1
|
Liu X, Gao J, Yang L, Yuan X. Roles of Exosomal miRNAs in Asthma: Mechanisms and Applications. J Asthma Allergy 2024; 17:935-947. [PMID: 39376731 PMCID: PMC11457472 DOI: 10.2147/jaa.s485910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/15/2024] [Indexed: 10/09/2024] Open
Abstract
Asthma is a chronic inflammatory disorder of the airways, characterized by a complex interplay of genetic, environmental, and immunological factors that contribute to its onset and progression. Recent advances in researches have illuminated the critical role of exosomal microRNAs (miRNAs) in the pathogenesis and development of asthma. Exosomes are nano-sized extracellular vesicles that facilitate intercellular communication by transporting a variety of bioactive molecules, including miRNAs, and play a crucial role in regulating gene expression and immune responses, which are central to the inflammatory processes underlying asthma. Exosomal miRNAs are emerging as key players in asthma due to their involvement in various aspects of the disease, including the regulation of inflammation, airway hyperresponsiveness, and remodeling. Their ability to influence the behavior of target cells and tissues makes them valuable both as diagnostic biomarkers and as potential therapeutic targets. This review aims to provide a comprehensive overview of the biogenesis of exosomes, the functional roles of exosomal miRNAs in asthma, and their clinical potential. It will explore the mechanisms by which these miRNAs contribute to asthma pathophysiology, discuss their utility in diagnosing and monitoring the disease, and highlight ongoing research efforts to harness their therapeutic potential.
Collapse
Affiliation(s)
- Xiaoxue Liu
- Department of Paediatrics, Harbin Hospital of Traditional Chinese Medicine, Harbin, 150010, People’s Republic of China
| | - Jiawei Gao
- Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Liuxin Yang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Xingxing Yuan
- Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, 150006, People’s Republic of China
| |
Collapse
|
2
|
Wan Y, Li X, Chen X, He Y, Suo W, Yang X, Xie Z. Optimization of microRNA extraction from the plasma of the common carp. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-19. [PMID: 39235212 DOI: 10.1080/15257770.2024.2400200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Efficient and safe extraction of microRNAs (miRNAs) from biological samples is pivotal for genetic regulation studies and biotechnological applications. This study focuses on optimizing the microRNA extraction process from the plasma of common carp, a significant species in aquaculture. Recognizing the limitations and hazards of commercial extraction kits, which often employ toxic chemicals like phenol and chloroform, we sought to develop a safer and more effective alternative. Our optimized protocol utilizes guanidinium isothiocyanate (GITC) and sarkosyl, omitting hazardous substances. We explored several parameters including GITC concentration, the addition of sarkosyl, and the role of sodium chloride in enhancing miRNA yield. Our findings demonstrate that optimal conditions involve a GITC concentration of 4.2 M, a 3% sarkosyl concentration, and the use of sodium chloride at 0.5 M. We also investigated the utility of glycogen as a nucleic acid carrier, finding 160 µg to be the optimal concentration. Comparative analysis with commercial kits indicated our method provides higher miRNA yields with reduced cycle threshold values, underscoring the effectiveness of our custom protocol. This optimized approach not only enhances miRNA recovery but also emphasizes safety and cost-effectiveness, making it a valuable method for both research and practical applications in aquaculture.
Collapse
Affiliation(s)
- Yiwen Wan
- Hunan Fisheries Science Institute, Changsha, PR China
| | - Xiaoling Li
- Hunan Fisheries Science Institute, Changsha, PR China
| | - Xiangyi Chen
- Hunan Fisheries Science Institute, Changsha, PR China
| | - Yong He
- Hunan Fisheries Science Institute, Changsha, PR China
| | - Wenwen Suo
- Hunan Fisheries Science Institute, Changsha, PR China
| | - Xiao Yang
- Hunan Fisheries Science Institute, Changsha, PR China
| | - Zhonggui Xie
- Hunan Fisheries Science Institute, Changsha, PR China
| |
Collapse
|
3
|
Kumblathan T, Liu Y, Qiu Y, Pang L, Hrudey SE, Le XC, Li XF. An efficient method to enhance recovery and detection of SARS-CoV-2 RNA in wastewater. J Environ Sci (China) 2023; 130:139-148. [PMID: 37032030 PMCID: PMC9554329 DOI: 10.1016/j.jes.2022.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 05/25/2023]
Abstract
Wastewater surveillance (WS) of SARS-CoV-2 currently requires multiple steps and suffers low recoveries and poor sensitivity. Here, we report an improved analytical method with high sensitivity and recovery to quantify SARS-CoV-2 RNA in wastewater. To improve the recovery, we concentrated SARS-CoV-2 viral particles and RNA from both the solid and aqueous phases of wastewater using an electronegative membrane (EM). The captured viral particles and RNA on the EM were incubated in our newly developed viral inactivation and RNA preservation (VIP) buffer. Subsequently, the RNA was concentrated on magnetic beads and inhibitors removed by washing. Without eluting, the RNA on the magnetic beads was directly detected using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Analysis of SARS-CoV-2 pseudovirus (SARS-CoV-2 RNA in a noninfectious viral coat) spiked to wastewater samples showed an improved recovery of 80%. Analysis of 120 wastewater samples collected twice weekly between May 2021 and February 2022 from two wastewater treatment plants showed 100% positive detection, which agreed with the results independently obtained by a provincial public health laboratory. The concentrations of SARS-CoV-2 RNA in these wastewater samples ranged from 2.4×102 to 2.9×106 copies per 100 mL of wastewater. Our method's capability of detecting trace and diverse concentrations of SARS-CoV-2 in complex wastewater samples is attributed to the enhanced recovery of SARS-CoV-2 RNA and efficient removal of PCR inhibitors. The improved method for the recovery and detection of viral RNA in wastewater is important for wastewater surveillance, complementing clinical diagnostic tests for public health protection.
Collapse
Affiliation(s)
- Teresa Kumblathan
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Yanming Liu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Yuanyuan Qiu
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2G3, Canada
| | - Lilly Pang
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2G3, Canada; Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, T6G 2G3, Canada
| | - Steve E Hrudey
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
4
|
El-Daly SM, Gouhar SA, Abd Elmageed ZY. Circulating microRNAs as Reliable Tumor Biomarkers: Opportunities and Challenges Facing Clinical Application. J Pharmacol Exp Ther 2023; 384:35-51. [PMID: 35809898 PMCID: PMC9827506 DOI: 10.1124/jpet.121.000896] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/13/2023] Open
Abstract
MicroRNAs (miRNAs) are involved in the development of human malignancies, and cells have the ability to secrete these molecules into extracellular compartments. Thus, cell-free miRNAs (circulating miRNAs) can potentially be used as biomarkers to evaluate pathophysiological changes. Although circulating miRNAs have been proposed as potential noninvasive tumor biomarkers for diagnosis, prognosis, and response to therapy, their routine application in the clinic is far from being achieved. This review focuses on the recent progress regarding the value of circulating miRNAs as noninvasive biomarkers, with specific consideration of their relevant clinical applications. In addition, we provide an in-depth analysis of the technical challenges that impact the assessment of circulating miRNAs. We also highlight the significance of integrating circulating miRNAs with the standard laboratory biomarkers to boost sensitivity and specificity. The current status of circulating miRNAs in clinical trials as tumor biomarkers is also covered. These insights and general guidelines will assist researchers in experimental practice to ensure quality standards and repeatability, thus improving future studies on circulating miRNAs. SIGNIFICANCE STATEMENT: Our review will boost the knowledge behind the inconsistencies and contradictory results observed among studies investigating circulating miRNAs. It will also provide a solid platform for better-planned strategies and standardized techniques to optimize the assessment of circulating cell-free miRNAs.
