitination and an increase in proteasome activity. In conclusion, overexpression of a dominant-negative p53 mutant in skeletal muscle results in decreased muscle mass, myofiber size, histological muscle damage, a metabolic phenotype, and perturbed homeostasis between muscle protein synthesis and degradation.
Collapse
|
9
|
Jala A, Ponneganti S, Vishnubhatla DS, Bhuvanam G, Mekala PR, Varghese B, Radhakrishnanand P, Adela R, Murty US, Borkar RM. Transporter-mediated drug-drug interactions: advancement in models, analytical tools, and regulatory perspective. Drug Metab Rev 2021; 53:285-320. [PMID: 33980079 DOI: 10.1080/03602532.2021.1928687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023]
Abstract
Drug-drug interactions mediated by transporters are a serious clinical concern hence a tremendous amount of work has been done on the characterization of the transporter-mediated proteins in humans and animals. The underlying mechanism for the transporter-mediated drug-drug interaction is the induction or inhibition of the transporter which is involved in the cellular uptake and efflux of drugs. Transporter of the brain, liver, kidney, and intestine are major determinants that alter the absorption, distribution, metabolism, excretion profile of drugs, and considerably influence the pharmacokinetic profile of drugs. As a consequence, transporter proteins may affect the therapeutic activity and safety of drugs. However, mounting evidence suggests that many drugs change the activity and/or expression of the transporter protein. Accordingly, evaluation of drug interaction during the drug development process is an integral part of risk assessment and regulatory requirements. Therefore, this review will highlight the clinical significance of the transporter, their role in disease, possible cause underlying the drug-drug interactions using analytical tools, and update on the regulatory requirement. The recent in-silico approaches which emphasize the advancement in the discovery of drug-drug interactions are also highlighted in this review. Besides, we discuss several endogenous biomarkers that have shown to act as substrates for many transporters, which could be potent determinants to find the drug-drug interactions mediated by transporters. Transporter-mediated drug-drug interactions are taken into consideration in the drug approval process therefore we also provided the extrapolated decision trees from in-vitro to in-vivo, which may trigger the follow-up to clinical studies.
Collapse
Affiliation(s)
- Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Srikanth Ponneganti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Devi Swetha Vishnubhatla
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Gayathri Bhuvanam
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Prithvi Raju Mekala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Bincy Varghese
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Pullapanthula Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | | | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| |
Collapse
|
10
|
Fan Y, Liang Z, Zhang J, You G. Oral Proteasomal Inhibitors Ixazomib, Oprozomib, and Delanzomib Upregulate the Function of Organic Anion Transporter 3 (OAT3): Implications in OAT3-Mediated Drug-Drug Interactions. Pharmaceutics 2021; 13:314. [PMID: 33670955 PMCID: PMC7997269 DOI: 10.3390/pharmaceutics13030314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
Organic anion transporter 3 (OAT3) is mainly expressed at the basolateral membrane of kidney proximal tubules, and is involved in the renal elimination of various kinds of important drugs, potentially affecting drug efficacy or toxicity. Our laboratory previously reported that ubiquitin modification of OAT3 triggers the endocytosis of OAT3 from the plasma membrane to intracellular endosomes, followed by degradation. Oral anticancer drugs ixazomib, oprozomib, and delanzomib, as proteasomal inhibitors, target the ubiquitin-proteasome system in clinics. Therefore, this study investigated the effects of ixazomib, oprozomib, and delanzomib on the expression and transport activity of OAT3 and elucidated the underlying mechanisms. We showed that all three drugs significantly increased the accumulation of ubiquitinated OAT3, which was consistent with decreased intracellular 20S proteasomal activity; stimulated OAT3-mediated transport of estrone sulfate and p-aminohippuric acid; and increased OAT3 surface expression. The enhanced transport activity and OAT3 expression following drug treatment resulted from an increase in maximum transport velocity of OAT3 without altering the substrate binding affinity, and from a decreased OAT3 degradation. Together, our study discovered a novel role of anticancer agents ixazomib, oprozomib, and delanzomib in upregulating OAT3 function, unveiled the proteasome as a promising target for OAT3 regulation, and provided implication of OAT3-mediated drug-drug interactions, which should be warned against during combination therapies with proteasome inhibitor drugs.
