1
|
Ouyang X, Reihill JA, Douglas LEJ, Martin SL. Airborne indoor allergen serine proteases and their contribution to sensitisation and activation of innate immunity in allergic airway disease. Eur Respir Rev 2024; 33:230126. [PMID: 38657996 PMCID: PMC11040391 DOI: 10.1183/16000617.0126-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/28/2024] [Indexed: 04/26/2024] Open
Abstract
Common airborne allergens (pollen, animal dander and those from fungi and insects) are the main triggers of type I allergic disorder in the respiratory system and are associated with allergic rhinitis, allergic asthma, as well as immunoglobulin E (IgE)-mediated allergic bronchopulmonary aspergillosis. These allergens promote IgE crosslinking, vasodilation, infiltration of inflammatory cells, mucosal barrier dysfunction, extracellular matrix deposition and smooth muscle spasm, which collectively cause remodelling of the airways. Fungus and insect (house dust mite and cockroaches) indoor allergens are particularly rich in proteases. Indeed, more than 40 different types of aeroallergen proteases, which have both IgE-neutralising and tissue-destructive activities, have been documented in the Allergen Nomenclature database. Of all the inhaled protease allergens, 85% are classed as serine protease activities and include trypsin-like, chymotrypsin-like and collagenolytic serine proteases. In this article, we review and compare the allergenicity and proteolytic effect of allergen serine proteases as listed in the Allergen Nomenclature and MEROPS databases and highlight their contribution to allergic sensitisation, disruption of the epithelial barrier and activation of innate immunity in allergic airways disease. The utility of small-molecule inhibitors of allergen serine proteases as a potential treatment strategy for allergic airways disease will also be discussed.
Collapse
Affiliation(s)
- Xuan Ouyang
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | | | |
Collapse
|
2
|
de Los Ángeles Aldirico M, Giorgio FM, Soto A, Sibilia MDP, Sánchez VR, Picchio MS, Rattay G, Arcon N, Moretta R, Martín V, Goldman A, Fenoy IM. Maternal stress increases risk of allergic lung inflammation in adult mice. Immunobiology 2023; 228:152395. [PMID: 37210753 DOI: 10.1016/j.imbio.2023.152395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Allergies are increasing worldwide. The presence of atopic diseases in the mother propagates the onset of allergic diseases in the offspring with a considerably stronger penetrance than atopic diseases of the father. Such observation challenges genetic predispositions as the sole cause of allergic diseases. Epidemiological studies suggest that caregiver stress in the perinatal period may predispose offspring to asthma. Only one group has studied the link between prenatal stress and neonatal asthma susceptibility in a murine model. OBJECTIVES We aimed to study if the neonatal increased risk of developing allergic lung inflammation persists after puberty and if there are sex differences in susceptibility. METHODS Pregnant BALB/c mice were subjected to a single restraint stress exposure at day 15 of gestation. Pups were separated by gender and subjected to a well-known sub-optimal asthma model after puberty. RESULTS Adult mice born to stressed dams were more susceptible to developing allergic pulmonary inflammation since an increase in the number of eosinophils in bronchoalveolar lavage (BAL), a greater peribronchial and perivascular infiltrate, a higher proportion of mucus-producing cells, and increased IL-4 and IL-5 levels in BAL were detected compared to control mice. These effects were more profound in females than males. Moreover, only females from stressed dams showed an increase in IgE levels. CONCLUSIONS Increased litter susceptibility to develop allergic lung inflammation induced by maternal stress persists after puberty and is more potent in females than in male mice.