Collapse
Affiliation(s)
- Sherien M El-Daly
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki, Cairo, Egypt (S.M.E-D., S.A.G.); Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt (S.M.E-D.); and Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana-Monroe, Monroe, Louisiana (Z.Y.A.)
| | - Shaimaa A Gouhar
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki, Cairo, Egypt (S.M.E-D., S.A.G.); Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt (S.M.E-D.); and Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana-Monroe, Monroe, Louisiana (Z.Y.A.)
| | - Zakaria Y Abd Elmageed
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki, Cairo, Egypt (S.M.E-D., S.A.G.); Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt (S.M.E-D.); and Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana-Monroe, Monroe, Louisiana (Z.Y.A.)
| |
Collapse
|
5
|
Soccio P, Moriondo G, Lacedonia D, Tondo P, Quarato CMI, Foschino Barbaro MP, Scioscia G. EVs-miRNA: The New Molecular Markers for Chronic Respiratory Diseases. Life (Basel) 2022; 12:1544. [PMID: 36294979 PMCID: PMC9605003 DOI: 10.3390/life12101544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), asthma and sleep disorders are chronic respiratory diseases that affect the airways, compromising lung function over time. These diseases affect hundreds of millions of people around the world and their frequency seems to be increasing every year. Extracellular vesicles (EVs) are small-sized vesicles released by every cell in the body. They are present in most body fluids and contain various biomolecules including proteins, lipids, mRNA and non-coding RNA (micro-RNA). The EVs can release their cargo, specifically micro-RNAs (miRNAs), to both neighboring and/or distal cells, playing a fundamental role in cell-cell communication. Recent studies have shown their possible role in the pathogenesis of various chronic respiratory diseases. The expression of miRNAs and, in particular, of miRNAs contained within the extracellular vesicles seems to be a good starting point in order to identify new potential biomarkers of disease, allowing a non-invasive clinical diagnosis. In this review we summarize some studies, present in the literature, about the functions of extracellular vesicles and miRNAs contained in extracellular vesicles in chronic respiratory diseases and we discuss the potential clinical applications of EVs and EVs-miRNAs for their possible use such as future biomarkers.
Collapse
Affiliation(s)
- Piera Soccio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giorgia Moriondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Pasquale Tondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Carla Maria Irene Quarato
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Maria Pia Foschino Barbaro
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| |
Collapse
|
6
|
Salim H, Pero-Gascon R, Pont L, Giménez E, Benavente F. A review of sample preparation for purification of microRNAs and analysis by mass spectrometry methods. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Liu Y, Kumblathan T, Feng W, Pang B, Tao J, Xu J, Xiao H, Joyce MA, Tyrrell DL, Zhang H, Li XF, Le XC. On-Site Viral Inactivation and RNA Preservation of Gargle and Saliva Samples Combined with Direct Analysis of SARS-CoV-2 RNA on Magnetic Beads. ACS MEASUREMENT SCIENCE AU 2022; 2:224-232. [PMID: 36785867 PMCID: PMC8848515 DOI: 10.1021/acsmeasuresciau.1c00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Samples of nasopharyngeal swabs (NPS) are commonly used for the detection of SARS-CoV-2 and diagnosis of COVID-19. As an alternative, self-collection of saliva and gargle samples minimizes transmission to healthcare workers and relieves the pressure of resources and healthcare personnel during the pandemic. This study aimed to develop an enhanced method enabling simultaneous viral inactivation and RNA preservation during on-site self-collection of saliva and gargle samples. Our method involves the addition of saliva or gargle samples to a newly formulated viral inactivation and RNA preservation (VIP) buffer, concentration of the viral RNA on magnetic beads, and detection of SARS-CoV-2 using reverse transcription quantitative polymerase chain reaction directly from the magnetic beads. This method has a limit of detection of 25 RNA copies per 200 μL of gargle or saliva sample and 9-111 times higher sensitivity than the viral RNA preparation kit recommended by the United States Centers for Disease Control and Prevention. The integrated method was successfully used to analyze more than 200 gargle and saliva samples, including the detection of SARS-CoV-2 in 123 gargle and saliva samples collected daily from two NPS-confirmed positive SARS-CoV-2 patients throughout the course of their infection and recovery. The VIP buffer is stable at room temperature for at least 6 months. SARS-CoV-2 RNA (65 copies/200 μL sample) is stable in the VIP buffer at room temperature for at least 3 weeks. The on-site inactivation of SARS-CoV-2 and preservation of the viral RNA enables self-collection of samples, reduces risks associated with SARS-CoV-2 transmission, and maintains the stability of the target analyte.
Collapse
Affiliation(s)
- Yanming Liu
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Teresa Kumblathan
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Wei Feng
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Bo Pang
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Jeffrey Tao
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Jingyang Xu
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Huyan Xiao
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Michael A. Joyce
- Li
Ka Shing Institute of Virology, Department of Medical Microbiology
and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | - D. Lorne Tyrrell
- Li
Ka Shing Institute of Virology, Department of Medical Microbiology
and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | - Hongquan Zhang
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Xing-Fang Li
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - X. Chris Le
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| |
Collapse
|
8
|
Hannan NJ, Cohen PA, Beard S, Bilic S, Zhang B, Tong S, Whitehead C, Hui L. Transcriptomic analysis of patient plasma reveals circulating miR200c as a potential biomarker for high-grade serous ovarian cancer. Gynecol Oncol Rep 2022; 39:100894. [PMID: 35005155 PMCID: PMC8717717 DOI: 10.1016/j.gore.2021.100894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
Background High-grade serous tubo-ovarian cancer (HGSC) is the most common histological subtype of epithelial ovarian cancer, and highly lethal. Currently there is no effective screening test and prognosis is poor as the majority of cases are diagnosed at the advanced stage. Cell free RNAs including microRNAs (miRNAs) are dysregulated in ovarian cancer tissue and are detectable in the circulation. This study aimed to determine whether circulating cell free miRNAs may be potential biomarkers for the detection of HGSC. Methods Plasma was collected from women with HGSC (Grade 3, n = 24), and benign ovarian masses (n = 24). RNA was extracted from patient plasma and subjected to miRNA targeted next generation sequencing (NGS). A subsequent validation cohort was assessed using plasma collected from women with HGSC (n = 14) and controls (with a benign ovarian mass; n = 15). RNA was extracted and assessed using quantitative RT-PCR. Results Differential gene expression (DGE) of the NGS data revealed a significant increase in the miRNA, miR200c, in the circulation of women with HGSC (p less than 0.05) compared to controls. In the validation cohort miR200c expression by qPCR was found to also be increased in the circulation of women with HGSC compared to controls (p = 0.0023). Conclusions Circulating miR200c may be a promising candidate biomarker for the detection of HGSC. Further larger cohort studies exploring earlier stages are needed to determine whether circulating miR200c may be a sensitive and specific biomarker of tubo-ovarian cancer.