Collapse
Affiliation(s)
| | | | | | - Guofeng You
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; (Y.F.); (Z.L.); (J.Z.)
| |
Collapse
|
11
|
Rendic S, Guengerich FP. Metabolism and Interactions of Chloroquine and Hydroxychloroquine with Human Cytochrome P450 Enzymes and Drug Transporters. Curr Drug Metab 2021; 21:1127-1135. [PMID: 33292107 DOI: 10.2174/1389200221999201208211537] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/24/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In clinical practice, chloroquine and hydroxychloroquine are often co-administered with other drugs in the treatment of malaria, chronic inflammatory diseases, and COVID-19. Therefore, their metabolic properties and the effects on the activity of cytochrome P450 (P450, CYP) enzymes and drug transporters should be considered when developing the most efficient treatments for patients. METHODS Scientific literature on the interactions of chloroquine and hydroxychloroquine with human P450 enzymes and drug transporters, was searched using PUBMED.Gov (https://pubmed.ncbi.nlm.nih.gov/) and the ADME database (https://life-science.kyushu.fujitsu.com/admedb/). RESULTS Chloroquine and hydroxychloroquine are metabolized by P450 1A2, 2C8, 2C19, 2D6, and 3A4/5 in vitro and by P450s 2C8 and 3A4/5 in vivo by N-deethylation. Chloroquine effectively inhibited P450 2D6 in vitro; however, in vivo inhibition was not apparent except in individuals with limited P450 2D6 activity. Chloroquine is both an inhibitor and inducer of the transporter MRP1 and is also a substrate of the Mate and MRP1 transport systems. Hydroxychloroquine also inhibited P450 2D6 and the transporter OATP1A2. CONCLUSIONS Chloroquine caused a statistically significant decrease in P450 2D6 activity in vitro and in vivo, also inhibiting its own metabolism by the enzyme. The inhibition indicates a potential for clinical drug-drug interactions when taken with other drugs that are predominant substrates of the P450 2D6. When chloroquine and hydroxychloroquine are used clinically with other drugs, substrates of P450 2D6 enzyme, attention should be given to substrate-specific metabolism by P450 2D6 alleles present in individuals taking the drugs.
Collapse
Affiliation(s)
| | - Frederick Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
12
|
Farasyn T, Xu C, Yue W. Development of a Rat Sandwich-Cultured Hepatocytes Model Expressing Functional Human Organic Anion Transporting Polypeptide (OATP) 1B3: A Potential Screening Tool for Liver-Targeting Compounds. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2021; 24:475-483. [PMID: 34516949 PMCID: PMC11195919 DOI: 10.18433/jpps31818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE Organic anion transporting polypeptide (OATP) 1B3 transports many clinically important drugs, including statins, from blood into the liver. It exclusively expresses in human liver under normal physiological conditions. There is no rodent ortholog of human OATP1B3. Tissue targeting of therapeutic molecules mediated by transporters, including liver-targeting via liver-specific OATPs, is an emerging area in drug development. Sandwich-cultured primary hepatocytes (SCH) are a well characterized in vitro model for assessment of hepatic drug uptake and biliary excretion. The current study was designed to develop a novel rat SCH model expressing human OATP1B3 to study the hepatic disposition of OATP1B3 substrates. METHODS Primary rat hepatocytes transduced with adenoviral vectors expressing FLAG-tagged OATP1B3 (Ad-OATP1B3), a control vector Ad-LacZ, or that were non-transduced were cultured in a sandwich configuration. FLAG immunoblot and immunofluorescence-staining determined expression and localization of OATP1B3. Uptake of [3H]-cholecystokinin octapeptide (CCK-8), a specific OATP1B3 substrate, was determined. Taurocholate (TC) is a substrate routinely used in SCH to assess biliary excretion via bile canaliculi (BC) and is also a substrate of OATP1B3. [3H]-TC accumulation in cells+BC, cells, biliary excretion index (BEI) and in vitro Clbiliary were determined using B-CLEAR® technology. RESULTS OATP1B3 protein was extensively expressed and primarily localized on the plasma membrane in day 4 Ad-OATP1B3-transduced rat SCH. [3H]-CCK-8 accumulation in cells+BC was significantly greater (~5-13 folds, p<0.001) in day 4 SCH with vs. without Ad-OATP1B3-transduction. Expressing OATP1B3 in rat SCH significantly increased [3H]-TC accumulation in cells+BC and cells, without affecting BEI and in vitro Clbiliary. CONCLUSIONS Rat SCH expressing human OATP1B3-is a novel in vitro model allowing simultaneous assessment of hepatic uptake, hepatocellular accumulation and biliary excretion process of a human OATP1B3 substrate. This model could be a potential tool for screening for liver-targeting compounds mediated by OATP1B3.