Collapse
Affiliation(s)
| | | | - Ariadna Soto
- ITECA, ECyT UNSAM, CONICET, Gral. San Martín, Buenos Aires, Argentina
| | | | | | | | - Guido Rattay
- ITECA, ECyT UNSAM, CONICET, Gral. San Martín, Buenos Aires, Argentina
| | - Nadia Arcon
- ITECA, ECyT UNSAM, CONICET, Gral. San Martín, Buenos Aires, Argentina
| | - Rosalía Moretta
- ITECA, ECyT UNSAM, CONICET, Gral. San Martín, Buenos Aires, Argentina
| | - Valentina Martín
- ITECA, ECyT UNSAM, CONICET, Gral. San Martín, Buenos Aires, Argentina
| | - Alejandra Goldman
- ITECA, ECyT UNSAM, CONICET, Gral. San Martín, Buenos Aires, Argentina
| | | |
Collapse
|
3
|
Zhai B, Xie S, Peng J, Qiu Y, Liu Y, Zhu X, He J, Zhang J. Glycosylation Analysis of Feline Small Intestine Following Toxoplasma gondii Infection. Animals (Basel) 2022; 12:ani12202858. [PMID: 36290246 PMCID: PMC9597833 DOI: 10.3390/ani12202858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Toxoplasma gondii has a serious impact on public health and the economic development of animal husbandry. Glycosylation, especially N-glycosylation, the pattern modification of proteins, is closely related to the biological functions of proteins, and our study used it to analyze glycosylation alterations in the small intestine of cats infected with T. gondii. The results of the present study showed that 56 glycosylated peptides were upregulated and 37 glycosylated peptides were downregulated. Additionally, we also identified eight N-glycosylated proteins of T. gondii including eight N-glycopeptides and eight N-glycosylation sites. Moreover, the protein eEF2 and its corresponding peptide sequence were identified, with GO terms (i.e., cellular process and metabolic process, cell and cell part, and catalytic activity) that were significantly enriched in the T. gondii MAPK pathway. In addition, the Clusters of Orthologous Groups of proteins (COG) function prediction results showed that posttranslational modification, protein turnover, and chaperones (11%) had the highest enrichment for T. gondii. The host proteins ICAM-1 and PPT1 and the endoplasmic reticulum stress pathway may play an important role in the glycosylation of T. gondii-infected hosts. Our study may provide a new target for T. gondii detection to prevent the spread of T. gondii oocysts in the future. Abstract Toxoplasma gondii (T. gondii) is responsible for severe human and livestock diseases, huge economic losses, and adversely affects the health of the public and the development of animal husbandry. Glycosylation is a common posttranslational modification of proteins in eukaryotes, and N-glycosylation is closely related to the biological functions of proteins. However, glycosylation alterations in the feline small intestine following T. gondii infection have not been reported. In this study, the experimental group was intragastrically challenged with 600 brain cysts of the Prugniuad (Pru) strain that were collected from infected mice. The cats’ intestinal epithelial tissues were harvested at 10 days post-infection and then sent for protein glycosylation analysis. High-performance liquid chromatography coupled to tandem mass spectrometry was used to analyze the glycosylation alterations in the small intestine of cats infected with T. gondii. The results of the present study showed that 56 glycosylated peptides were upregulated and 37 glycosylated peptides were downregulated in the feline small intestine infected by T. gondii. Additionally, we also identified eight N-glycosylated proteins of T. gondii including eight N-glycopeptides and eight N-glycosylation sites. The protein A0A086JND6_TOXGO (eEF2) and its corresponding peptide sequence were identified in T. gondii infection. Some special GO terms (i.e., cellular process and metabolic process, cell and cell part, and catalytic activity) were significantly enriched, and the Clusters of Orthologous Groups of proteins (COG) function prediction results showed that posttranslational modification, protein turnover, and chaperones (11%) had the highest enrichment for T. gondii. Interestingly, eEF2, a protein of T. gondii, is also involved in the significantly enriched T. gondii MAPK pathway. The host proteins ICAM-1 and PPT1 and the endoplasmic reticulum stress pathway may play an important role in the glycosylation of Toxoplasma-infected hosts. This is the first report showing that T. gondii oocysts can undergo N-glycosylation in the definitive host and that eEF2 is involved, which may provide a new target for T. gondii detection to prevent the spread of T. gondii oocysts in the future.