Collapse
Affiliation(s)
- Natalie J Hannan
- Therapeutics Discovery and Vascular Function Group, University of Melbourne, Heidelberg, Victoria, Australia.,Translational Obstetrics Group, University of Melbourne, Heidelberg, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Victoria Australia.,Department of Obstetrics and Gynaecology, Northern Health, Epping, Victoria Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Paul A Cohen
- Division of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Western Australia, Crawley, Western Australia, Australia.,Department of Gynaecological Oncology, Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, Subiaco, Western Australia, Australia
| | - Sally Beard
- Therapeutics Discovery and Vascular Function Group, University of Melbourne, Heidelberg, Victoria, Australia.,Translational Obstetrics Group, University of Melbourne, Heidelberg, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Victoria Australia.,Department of Obstetrics and Gynaecology, Northern Health, Epping, Victoria Australia
| | - Sanela Bilic
- Department of Gynaecological Oncology, Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, Subiaco, Western Australia, Australia
| | - Bonnie Zhang
- Department of Gynaecological Oncology, Bendat Family Comprehensive Cancer Centre, St John of God Subiaco Hospital, Subiaco, Western Australia, Australia
| | - Stephen Tong
- Translational Obstetrics Group, University of Melbourne, Heidelberg, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Victoria Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Clare Whitehead
- Department of Obstetrics and Gynaecology, University of Melbourne, Victoria Australia
| | - Lisa Hui
- Department of Obstetrics and Gynaecology, University of Melbourne, Victoria Australia.,Department of Obstetrics and Gynaecology, Northern Health, Epping, Victoria Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia.,Reproductive Epidemiology Group, Murdoch Children's Research Institute, Parkville, Victoria Australia
| |
Collapse
|
9
|
Mathews S, Rabani R, Rasti M, Viswanathan S. In-house abbreviated qualification of a real-time polymerase chain reaction method and strategies to amplify mycoplasma detection in human mesenchymal stromal cells. Cytotherapy 2021; 23:1036-1044. [PMID: 34446358 DOI: 10.1016/j.jcyt.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND AIMS In this study, the authors performed an in-house abbreviated qualification of a commercially available real-time polymerase chain reaction (PCR) kit for limit of detection (LOD), matrix interference and ruggedness of mycoplasma detection in a human bone marrow-derived mesenchymal stromal cell (MSC(M)) investigational cell product (NCT02351011). The approach used was similar to an abbreviated qualification the authors previously conducted for endpoint PCR, which was accepted by Canadian regulators for final product release of the same MSC(M) investigational cell product for treatment of osteoarthritis patients (NCT02351011). With patient consent, biobanked MSCs(M) were re-analyzed by real-time PCR for mycoplasma detection to conduct in-house qualification of the kit. METHODS LOD was determined by spiking MSCs(M) with a series of 10-fold dilutions of two commercially available genomic DNA (gDNA) reference standards for Mycoplasma arginini (M. arginini) and Mycoplasma hominis (M. hominis). Matrix interference was tested by using 10-fold dilutions of MSC(M)s down to 4500 cells/mL. Polyadenylic acid (poly[A]) was used to improve DNA recovery in samples with 4500-45 000 MSCs(M)/mL. Real-time PCR tests performed on different days were compared to evaluate ruggedness. RESULTS Real-time PCR analysis showed a conservative LOD of 40 genome copies (GCs)/mL and 240 GCs/mL, which are equivalent to 10 colony-forming units (CFUs)/mL, for M. arginini and M. hominis, respectively. According to a less conservative manufacturer-based criterion for positivity, the kit detected 0.4 GC/mL (0.1 CFU/mL) and 24 GCs/mL (1 CFU/mL) M. arginini and M. hominis, respectively. Real-time PCR with different MSC(M) dilutions did not show matrix interference. However, DNA recovery was compromised at MSC(M) concentrations at or below 45 000 cells/mL. The addition of poly(A) as a DNA carrier improved DNA recovery and allowed an LOD, considered here to be equivalent to 10 CFUs/mL, to be achieved, which was not possible in diluted MSC(M) samples (≤45 000 cells/mL) in the absence of poly(A). Ruggedness was demonstrated with tests (n = 18) performed on different days, with an average overall inter-assay percent coefficient of variation of less than 4 for M. arginini (3.62 [400 GCs/mL], 3.61 [40 GCs/mL]) and less than 3 for M. hominis (2.83 [2400 GCs/mL], 1.95 [240 GCs/mL]). CONCLUSIONS A commercially available real-time PCR mycoplasma detection kit was qualified for evaluating mycoplasma contamination in investigational MSC(M) products and met the criteria used previously (and accepted by Canadian regulators) for in-house qualification of an endpoint PCR mycoplasma detection kit, and the addition of poly(A) addressed the poor recovery of mycoplasma gDNA in samples with low cell numbers.
Collapse
Affiliation(s)
- Smitha Mathews
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
| | - Razieh Rabani
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
| | - Mozhgan Rasti
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
| | - Sowmya Viswanathan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada; Division of Hematology, Department of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
10
|
Oto J, Herranz R, Plana E, Sánchez-González JV, Pérez-Ardavín J, Hervás D, Fernández-Pardo Á, Cana F, Vera-Donoso CD, Martínez-Sarmiento M, Medina P. Identification of miR-20a-5p as Robust Normalizer for Urine microRNA Studies in Renal Cell Carcinoma and a Profile of Dysregulated microRNAs. Int J Mol Sci 2021; 22:7913. [PMID: 34360679 PMCID: PMC8347250 DOI: 10.3390/ijms22157913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) is the third most frequent urinary malignancy and one of the most lethal. Current diagnostic and follow-up techniques are harmful and unspecific in low-grade tumors. Novel minimally invasive markers such as urine microRNAs (miRNAs) are under study. However, discrepancies arise among studies in part due to lack of consent regarding normalization. We aimed to identify the best miRNA normalizer for RCC studies performed in urine samples together with a miRNA profile with diagnostic value and another for follow-up. We evaluated the performance of 120 candidate miRNAs in the urine of 16 RCC patients and 16 healthy controls by RT-qPCR followed by a stability analysis with RefFinder. In this screening stage, miR-20a-5p arose as the most stably expressed miRNA in RCC and controls, with a good expression level. Its stability was validated in an independent cohort of 51 RCC patients and 32 controls. Using miR-20a-5p as normalizer, we adjusted and validated a diagnostic model for RCC with three miRNAs (miR-200a-3p, miR-34a-5p and miR-365a-3p) (AUC = 0.65; Confidence Interval 95% [0.51, 0.79], p = 0.043). let-7d-5p and miR-205-5p were also upregulated in patients compared to controls. Comparing RCC samples before surgery and fourteen weeks after, we identified let-7d-5p, miR-152-3p, miR-30c-5p, miR-362-3p and miR-30e-3p as potential follow-up profile for RCC. We identified validated targets of most miRNAs in the renal cell carcinoma pathway. This is the first study that identifies a robust normalizer for urine RCC miRNA studies, miR-20a-5p, which may allow the comparison of future studies among laboratories. Once confirmed in a larger independent cohort, the miRNAs profiles identified may improve the non-invasive diagnosis and follow-up of RCC.
Collapse
Affiliation(s)
- Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (J.O.); (R.H.); (E.P.); (Á.F.-P.); (F.C.)
| | - Raquel Herranz
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (J.O.); (R.H.); (E.P.); (Á.F.-P.); (F.C.)
| | - Emma Plana
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (J.O.); (R.H.); (E.P.); (Á.F.-P.); (F.C.)
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
| | - José Vicente Sánchez-González
- Department of Urology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (J.V.S.-G.); (J.P.-A.); (C.D.V.-D.); (M.M.-S.)
| | - Javier Pérez-Ardavín
- Department of Urology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (J.V.S.-G.); (J.P.-A.); (C.D.V.-D.); (M.M.-S.)
| | - David Hervás
- Data Science, Biostatistics and Bioinformatics Unit, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain;
- Department of Applied Statistics, Operations Research, and Quality, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Álvaro Fernández-Pardo
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (J.O.); (R.H.); (E.P.); (Á.F.-P.); (F.C.)
| | - Fernando Cana
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (J.O.); (R.H.); (E.P.); (Á.F.-P.); (F.C.)
| | - César David Vera-Donoso
- Department of Urology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (J.V.S.-G.); (J.P.-A.); (C.D.V.-D.); (M.M.-S.)
| | - Manuel Martínez-Sarmiento
- Department of Urology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (J.V.S.-G.); (J.P.-A.); (C.D.V.-D.); (M.M.-S.)