Collapse
Affiliation(s)
- Taleah Farasyn
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Chao Xu
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
13
|
Kayesh R, Farasyn T, Crowe A, Liu Q, Pahwa S, Alam K, Neuhoff S, Hatley O, Ding K, Yue W. Assessing OATP1B1- and OATP1B3-Mediated Drug-Drug Interaction Potential of Vemurafenib Using R-Value and Physiologically-Based Pharmacokinetic Models. J Pharm Sci 2021; 110:314-324. [PMID: 32590030 PMCID: PMC7750294 DOI: 10.1016/j.xphs.2020.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 11/19/2022]
Abstract
Organic anion transporting polypeptides (OATP) 1B1 and OATP1B3 are important determinants of transporter-mediated drug-drug interactions (DDIs). Current studies assessed the OATP1B1 and OATP1B3-mediated DDI potential of vemurafenib, a kinase inhibitor drug with high protein binding and low aqueous solubility, using R-value and physiologically-based pharmacokinetic (PBPK) models. The total half-maximal inhibitory concentration (IC50,total) values of vemurafenib against OATP1B1 and OATP1B3 were determined in 100% human plasma in transporter-overexpressing human embryonic kidney 293 stable cell lines. The unbound fraction of vemurafenib in human plasma before (fu,plasma) and after addition into the uptake assay plate (fu,plasma,inc) were determined by rapid equilibrium dialysis. There was no statistically significant difference between fu,plasma and fu,plasma,inc. Vemurafenib IC50,total values against OATP1B1 and OATP1B3 are 175 ± 82 and 231 ± 26 μM, respectively. The R-values [R = 1 + fu,plasma × Iin,max/(fu,plasma,inc × IC50,total)] were then simplified as R = 1+Iin,max/IC50,total, and were 1.76 and 1.57 for OATP1B1 and OATP1B3, respectively. The simulated pravastatin AUC ratio was 1.28 when a single dose of pravastatin (40 mg) was co-administered with vemurafenib (960 mg, twice daily) at steady-state, compared to pravastatin alone. Both R-value and PBPK models predict that vemurafenib has the potential to cause OATP1B1- and OATP1B3-mediated DDIs.
Collapse
Affiliation(s)
- Ruhul Kayesh
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Taleah Farasyn
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Alexandra Crowe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Qiang Liu
- ARL Bio Pharma, Oklahoma City, Oklahoma 73104
| | - Sonia Pahwa
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Sibylle Neuhoff
- Certara UK Ltd, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ United Kingdom
| | - Oliver Hatley
- Certara UK Ltd, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ United Kingdom
| | - Kai Ding
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
14
|
Lee W, Ha JM, Sugiyama Y. Post-translational regulation of the major drug transporters in the families of organic anion transporters and organic anion-transporting polypeptides. J Biol Chem 2020; 295:17349-17364. [PMID: 33051208 PMCID: PMC7863896 DOI: 10.1074/jbc.rev120.009132] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
The organic anion transporters (OATs) and organic anion-transporting polypeptides (OATPs) belong to the solute carrier (SLC) transporter superfamily and play important roles in handling various endogenous and exogenous compounds of anionic charge. The OATs and OATPs are often implicated in drug therapy by impacting the pharmacokinetics of clinically important drugs and, thereby, drug exposure in the target organs or cells. Various mechanisms (e.g. genetic, environmental, and disease-related factors, drug-drug interactions, and food-drug interactions) can lead to variations in the expression and activity of the anion drug-transporting proteins of OATs and OATPs, possibly impacting the therapeutic outcomes. Previous investigations mainly focused on the regulation at the transcriptional level and drug-drug interactions as competing substrates or inhibitors. Recently, evidence has accumulated that cellular trafficking, post-translational modification, and degradation mechanisms serve as another important layer for the mechanisms underlying the variations in the OATs and OATPs. This review will provide a brief overview of the major OATs and OATPs implicated in drug therapy and summarize recent progress in our understanding of the post-translational modifications, in particular ubiquitination and degradation pathways of the individual OATs and OATPs implicated in drug therapy.