Collapse
Affiliation(s)
- Bintao Zhai
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Lanzhou 730050, China
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Shichen Xie
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Junjie Peng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yanhua Qiu
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Lanzhou 730050, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Yang Liu
- College of Life Science, Ningxia University, Yinchuan 750021, China
| | - Xingquan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Junjun He
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (J.H.); (J.Z.)
| | - Jiyu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Lanzhou 730050, China
- Correspondence: (J.H.); (J.Z.)
| |
Collapse
|
4
|
Zappia CD, Soto A, Granja‐Galeano G, Fenoy I, Fernandez N, Davio CA, Shayo C, Fitzsimons CP, Goldman A, Monczor F. Azelastine potentiates antiasthmatic dexamethasone effect on a murine asthma model. Pharmacol Res Perspect 2019; 7:e00531. [PMID: 31687162 PMCID: PMC6818730 DOI: 10.1002/prp2.531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/03/2022] Open
Abstract
Glucocorticoids are among the most effective drugs to treat asthma. However, the severe adverse effects associated generate the need for its therapeutic optimization. Conversely, though histamine is undoubtedly related to asthma development, there is a lack of efficacy of antihistamines in controlling its symptoms, which prevents their clinical application. We have reported that antihistamines potentiate glucocorticoids' responses in vitro and recent observations have indicated that the coadministration of an antihistamine and a synthetic glucocorticoid has synergistic effects on a murine model of allergic rhinitis. Here, the aim of this work is to establish if this therapeutic combination could be beneficial in a murine model of asthma. We used an allergen-induced model of asthma (employing ovalbumin) to evaluate the effects of the synthetic glucocorticoid dexamethasone combined with the antihistamine azelastine. Our results indicate that the cotreatment with azelastine and a suboptimal dose of dexamethasone can improve allergic lung inflammation as shown by a decrease in eosinophils in bronchoalveolar lavage, fewer peribronchial and perivascular infiltrates, and mucin-producing cells. In addition, serum levels of allergen-specific IgE and IgG1 were also reduced, as well as the expression of lung inflammatory-related genes IL-4, IL-5, Muc5AC, and Arginase I. The potentiation of dexamethasone effects by azelastine could allow to reduce the effective glucocorticoid dose needed to achieve a therapeutic effect. These findings provide first new insights into the potential benefits of glucocorticoids and antihistamines combination for the treatment of asthma and grants further research to evaluate this approach in other related inflammatory conditions.
Collapse
Affiliation(s)
- Carlos D. Zappia
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET – Universidad de Buenos AiresBuenos AiresArgentina
| | - Ariadna Soto
- Centro de Estudios en Salud y Medio Ambiente (CESyMA)Escuela de Ciencia y TecnologíaUniversidad Nacional de San Martín – CONICETBuenos AiresArgentina
| | - Gina Granja‐Galeano
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET – Universidad de Buenos AiresBuenos AiresArgentina
| | - Ignacio Fenoy
- Centro de Estudios en Salud y Medio Ambiente (CESyMA)Escuela de Ciencia y TecnologíaUniversidad Nacional de San Martín – CONICETBuenos AiresArgentina
| | - Natalia Fernandez
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET – Universidad de Buenos AiresBuenos AiresArgentina
| | - Carlos A. Davio
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET – Universidad de Buenos AiresBuenos AiresArgentina
| | - Carina Shayo
- Laboratorio de Patología y Farmacología MolecularInstituto de Biología y Medicina Experimental CONICETBuenos AiresArgentina
| | - Carlos P. Fitzsimons
- Center for NeuroscienceSwammerdam Institute for Life SciencesFaculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Alejandra Goldman
- Centro de Estudios en Salud y Medio Ambiente (CESyMA)Escuela de Ciencia y TecnologíaUniversidad Nacional de San Martín – CONICETBuenos AiresArgentina
| | - Federico Monczor
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET – Universidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
5
|