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (J.O.); (R.H.); (E.P.); (Á.F.-P.); (F.C.)
| |
Collapse
|
11
|
Chorley BN, Atabakhsh E, Doran G, Gautier JC, Ellinger-Ziegelbauer H, Jackson D, Sharapova T, Yuen PST, Church RJ, Couttet P, Froetschl R, McDuffie J, Martinez V, Pande P, Peel L, Rafferty C, Simutis FJ, Harrill AH. Methodological considerations for measuring biofluid-based microRNA biomarkers. Crit Rev Toxicol 2021; 51:264-282. [PMID: 34038674 DOI: 10.1080/10408444.2021.1907530] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA that regulate the expression of messenger RNA and are implicated in almost all cellular processes. Importantly, miRNAs can be released extracellularly and are stable in these matrices where they may serve as indicators of organ or cell-specific toxicity, disease, and biological status. There has thus been great enthusiasm for developing miRNAs as biomarkers of adverse outcomes for scientific, regulatory, and clinical purposes. Despite advances in measurement capabilities for miRNAs, miRNAs are still not routinely employed as noninvasive biomarkers. This is in part due to the lack of standard approaches for sample preparation and miRNA measurement and uncertainty in their biological interpretation. Members of the microRNA Biomarkers Workgroup within the Health and Environmental Sciences Institute's (HESI) Committee on Emerging Systems Toxicology for the Assessment of Risk (eSTAR) are a consortium of private- and public-sector scientists dedicated to developing miRNAs as applied biomarkers. Here, we explore major impediments to routine acceptance and use of miRNA biomarkers and case examples of successes and deficiencies in development. Finally, we provide insight on miRNA measurement, collection, and analysis tools to provide solid footing for addressing knowledge gaps toward routine biomarker use.
Collapse
Affiliation(s)
- Brian N Chorley
- U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | | | | | - David Jackson
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Peter S T Yuen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rachel J Church
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | - Lauren Peel
- Health and Environmental Sciences Institute, Washington, DC, USA
| | | | | | - Alison H Harrill
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
12
|
Bryzgunova O, Konoshenko M, Zaporozhchenko I, Yakovlev A, Laktionov P. Isolation of Cell-Free miRNA from Biological Fluids: Influencing Factors and Methods. Diagnostics (Basel) 2021; 11:865. [PMID: 34064927 PMCID: PMC8151063 DOI: 10.3390/diagnostics11050865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
A vast wealth of recent research has seen attempts of using microRNA (miRNA) found in biological fluids in clinical research and medicine. One of the reasons behind this trend is the apparent their high stability of cell-free miRNA conferred by small size and packaging in supramolecular complexes. However, researchers in both basic and clinical settings often face the problem of selecting adequate methods to extract appropriate quality miRNA preparations for use in specific downstream analysis pipelines. This review outlines the variety of different methods of miRNA isolation from biofluids and examines the key determinants of their efficiency, including, but not limited to, the structural properties of miRNA and factors defining their stability in the extracellular environment.
Collapse
Affiliation(s)
- Olga Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Maria Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Ivan Zaporozhchenko
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
| | - Alexey Yakovlev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (A.Y.); (P.L.)
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia
| |
Collapse
|
13
|
Sapp RM, Chesney CA, Springer CB, Laskowski MR, Singer DB, Eagan LE, Mascone SE, Evans WS, Prior SJ, Hagberg JM, Ranadive SM. Race-specific changes in endothelial inflammation and microRNA in response to an acute inflammatory stimulus. Am J Physiol Heart Circ Physiol 2021; 320:H2371-H2384. [PMID: 33961505 DOI: 10.1152/ajpheart.00991.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Both aberrant vascular reactivity to acute cardiovascular stress and epigenetic mechanisms such as microRNA (miR) may underlie the increased propensity for African Americans (AA) to develop cardiovascular disease. This study assessed racial differences in acute induced endothelial inflammation and related miRs. Cultured human umbilical vein endothelial cells (HUVECs) derived from AA and Caucasian Americans (CA) were exposed to influenza vaccine to determine changes in inflammatory markers, endothelial nitric oxide synthase (eNOS), and miR expression/release. Endothelial function [flow-mediated dilation (FMD)], circulating IL-6, and circulating miR were also measured in young, healthy AA and CA individuals before and after receiving the influenza vaccine. There were no significant racial differences in any parameters at baseline. The vaccine induced increases in IL-6 release (24%, P = 0.02) and ICAM-1 mRNA (40%, P = 0.03), as well as reduced eNOS mRNA (24%, P = 0.04) in AA HUVECs, but not in CA HUVECs (all P > 0.05). Intracellular levels of anti-inflammatory miR-221-3p and miR-222-3p increased specifically in CA HUVECs (72% and 53%, P = 0.04 and P = 0.06), whereas others did not change in either race. HUVEC secretion of several miRs decreased in both races, whereas the release of anti-inflammatory miR-150-5p was decreased only by AA cells (-30%, P = 0.03). In individuals of both races, circulating IL-6 increased approximately twofold 24 h after vaccination (both P < 0.01) and returned to baseline levels by 48 h, whereas FMD remained unchanged. Although macrovascular function was unaffected by acute inflammation in AA and CA individuals, AA endothelial cells exhibited increased susceptibility to acute inflammation and unique changes in related miR.NEW & NOTEWORTHY Used as an acute inflammatory stimulus, the influenza vaccine induced an inflammatory response and decreased eNOS gene expression in endothelial cells derived from African Americans, but not Caucasian Americans. Race-specific changes in intracellular expression and release of specific microRNAs also occurred and may contribute to an exaggerated inflammatory response in African Americans. In vivo, the vaccine caused similar systemic inflammation but had no effect on endothelial function or circulating microRNAs in individuals of either race.
Collapse
Affiliation(s)
- Ryan M Sapp
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - Catalina A Chesney
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - Catherine B Springer
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - Matthew R Laskowski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland
| | - Daniel B Singer
- Department of Biology, University of Maryland, College Park, Maryland
| | - Lauren E Eagan
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - Sara E Mascone
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - William S Evans
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - Steven J Prior
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland.,Baltimore Veterans Affairs Geriatric Research, Education and Clinical Center, Baltimore, Maryland
| | - James M Hagberg
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| | - Sushant M Ranadive
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland
| |
Collapse
|
14
|
A critical approach for successful use of circulating microRNAs as biomarkers in cardiovascular diseases: the case of hypertrophic cardiomyopathy. Heart Fail Rev 2021; 27:281-294. [PMID: 33656618 DOI: 10.1007/s10741-021-10084-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules that act as major regulators of gene expression at the post-transcriptional level. As the potential applications of miRNAs in the diagnosis and treatment of human diseases have become more evident, many studies of hypertrophic cardiomyopathy (HCM) have focused on the systemic identification and quantification of miRNAs in biofluids and myocardial tissues. HCM is a hereditary cardiomyopathy caused by mutations in genes encoding proteins of the sarcomere. Despite overall improvements in survival, progression to heart failure, stroke, and sudden cardiac death remain prominent features of living with HCM. Several miRNAs have been shown to be promising biomarkers of HCM; however, there are many challenges to ensuring the validity, consistency, and reproducibility of these biomarkers for clinical use. In particular, miRNA testing may be limited by pre-analytical and analytical caveats, making our interpretation of results challenging. Such factors that may affect miRNA testing include sample type selection, hemolysis, platelet activation, and renal dysfunction. Therefore, researchers should be careful when developing appropriate standards for the design of miRNA profiling studies in order to ensure that all results provided are both accurate and reliable. In this review, we discuss the application of miRNAs as biomarkers for HCM.