Collapse
Affiliation(s)
- Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.
| | - Jeong-Min Ha
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Kanagawa, Japan
| |
Collapse
|
15
|
Regulation of organic anion transporters: Role in physiology, pathophysiology, and drug elimination. Pharmacol Ther 2020; 217:107647. [PMID: 32758646 DOI: 10.1016/j.pharmthera.2020.107647] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022]
Abstract
The members of the organic anion transporter (OAT) family are mainly expressed in kidney, liver, placenta, intestine, and brain. These transporters play important roles in the disposition of clinical drugs, pesticides, signaling molecules, heavy metal conjugates, components of phytomedicines, and toxins, and therefore critical for maintaining systemic homeostasis. Alterations in the expression and function of OATs contribute to the intra- and inter-individual variability of the therapeutic efficacy and the toxicity of many drugs, and to many pathophysiological conditions. Consequently, the activity of these transporters must be highly regulated to carry out their normal functions. This review will present an update on the recent advance in understanding the cellular and molecular mechanisms underlying the regulation of renal OATs, emphasizing on the post-translational modification (PTM), the crosstalk among these PTMs, and the remote sensing and signaling network of OATs. Such knowledge will provide significant insights into the roles of these transporters in health and disease.
Collapse
|
16
|
Ogura J, Yamaguchi H, Mano N. Stimulatory effect on the transport mediated by organic anion transporting polypeptide 2B1. Asian J Pharm Sci 2020; 15:181-191. [PMID: 32373198 PMCID: PMC7193449 DOI: 10.1016/j.ajps.2019.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Drug-drug interaction (DDI) is one of causes of adverse drug events and can result in life-threatening consequences. Organic anion-transporting polypeptide (OATP) 2B1 is a major uptake transporter in the intestine and contributes to transport various clinically used therapeutic agents. The intestine has a high risk of DDI, because it has a special propensity to be exposed to a high concentration of drugs. Thus, understanding drug interaction mediated by OATP2B1 in the absorption process is important for the prevention of adverse drug events, including decrease in the therapeutic effect of co-administered drugs. Acute drug interaction occurs through the direct inhibitory effect on transporters, including OATP2B1. Moreover, some compounds such as clinically used drugs and food components have an acute stimulatory effect on transport of co-administered drugs by OATP2B1. This review summarizes the acute stimulatory effect on the transport mediated by OATP2B1 and discusses the mechanisms of the acute stimulatory effects of compounds. There are two types of acute stimulatory effects, substrate-independent and -dependent interactions on OATP2B1 function. The facilitating translocation of OATP2B1 to the plasma membrane is one of causes for the substrate-independent acute stimulatory effect. On the contrary, the substrate-dependent effect is based on the direct binding to the substrate-binding site or allosteric progesterone-binding site of OATP2B1.