Perrone Sibilia MD, Aldirico MDLÄ, Soto AS, Picchio MS, Sánchez VR, Arcón N, Moretta R, Martín V, Vanzulli S, Fenoy IM, Goldman A. Chronic infection with the protozoan Toxoplasma gondii prevents the development of experimental atopic dermatitis in mice. J Dermatol Sci 2019; 96:143-150. [PMID: 31735466 DOI: 10.1016/j.jdermsci.2019.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/04/2019] [Accepted: 10/27/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Supporting the hypothesis thatT. gondii infection protects against allergy in humans we previously demonstrated that this infection can modulate not only the susceptibility to develop respiratory allergies in mice but also suppresses allergic responses at systemic level. This latter finding suggests that T. gondii infection could prevent the onset of other allergic diseases, such as atopic dermatitis. At present, few studies have investigated the modulation of atopic dermatitis by parasite infections. OBJECTIVE Here, we sought to investigate whether chronic infection with T. gondii is capable of modulating the development of atopic dermatitis. METHODS Chronically infected mice were sensitized by repeated epicutaneous ovalbumin administration. Skin histopathology, humoral response, cytokine production and innate type-II lymphoid cells (ILC2) were assessed. RESULTS A marked reduction in epidermal thickness and dermal inflammatory infiltrate along with a reduction in mast cell count was observed in infected mice compared to non-infected mice. These results correlated with a diminished TH2 and TH1 allergen specific response. Reduced type-II IL-4 and IL-5 cytokines were already detected during the first 24 h of allergen sensitization in splenocytes and draining lymph nodes from infected mice. Moreover, this reduced type-II profile in chronically infected animals correlated with diminished ILC2 number in draining lymph nodes. CONCLUSION Chronic infection withT. gondii prevents the development of atopic dermatitis. The diminished susceptibility seems to result from changes in type-II innate immune response that may lead to the induction of a deficient TH2 response and consequently to a lower susceptibility to develop atopic dermatitis.
Collapse
Affiliation(s)
- Matías Damián Perrone Sibilia
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - María de Los Ängeles Aldirico
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Ariadna Soledad Soto
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Mariano Sergio Picchio
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Vanesa Roxana Sánchez
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Nadia Arcón
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Rosalía Moretta
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Valentina Martín
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Silvia Vanzulli
- Laboratorio de Anatomía Patológica, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Ignacio Martín Fenoy
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Alejandra Goldman
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina.
| |
Collapse
|
6
|
de Andrade CM, Carneiro VL, Cerqueira JV, Fonseca HF, Queiroz GA, Costa RS, Alcantara-Neves NM, Cooper P, Figueiredo CA. Parasites and allergy: Observations from Brazil. Parasite Immunol 2018; 41:e12588. [PMID: 30188574 DOI: 10.1111/pim.12588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/24/2018] [Accepted: 09/04/2018] [Indexed: 11/29/2022]
Abstract
Brazil is a middle-income country undergoing the epidemiological transition. Effects of changes in daily life habits and access to clean water, sanitation and urban services on a growing urban population have contributed to a double burden of both infectious and noncommunicable chronic diseases. Studies have indicated that parasite infections may modulate the human immune system and influence the development of allergic conditions such as asthma. However, there is no consensus in the published literature on the effects of parasitic infections on allergy, perhaps as a consequence of factors determining the epidemiology of these infections that vary between populations such as age of first infection, duration and chronicity of infections, parasite burden and species, and host genetic susceptibility. In this review, we discuss the observations from Brazil concerning the relationship between parasite infections and allergy.
Collapse
Affiliation(s)
| | - Valdirene L Carneiro
- Departamento de Ciências da Vida, Universidade do Estado da Bahia, Salvador, Brazil
| | - Jéssica V Cerqueira
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Hellen F Fonseca
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Gerson A Queiroz
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Ryan S Costa
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | | | - Philip Cooper
- St. George's University of London, London, UK.,Facultad de Ciencias Medicas de la Salud y la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Camila A Figueiredo
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|