Collapse
|
15
|
Parker VL, Cushen BF, Gavriil E, Marshall B, Waite S, Pacey A, Heath PR. Comparison and optimisation of microRNA extraction from the plasma of healthy pregnant women. Mol Med Rep 2021; 23:1. [PMID: 33576446 PMCID: PMC7893782 DOI: 10.3892/mmr.2021.11897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/15/2020] [Indexed: 01/01/2023] Open
Abstract
Circulating microRNA (miRNA) biomarkers are implicated in the diagnosis, monitoring and prediction of various disease processes. Before embarking upon biomarker discovery, miRNA extraction techniques must first be optimised in the biofluid and population under study. Using plasma from a healthy pregnant woman, it was attempted to optimise and compare the performance of two commercially available miRNA extraction kits; Qiagen (miRNeasy Serum/Plasma) and Promega (Maxwell® RSC miRNA from Tissue or Plasma or Serum). Sample miRNA content (concentration and percentage) was assessed using Agilent Bioanalyzer Small RNA chips and reverse transcription-quantitative PCR (RT-qPCR) using four constitutively expressed miRNAs (hsa-miR-222-3p, hsa-let-7i-3p, hsa-miR-148-3p and hsa-miR-30e-5p). Quality control spike-ins monitored RNA extraction (UniSp2, 4 and 5) and cDNA synthesis (UniSp6, cel-miR-39-3p) efficiency. Optimisation approaches included: i) Starting volume of plasma; the addition of ii) Proteinase K; iii) a RNA bacteriophage carrier (MS2); and iv) a glycogen carrier. The two kits exhibited equivalence in terms of miRNA recovery based on Bioanalyzer and RT-qPCR ΔΔCq results. Optimisation attempts for both kits failed to improve upon miRNA content compared with standard methodology. Comparing the standard methodology, the Qiagen kit was more consistent (smaller variance of ΔCq values) compared with the Promega kit. The standard methodology of either kit would be suitable for the investigation of miRNA biomarkers in a healthy pregnant population.
Collapse
Affiliation(s)
- Victoria L Parker
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield S10 2SF, UK
| | - Bryony F Cushen
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield S10 2SF, UK
| | - Eleftherios Gavriil
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield S10 2SF, UK
| | - Benjamin Marshall
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield S10 2SF, UK
| | - Sarah Waite
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield S10 2SF, UK
| | - Allan Pacey
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield S10 2SF, UK
| | - Paul R Heath
- Sheffield Institute of Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, UK
| |
Collapse
|
16
|
Castellano JJ, Canals J, Han B, Díaz T, Monzo M, Navarro A. LncRNA Quantification from Extracellular Vesicles Isolated from Blood Plasma or Conditioned Media. Methods Mol Biol 2021; 2348:285-304. [PMID: 34160815 DOI: 10.1007/978-1-0716-1581-2_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the last years, the study of extracellular vesicles (EVs) and its cargo has gained interest in the scientific media. EVs have been found in all biofluids and it is postulated that all cells are capable to secrete a wide variety of these vesicles, which play a key role in different cell-to-cell communication processes as well as in the microenvironment modulation. In the EV cargo, DNA, protein, and RNA molecules can be found, including long noncoding RNAs (lncRNAs). Several authors consider the study of EV lncRNAs an ideal source of biomarkers due to the easy sampling of EVs in different biofluids and the high specificity of the lncRNA expression pattern.In the present chapter, a detailed explanation of the EV isolation workflow followed by RNA isolation and lncRNA gene expression study is provided for two sample sources: blood plasma and cell culture conditioned media. EVs from both plasma samples and cell cultured media are isolated using sequential ultracentrifugation method (UC), which has been reported as one of the best methods available to date in terms of purity. UC is followed by RNA extraction based on the combination of phenol/guanidine-based lysis of samples with silica-membrane-based purification of total RNA. LncRNA quantification is performed by qRT-PCR. This chapter includes detailed discussion on lncRNA quantification using hydrolysis probes, recommended housekeeping genes and evaluation of methods for comparing lncRNA levels between EVs and its parental cells. In summary, we describe here the main steps for a successful isolation of the EVs-lncRNA cargo, paying attention to how overcome the different challenges found in the experimental procedure and in the data analysis of lncRNA expression from this source.
Collapse
Affiliation(s)
- Joan J Castellano
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Jordi Canals
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Bing Han
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Tania Díaz
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Mariano Monzo
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain.,Thoracic Oncology Unit, Hospital Clinic, Barcelona, Spain
| | - Alfons Navarro
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain. .,Thoracic Oncology Unit, Hospital Clinic, Barcelona, Spain.
| |
Collapse
|
17
|
Arroyo AB, Águila S, Fernández-Pérez MP, Reyes-García AMDL, Reguilón-Gallego L, Zapata-Martínez L, Vicente V, Martínez C, González-Conejero R. miR-146a in Cardiovascular Diseases and Sepsis: An Additional Burden in the Inflammatory Balance? Thromb Haemost 2020; 121:1138-1150. [PMID: 33352593 DOI: 10.1055/a-1342-3648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The new concept of thrombosis associated with an inflammatory process is called thromboinflammation. Indeed, both thrombosis and inflammation interplay one with the other in a feed forward manner amplifying the whole process. This pathological reaction in response to a wide variety of sterile or non-sterile stimuli eventually causes acute organ damage. In this context, neutrophils, mainly involved in eliminating pathogens as an early barrier to infection, form neutrophil extracellular traps (NETs) that are antimicrobial structures responsible of deleterious side effects such as thrombotic complications. Although NETosis mechanisms are being unraveled, there are still many regulatory elements that have to be discovered. Micro-ribonucleic acids (miRNAs) are important modulators of gene expression implicated in human pathophysiology almost two decades ago. Among the different miRNAs implicated in inflammation, miR-146a is of special interest because: (1) it regulates among others, Toll-like receptors/nuclear factor-κB axis which is of paramount importance in inflammatory processes, (2) it regulates the formation of NETs by modifying their aging phenotype, and (3) it has expression levels that may decrease among individuals up to 50%, controlled in part by the presence of several polymorphisms. In this article, we will review the main characteristics of miR-146a biology. In addition, we will detail how miR-146a is implicated in the development of two paradigmatic diseases in which thrombosis and inflammation interact, cardiovascular diseases and sepsis, and their association with the presence of miR-146a polymorphisms and the use of miR-146a as a marker of cardiovascular diseases and sepsis.
Collapse
Affiliation(s)
- Ana B Arroyo
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - Sonia Águila
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - María P Fernández-Pérez
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - Ascensión M de Los Reyes-García
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - Laura Reguilón-Gallego
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - Laura Zapata-Martínez
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - Vicente Vicente
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - Constantino Martínez
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| | - Rocío González-Conejero
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
| |
Collapse
|
18
|
Identification of Circulating miR-22-3p and miR-93-5p as Stable Endogenous Control in Tuberculosis Study. Diagnostics (Basel) 2020; 10:diagnostics10110868. [PMID: 33114169 PMCID: PMC7690830 DOI: 10.3390/diagnostics10110868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/05/2020] [Accepted: 10/16/2020] [Indexed: 12/29/2022] Open
Abstract
The diagnosis and prognosis of tuberculosis remains challenging and necessitates the development of a new test that can accurately diagnose and monitor treatment responses. In this regard, miRNA is becoming a potential diagnostic and prognostic biomarker which differentiates treatment respondents from non-respondents for various non-infectious and infectious diseases, including tuberculosis. The concentration of miRNAs varies based on cell type, disease, and site of infection, implicating that selection of an optimal reference gene is crucial, and determines the quantification of transcript level and biological interpretation of the data. Thus, the study evaluated the stability and expression level of five candidate miRNAs (let-7i-5p, let-7a-5p, miRNA-16-5p, miRNA-22-3p and miRNA-93-5p), including U6 Small Nuclear RNA (RNU6B) to normalize circulating miRNAs in the plasma of 68 participants (26 healthy controls, 23 latent, and 19 pulmonary tuberculosis infected) recruited from four health centers and three hospitals in Addis Ababa, Ethiopia. The expression levels of miRNAs isolated from plasma of culture confirmed newly diagnosed pulmonary tuberculosis patients were compared with latently infected and non-infected healthy controls. The qPCR data were analyzed using four independent statistical tools: Best Keeper, Genorm, Normfinder and comparative delta-Ct methods, and the data showed that miRNA-22-3p and miRNA-93-5p were suitable plasma reference miRNAs in a tuberculosis study.