Collapse
Affiliation(s)
- Jiro Ogura
- Corresponding author. Tohoku University Hospital, Department of Pharmaceutical Sciences, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan. Tel.: +81 22 7177541
| | | | | |
Collapse
|
17
|
Fan Y, You G. Proteasome Inhibitors Bortezomib and Carfilzomib Stimulate the Transport Activity of Human Organic Anion Transporter 1. Mol Pharmacol 2020; 97:384-391. [PMID: 32234809 DOI: 10.1124/mol.119.118653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/10/2020] [Indexed: 01/08/2023] Open
Abstract
Organic anion transporter 1 (OAT1), expressed at the basolateral membrane of renal proximal tubule epithelial cells, mediates the renal excretion of many clinically important drugs. Previous study in our laboratory demonstrated that ubiquitin conjugation to OAT1 leads to OAT1 internalization from the cell surface and subsequent degradation. The current study showed that the ubiquitinated OAT1 accumulated in the presence of the proteasomal inhibitors MG132 and ALLN rather than the lysosomal inhibitors leupeptin and pepstatin A, suggesting that ubiquitinated OAT1 degrades through proteasomes. Anticancer drugs bortezomib and carfilzomib target the ubiquitin-proteasome pathway. We therefore investigate the roles of bortezomib and carfilzomib in reversing the ubiquitination-induced downregulation of OAT1 expression and transport activity. We showed that bortezomib and carfilzomib extremely increased the ubiquitinated OAT1, which correlated well with an enhanced OAT1-mediated transport of p-aminohippuric acid and an enhanced OAT1 surface expression. The augmented OAT1 expression and transport activity after the treatment with bortezomib and carfilzomib resulted from a reduced rate of OAT1 degradation. Consistent with this, we found decreased 20S proteasomal activity in cells that were exposed to bortezomib and carfilzomib. In conclusion, this study identified the pathway in which ubiquitinated OAT1 degrades and unveiled a novel role of anticancer drugs bortezomib and carfilzomib in their regulation of OAT1 expression and transport activity. SIGNIFICANCE STATEMENT: Bortezomib and carfilzomib are two Food and Drug Administration-approved anticancer drugs, and proteasome is the drug target. In this study, we unveiled a new role of bortezomib and carfilzomib in enhancing OAT1 expression and transport activity by preventing the degradation of ubiquitinated OAT1 in proteasomes. This finding provides a new strategy in regulating OAT1 function that can be used to accelerate the clearance of drugs, metabolites, or toxins and reverse the decreased expression under disease conditions.
Collapse
Affiliation(s)
- Yunzhou Fan
- Department of Pharmaceutics, Rutgers, the State University of New Jersey, Piscataway, New Jersey
| | - Guofeng You
- Department of Pharmaceutics, Rutgers, the State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
18
|
Farasyn T, Crowe A, Hatley O, Neuhoff S, Alam K, Kanyo J, Lam TT, Ding K, Yue W. Preincubation With Everolimus and Sirolimus Reduces Organic Anion-Transporting Polypeptide (OATP)1B1- and 1B3-Mediated Transport Independently of mTOR Kinase Inhibition: Implication in Assessing OATP1B1- and OATP1B3-Mediated Drug-Drug Interactions. J Pharm Sci 2019; 108:3443-3456. [PMID: 31047942 PMCID: PMC6759397 DOI: 10.1016/j.xphs.2019.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
Organic anion transporting polypeptides (OATP)1B1 and OATP1B3 mediate hepatic uptake of many drugs including lipid-lowering statins. Current studies determined the OATP1B1/1B3-mediated drug-drug interaction (DDI) potential of mammalian target of rapamycin (mTOR) inhibitors, everolimus and sirolimus, using R-value and physiologically based pharmacokinetic models. Preincubation with everolimus and sirolimus significantly decreased OATP1B1/1B3-mediated transport even after washing and decreased inhibition constant values up to 8.3- and 2.9-fold for OATP1B1 and both 2.7-fold for OATP1B3, respectively. R-values of everolimus, but not sirolimus, were greater than the FDA-recommended cutoff value of 1.1. Physiologically based pharmacokinetic models predict that everolimus and sirolimus have low OATP1B1/1B3-mediated DDI potential against pravastatin. OATP1B1/1B3-mediated transport was not affected by preincubation with INK-128 (10 μM, 1 h), which does however abolish mTOR kinase activity. The preincubation effects of everolimus and sirolimus on OATP1B1/1B3-mediated transport were similar in cells before preincubation with vehicle control or INK-128, suggesting that inhibition of mTOR activity is not a prerequisite for the preincubation effects observed for everolimus and sirolimus. Nine potential phosphorylation sites of OATP1B1 were identified by phosphoproteomics; none of these are the predicted mTOR phosphorylation sites. We report the everolimus/sirolimus-preincubation-induced inhibitory effects on OATP1B1/1B3 and relatively low OATP1B1/1B3-mediated DDI potential of everolimus and sirolimus.