Collapse
|
19
|
Identification of miR-29c-3p as a Robust Normalizer for Urine microRNA Studies in Bladder Cancer. Biomedicines 2020; 8:biomedicines8110447. [PMID: 33105660 PMCID: PMC7690381 DOI: 10.3390/biomedicines8110447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) is among the most frequent malignancies worldwide, being the most expensive cancer to treat and monitor and the most lethal urological cancer. Urine microRNAs (miRNAs) have been proposed as novel non-invasive biomarkers to early diagnose and monitor BC patients in order to avoid the performance of current aggressive diagnostic techniques. However, huge discrepancies arise among studies mainly due to the lack of standardization in the normalization, a crucial step in all miRNA studies. Our aim was to identify the best miRNA normalizer for miRNA studies in urine of BC patients. We evaluated the performance of 110 candidate miRNAs in urine of 35 BC patients and 15 healthy controls by Real Time quantitative Polymerase Chain Reaction (RT-qPCR) followed by a stability analysis with RefFinder. In this screening stage, miR-29c-3p arose as the most stably expressed miRNA in BC and controls, with a good expression level. Stability of miR-29c-3p expression was validated in an independent cohort of 153 BC patients and 57 controls. Finally, we evaluated the robustness of miR-29c-3p as normalizer in the expression study of miR-200c-3p, a potential diagnostic marker for BC. We propose miR-29c-3p as a normalizer for miRNA studies in BC urine. This is the first study that characterizes a reliable normalizer that may allow the comparison of future urine miRNA studies as non-invasive biomarkers for BC diagnosis and monitoring.
Collapse
|
20
|
Identification of Novel microRNA Profiles Dysregulated in Plasma and Tissue of Abdominal Aortic Aneurysm Patients. Int J Mol Sci 2020; 21:ijms21134600. [PMID: 32605321 PMCID: PMC7370113 DOI: 10.3390/ijms21134600] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are small RNAs that regulate different biological processes. Our objective was to identify miRNAs dysregulated in plasma and tissue of patients with abdominal aortic aneurysm (AAA) and explore new potential targets involved in AAA. Fifty-seven subjects were recruited for a plasma study (30 AAA patients, 16 healthy volunteers and 11 patients with atherosclerosis). The expression level of 179 miRNAs was screened in plasma from a subset of samples, and dysregulated miRNAs were validated in the entire study population. Dysregulated miRNAs were also quantified in aortic tissue of 21 AAA patients and 8 organ donors. Applying a gene set enrichment analysis, an interaction map of dysregulated miRNAs and their targets was built, and selected targets were quantified in tissue samples. miR-27b-3p and miR-221-3p were overexpressed in plasma of AAA patients compared with healthy controls, 1.6 times and 1.9 times, respectively. In AAA tissue, six miRNAs (miR-1, miR-27b-3p, miR-29b-3p, miR-133a-3p, miR-133b, and miR-195-5p) were underexpressed from 1.6 to 4.8 times and four miRNAs (miR-146a-5p, miR-21-5p, miR-144-3p, and miR-103a-3p) were overexpressed from 1.3 to 7.2 times. Thrombospondin-2, a target of miR-195-5p, was increased in AAA tissue and negatively correlated with the expression of miR-195-5p, suggesting their involvement in a common regulatory mechanism.
Collapse
|
21
|
Oto J, Plana E, Solmoirago MJ, Fernández-Pardo Á, Hervás D, Cana F, España F, Artoni A, Bucciarelli P, Carrabba G, Navarro S, Merati G, Medina P. microRNAs and Markers of Neutrophil Activation as Predictors of Early Incidental Post-Surgical Pulmonary Embolism in Patients with Intracranial Tumors. Cancers (Basel) 2020; 12:cancers12061536. [PMID: 32545233 PMCID: PMC7353032 DOI: 10.3390/cancers12061536] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Venous thromboembolism (VTE) is a common complication of cancer that severely increases morbidity and mortality. Patients with intracranial tumors are more likely to develop VTE than patients with cancers at other sites. Conversely, limited tools exist to identify patients with high thrombotic risk. Upon activation, neutrophils release their content through different mechanisms triggering thrombosis. We explored the ability of microRNAs (miRNAs) and plasma markers of neutrophil activation measured before surgery to predict the risk of early post-surgical pulmonary embolism (PE) in glioma and meningioma patients. We recruited and prospectively followed 50 patients with glioma and 50 with meningioma, 34% of whom in each group developed an early objectively-diagnosed post-surgical PE. We measured miRNA expression and neutrophil markers (cell-free DNA, nucleosomes, calprotectin and myeloperoxidase) before surgery. In glioma patients, we adjusted and validated a predictive model for post-surgical PE with 6 miRNAs: miR-363-3p, miR-93-3p, miR-22-5p, miR-451a, miR-222-3p and miR-140-3p (AUC = 0.78; 95% Confidence Interval (CI) [0.63, 0.94]) and another with cfDNA and myeloperoxidase as predictors (AUC = 0.71; 95% CI [0.52, 0.90]). Furthermore, we combined both types of markers and obtained a model with myeloperoxidase and miR-140-3p as predictors (AUC = 0.79; 95% CI [0.64, 0.94]). In meningioma patients we fitted and validated a predictive model with 6 miRNAs: miR-29a-3p, miR-660-5p, miR-331-3p, miR-126-5p, miR-23a-3p and miR-23b-3p (AUC = 0.69; 95% CI [0.52, 0.87]). All our models outperformed the Khorana score. This is the first study that analyzes the capability of plasma miRNAs and neutrophil activation markers to predict early post-surgical PE in glioma and meningioma patients. The estimation of the thrombotic risk before surgery may promote a tailored thromboprophylaxis in a selected group of high-risk patients, in order to minimize the incidence of PE and avoid bleedings.
Collapse
Affiliation(s)
- Julia Oto
- Haemostasis, Thrombosis, Atherosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (J.O.); (E.P.); (M.J.S.); (Á.F.-P.); (F.C.); (F.E.); (S.N.)
| | - Emma Plana
- Haemostasis, Thrombosis, Atherosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (J.O.); (E.P.); (M.J.S.); (Á.F.-P.); (F.C.); (F.E.); (S.N.)
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
| | - María José Solmoirago
- Haemostasis, Thrombosis, Atherosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (J.O.); (E.P.); (M.J.S.); (Á.F.-P.); (F.C.); (F.E.); (S.N.)
| | - Álvaro Fernández-Pardo
- Haemostasis, Thrombosis, Atherosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (J.O.); (E.P.); (M.J.S.); (Á.F.-P.); (F.C.); (F.E.); (S.N.)
| | - David Hervás
- Data Science, Biostatistics and Bioinformatics Unit, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain;
| | - Fernando Cana
- Haemostasis, Thrombosis, Atherosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (J.O.); (E.P.); (M.J.S.); (Á.F.-P.); (F.C.); (F.E.); (S.N.)
| | - Francisco España
- Haemostasis, Thrombosis, Atherosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (J.O.); (E.P.); (M.J.S.); (Á.F.-P.); (F.C.); (F.E.); (S.N.)
| | - Andrea Artoni
- A. Bianchi Bonomi Hemophilia and Thrombosis Centre, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.A.); (P.B.); (G.M.)
| | - Paolo Bucciarelli
- A. Bianchi Bonomi Hemophilia and Thrombosis Centre, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.A.); (P.B.); (G.M.)
| | - Giorgio Carrabba
- Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Silvia Navarro
- Haemostasis, Thrombosis, Atherosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (J.O.); (E.P.); (M.J.S.); (Á.F.-P.); (F.C.); (F.E.); (S.N.)
| | - Giuliana Merati
- A. Bianchi Bonomi Hemophilia and Thrombosis Centre, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.A.); (P.B.); (G.M.)
| | - Pilar Medina
- Haemostasis, Thrombosis, Atherosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (J.O.); (E.P.); (M.J.S.); (Á.F.-P.); (F.C.); (F.E.); (S.N.)
- Correspondence:
| |
Collapse
|
22
|
Das Gupta S, Ndode-Ekane XE, Puhakka N, Pitkänen A. Droplet digital polymerase chain reaction-based quantification of circulating microRNAs using small RNA concentration normalization. Sci Rep 2020; 10:9012. [PMID: 32488181 PMCID: PMC7265372 DOI: 10.1038/s41598-020-66072-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Quantification of plasma microRNAs (miRNAs) as non-invasive disease biomarkers is subject to multiple technical variabilities. This study aimed to develop an optimized protocol for miRNA quantification from rodent plasma. We hypothesized that a fixed small RNA concentration input for reverse transcription (RT) reaction will provide better miRNA quantification than a fixed RNA volume input. For this, tail-vein plasma was collected from 30 naïve, adult male Sprague-Dawley rats. Plasma hemolysis was measured with NanoDrop-1000 and Denovix DS-11 spectrophotometers. Plasma was then pooled, and RNA was extracted from 50-μl, 100-μl or 200-μl pool aliquots. Small RNA concentration was measured with Qubit miRNA assay. A fixed RNA volume (un-normalized) or a fixed small RNA concentration was used for RT (concentration-normalized). The method was setup with miR-23a-3p and validated with miR-103a-3p and miR-451a. Hemolysis measurements from Denovix and NanoDrop strongly correlated. Qubit revealed increased small RNA concentrations with increasing starting plasma volumes. With concentration-normalization, miRNA levels from 100-µl and 200-µl plasma volume groups mostly normalized to the level of the 50-µl in ddPCR. Our results indicate that miRNA quantification with ddPCR should be performed with small RNA concentration-normalization to minimize variations in eluted RNA concentrations occuring during RNA extraction.
Collapse
Affiliation(s)
- Shalini Das Gupta
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Xavier Ekolle Ndode-Ekane
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Noora Puhakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland.
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
23
|
Valihrach L, Androvic P, Kubista M. Circulating miRNA analysis for cancer diagnostics and therapy. Mol Aspects Med 2020; 72:100825. [DOI: 10.1016/j.mam.2019.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
|
24
|
Iacob DG, Rosca A, Ruta SM. Circulating microRNAs as non-invasive biomarkers for hepatitis B virus liver fibrosis. World J Gastroenterol 2020; 26:1113-1127. [PMID: 32231417 PMCID: PMC7093315 DOI: 10.3748/wjg.v26.i11.1113] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Viruses can alter the expression of host microRNAs (MiRNA s) and modulate the immune response during a persistent infection. The dysregulation of host MiRNA s by hepatitis B virus (HBV) contributes to the proinflammatory and profibrotic changes within the liver. Multiple studies have documented the differential regulation of intracellular and circulating MiRNA s during different stages of HBV infection. Circulating MiRNA s found in plasma and/or extracellular vesicles can integrate data on viral-host interactions and on the associated liver injury. Hence, the detection of circulating MiRNA s in chronic HBV hepatitis could offer a promising alternative to liver biopsy, as their expression is associated with HBV replication, the progression of liver fibrosis, and the outcome of antiviral treatment. The current review explores the available data on miRNA involvement in HBV pathogenesis with an emphasis on their potential use as biomarkers for liver fibrosis.
Collapse
Affiliation(s)
- Diana Gabriela Iacob
- Infectious Diseases Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest 050474, Romania
- Bucharest Emergency University Hospital, Bucharest 050098, Romania
| | - Adelina Rosca
- Virology Department, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Viral Emerging Diseases Department, Ștefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Simona Maria Ruta
- Virology Department, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Viral Emerging Diseases Department, Ștefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| |
Collapse
|
25
|
Doxakis E. Cell-free microRNAs in Parkinson's disease: potential biomarkers that provide new insights into disease pathogenesis. Ageing Res Rev 2020; 58:101023. [PMID: 32001380 DOI: 10.1016/j.arr.2020.101023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are master post-transcriptional regulators of gene expression and their specific footprints reflect disease conditions. Over the last few years, several primary reports have described the deregulation of cell-free miRNAs in Parkinson's disease (PD), however, results have been rather inconsistent due to preanalytical and analytical challenges. This study integrated the data across twenty-four reports to identify steadily deregulated miRNAs that may assist in the path towards biomarker development and molecular characterization of the underlying pathology. Stringent KEGG pathway analysis of the miRNA targets revealed FoxO, Prolactin, TNF, and ErbB signaling pathways as the most significantly enriched categories while Gene Ontology analysis revealed that the protein targets are mostly associated with transcription. Chromosomal location of the consistently deregulated miRNAs revealed that over a third of them were clustered at the same location at Chr14q32 suggesting that they are co-regulated by specific transcription factors. This genomic region is inherently unstable due to expanded TGG repeats and responsible for human abnormalities. Stringent analysis of transcription factor sites surrounding the deregulated miRNAs revealed that CREB1, CEBPB and MAZ sites existed in approximately half of the miRNAs, including all of the miRNAs located at Chr14q32. Additional studies are now needed to determine the biomarker potential of the consistently deregulated miRNAs in PD and the therapeutic implications of these bioinformatics insights.
Collapse
|
26
|
miR-9 Does Not Regulate Lamin A Expression in Metastatic Cells from Lung Adenocarcinoma. Int J Mol Sci 2020; 21:ijms21051599. [PMID: 32111074 PMCID: PMC7084260 DOI: 10.3390/ijms21051599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 11/17/2022] Open
Abstract
In lung adenocarcinoma, low lamin A expression in pleural metastatic cells has been proposed as a pejorative factor. miR-9 physiologically inhibits the expression of lamin A in neural cells and seems to be a central actor in the carcinogenesis and the metastatic process in lung cancer. Thus, it could be a good candidate to explain the reduction of lamin A expression in lung adenocarcinoma cells. miR-9 expression was analyzed in 16 pleural effusions containing metastatic cells from lung adenocarcinoma and was significantly reduced in patients from the 'Low lamin A expression' group compared to patients from the 'High lamin A expression' group. Then, carcinoma cells selection by fluorescence-activated cell sorting (FACS) was performed according to epithelial membrane antigen (EMA) expression, reflecting lamin A expression. miR-9 was underexpressed in lamin A- carcinoma cells compared to lamin A+ carcinoma cells in patients from the 'Low lamin A expression' group, whereas there was no difference of miR-9 expression between lamin A+ and lamin A- carcinoma cells in patients from the 'High lamin A expression' group. These results suggest that miR-9 does not regulate lamin A expression in metastatic cells from lung adenocarcinoma. On the contrary, miR-9 expression was shown to be reduced in lamin A-negative carcinoma cells.
Collapse
|
27
|
MicroRNAs and Neutrophil Activation Markers Predict Venous Thrombosis in Pancreatic Ductal Adenocarcinoma and Distal Extrahepatic Cholangiocarcinoma. Int J Mol Sci 2020; 21:ijms21030840. [PMID: 32012923 PMCID: PMC7043221 DOI: 10.3390/ijms21030840] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer-associated venous thrombosis (VTE) increases mortality and morbidity. However, limited tools are available to identify high risk patients. Upon activation, neutrophils release their content through different mechanisms, thereby prompting thrombosis. We explored plasma microRNAs (miRNAs) and neutrophil activation markers to predict VTE in pancreatic ductal adenocarcinoma (PDAC) and distal extrahepatic cholangiocarcinoma (DECC). Twenty-six PDAC and 6 DECC patients recruited at cancer diagnosis, were examined for deep vein thrombosis and pulmonary embolisms, and were then followed-up with clinical examinations, blood collections, and biCUS. Ten patients developed VTE and were compared with 22 age- and sex-matched controls. miRNA expression levels were measured at diagnosis and right before VTE, and neutrophil activation markers (cell-free DNA, nucleosomes, calprotectin, and myeloperoxidase) were measured in every sample obtained during follow-up. We obtained a profile of 7 miRNAs able to estimate the risk of future VTE at diagnosis (AUC = 0.95; 95% Confidence Interval (CI) (0.987, 1)) with targets involved in the pancreatic cancer and complement and coagulation cascades pathways. Seven miRNAs were up- or down-regulated before VTE compared with diagnosis. We obtained a predictive model of VTE with calprotectin as predictor (AUC = 0.77; 95% CI (0.57, 0.95)). This is the first study that addresses the ability of plasma miRNAs and neutrophil activation markers to predict VTE in PDAC and DECC.