Collapse
Affiliation(s)
- Taleah Farasyn
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Alexandra Crowe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Oliver Hatley
- Certara UK Ltd., Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK
| | - Sibylle Neuhoff
- Certara UK Ltd., Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jean Kanyo
- Yale MS & Proteomics Resource, Yale University, New Haven, Connecticut 06520
| | - TuKiet T Lam
- Yale MS & Proteomics Resource, Yale University, New Haven, Connecticut 06520; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Kai Ding
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
19
|
Crowe A, Zheng W, Miller J, Pahwa S, Alam K, Fung KM, Rubin E, Yin F, Ding K, Yue W. Characterization of Plasma Membrane Localization and Phosphorylation Status of Organic Anion Transporting Polypeptide (OATP) 1B1 c.521 T>C Nonsynonymous Single-Nucleotide Polymorphism. Pharm Res 2019; 36:101. [PMID: 31093828 DOI: 10.1007/s11095-019-2634-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 04/27/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Membrane transport protein organic anion transporting polypeptide (OATP) 1B1 mediates hepatic uptake of many drugs (e.g. statins). The OATP1B1 c.521 T > C (p. V174A) polymorphism has reduced transport activity. Conflicting in vitro results exist regarding whether V174A-OATP1B1 has reduced plasma membrane localization; no such data has been reported in physiologically relevant human liver tissue. Other potential changes, such as phosphorylation, of the V174A-OATP1B1 protein have not been explored. Current studies characterized the plasma membrane localization of V174A-OATP1B1 in genotyped human liver tissue and cell culture and compared the phosphorylation status of V174A- and wild-type (WT)-OATP1B1. METHODS Localization of V174A- and WT-OATP1B1 were determined in OATP1B1 c.521 T > C genotyped human liver tissue (n = 79) by immunohistochemistry and in transporter-overexpressing human embryonic kidney (HEK) 293 and HeLa cells by surface biotinylation and confocal microscopy. Phosphorylation and transport of OATP1B1 was determined using 32P-orthophosphate labeling and [3H]estradiol-17β-glucuronide accumulation, respectively. RESULTS All three methods demonstrated predominant plasma membrane localization of both V174A- and WT-OATP1B1 in human liver tissue and in cell culture. Compared to WT-OATP1B1, the V174A-OATP1B1 has significantly increased phosphorylation and reduced transport. CONCLUSIONS We report novel findings of increased phosphorylation, but not impaired membrane localization, in association with the reduced transport function of the V174A-OATP1B1.
Collapse
Affiliation(s)
- Alexandra Crowe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Wei Zheng
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jonathan Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Sonia Pahwa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Erin Rubin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Feng Yin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
20
|
Zhang Y, Panfen E, Fancher M, Sinz M, Marathe P, Shen H. Dissecting the Contribution of OATP1B1 to Hepatic Uptake of Statins Using the OATP1B1 Selective Inhibitor Estropipate. Mol Pharm 2019; 16:2342-2353. [DOI: 10.1021/acs.molpharmaceut.8b01226] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yueping Zhang
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Erika Panfen
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Marcus Fancher
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Michael Sinz
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Punit Marathe
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Hong Shen
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
21
|
Alam K, Crowe A, Wang X, Zhang P, Ding K, Li L, Yue W. Regulation of Organic Anion Transporting Polypeptides (OATP) 1B1- and OATP1B3-Mediated Transport: An Updated Review in the Context of OATP-Mediated Drug-Drug Interactions. Int J Mol Sci 2018. [PMID: 29538325 PMCID: PMC5877716 DOI: 10.3390/ijms19030855] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Organic anion transporting polypeptides (OATP) 1B1 and OATP1B3 are important hepatic transporters that mediate the uptake of many clinically important drugs, including statins from the blood into the liver. Reduced transport function of OATP1B1 and OATP1B3 can lead to clinically relevant drug-drug interactions (DDIs). Considering the importance of OATP1B1 and OATP1B3 in hepatic drug disposition, substantial efforts have been given on evaluating OATP1B1/1B3-mediated DDIs in order to avoid unwanted adverse effects of drugs that are OATP substrates due to their altered pharmacokinetics. Growing evidences suggest that the transport function of OATP1B1 and OATP1B3 can be regulated at various levels such as genetic variation, transcriptional and post-translational regulation. The present review summarizes the up to date information on the regulation of OATP1B1 and OATP1B3 transport function at different levels with a focus on potential impact on OATP-mediated DDIs.
Collapse
Affiliation(s)
- Khondoker Alam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| | - Alexandra Crowe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| | - Xueying Wang
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Pengyue Zhang
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126, USA.
| | - Lang Li
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA.
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| |
Collapse
|