Collapse
|
28
|
Wright K, de Silva K, Purdie AC, Plain KM. Comparison of methods for miRNA isolation and quantification from ovine plasma. Sci Rep 2020; 10:825. [PMID: 31964966 PMCID: PMC6972740 DOI: 10.1038/s41598-020-57659-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 01/03/2020] [Indexed: 12/31/2022] Open
Abstract
microRNA (miRNA) are promising candidates for disease biomarkers as they are abundant in circulation, highly stable in biological fluids and may yield diagnostic biomarker signatures. The reported issues with miRNA isolation using traditional RNA reagents necessitates the optimisation of miRNA isolation from challenging samples. In this study we compared six commercial RNA extraction kits to evaluate their ability to isolate miRNA from ovine plasma. We also compared three methods for quantification of small RNA extracted from plasma to determine the most reliable. Using minimal sample inputs of fresh and frozen plasma from five sheep, we compared the six kits (Kit A-F) using quantitative PCR. Operational factors were also assessed for each kit. Kits A and B provided the best detection of the miRNA qPCR reference genes across fresh and frozen samples (p < 0.001) followed by Kit C. The Qubit and microRNA assay provided the least variation (% CV 5.47, SEM ± 0.07), followed by the NanoDrop (% CV 7.01, SEM ± 0.92) and Agilent Bioanalyzer (% CV 59.21, SEM ± 1.31). We identify Kit A to be optimal for isolating miRNA from small volumes of fresh and frozen ovine plasma, and Kit B the top performing kit taking into consideration miRNA detection and operational factors. The Qubit fluorometer using a microRNA assay was the most reliable miRNA quantification method.
Collapse
Affiliation(s)
- Kathryn Wright
- The University of Sydney, Faculty of Science, Sydney School of Veterinary Science, Sydney, Australia
| | - Kumudika de Silva
- The University of Sydney, Faculty of Science, Sydney School of Veterinary Science, Sydney, Australia.
| | - Auriol C Purdie
- The University of Sydney, Faculty of Science, Sydney School of Veterinary Science, Sydney, Australia
| | - Karren M Plain
- The University of Sydney, Faculty of Science, Sydney School of Veterinary Science, Sydney, Australia
| |
Collapse
|
29
|
Gon Y, Shimizu T, Mizumura K, Maruoka S, Hikichi M. Molecular techniques for respiratory diseases: MicroRNA and extracellular vesicles. Respirology 2019; 25:149-160. [PMID: 31872560 DOI: 10.1111/resp.13756] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/04/2019] [Accepted: 11/10/2019] [Indexed: 12/11/2022]
Abstract
miRNA are a class of evolutionarily conserved non-coding 19- to 22-nt regulatory RNA. They affect various cellular functions through modulating the transcriptional and post-transcriptional levels of their target mRNA by changing the stability of protein-coding transcripts or attenuating protein translation. miRNA were discovered in the early 1990s, and they have been the focus of new research in both basic and clinical medical sciences. Today, it has become clear that specific miRNA are linked to the pathogenesis of respiratory diseases, as well as cancer and cardiovascular disease. In addition, EV, including exosomes, which are small membrane-bound vesicles secreted by cells, were found to contain various functional miRNA that can be used for diagnostic and therapeutic purposes. As body fluids, such as blood and respiratory secretions, are major miRNA sources in the body, EV carrying extracellular miRNA are considered potentially useful for the diagnosis and assessment of pathological conditions, as well as the treatment of respiratory or other diseases. Although research in the field of lung cancer is actively progressing, studies in other respiratory fields have emerged recently as well. In this review, we provide an update in the topics of miRNA and EV focused on airway inflammatory diseases, such as asthma and COPD, and explore their potential for clinical applications on respiratory diseases.
Collapse
Affiliation(s)
- Yasuhiro Gon
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tetsuo Shimizu
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kenji Mizumura
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shuichiro Maruoka
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Mari Hikichi
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
30
|
Ford KL, Anwar M, Heys R, Ahmed EM, Caputo M, Game L, Reeves BC, Punjabi PP, Angelini GD, Petretto E, Emanueli C. Optimisation of laboratory methods for whole transcriptomic RNA analyses in human left ventricular biopsies and blood samples of clinical relevance. PLoS One 2019; 14:e0213685. [PMID: 30870483 PMCID: PMC6417664 DOI: 10.1371/journal.pone.0213685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/18/2019] [Indexed: 01/08/2023] Open
Abstract
This study aimed to optimise techniques for whole transcriptome and small RNA analyses on clinical tissue samples from patients with cardiovascular disease. Clinical samples often represent a particular challenge to extracting RNA of sufficient quality for robust RNA sequencing analysis, and due to availability, it is rarely possible to optimise techniques on the samples themselves. Therefore, we have used equivalent samples from pigs undergoing cardiopulmonary bypass surgery to test different protocols for optimal RNA extraction, and then validated the protocols in human samples. Here we present an assessment of the quality and quantity of RNA obtained using a variety of commercially-available RNA extraction kits on both left ventricular biopsies and blood plasma. RNA extraction from these samples presents different difficulties; left ventricular biopsies are small and fibrous, while blood plasma has a low RNA content. We have validated our optimised extraction techniques on human clinical samples collected as part of the ARCADIA (Association of non-coding RNAs with Coronary Artery Disease and type 2 Diabetes) cohort study, resulting in successful whole transcriptome and small RNA sequencing of human left ventricular tissue.
Collapse
Affiliation(s)
- Kerrie L. Ford
- National Heart and Lung Institute, ICTEM, The Hammersmith Hospital, Imperial College London, London, United Kingdom
- Bristol Heart Institute, School of Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Maryam Anwar
- National Heart and Lung Institute, ICTEM, The Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Rachael Heys
- Clinical Trials and Evaluation Unit, Bristol Trials Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Eltayeb Mohamed Ahmed
- Bristol Heart Institute, School of Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Massimo Caputo
- Bristol Heart Institute, School of Translational Health Sciences, University of Bristol, Bristol, United Kingdom
- University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Laurence Game
- MRC London Institute of Medical Sciences, The Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Barnaby C. Reeves
- Clinical Trials and Evaluation Unit, Bristol Trials Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Prakash P. Punjabi
- National Heart and Lung Institute, ICTEM, The Hammersmith Hospital, Imperial College London, London, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Gianni D. Angelini
- Bristol Heart Institute, School of Translational Health Sciences, University of Bristol, Bristol, United Kingdom
- University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Enrico Petretto
- MRC London Institute of Medical Sciences, The Hammersmith Hospital, Imperial College London, London, United Kingdom
- Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Costanza Emanueli
- National Heart and Lung Institute, ICTEM, The Hammersmith Hospital, Imperial College London, London, United Kingdom
- Bristol Heart Institute, School of Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
31
|
Androvic P, Romanyuk N, Urdzikova-Machova L, Rohlova E, Kubista M, Valihrach L. Two-tailed RT-qPCR panel for quality control of circulating microRNA studies. Sci Rep 2019; 9:4255. [PMID: 30862831 PMCID: PMC6414634 DOI: 10.1038/s41598-019-40513-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/14/2019] [Indexed: 02/08/2023] Open
Abstract
Circulating cell-free microRNAs are promising candidates for minimally invasive clinical biomarkers for the diagnosis, prognosis and monitoring of many human diseases. Despite substantial efforts invested in the field, the research so far has failed to deliver expected results. One of the contributing factors is general lack of agreement between various studies, partly due to the considerable technical challenges accompanying the workflow. Pre-analytical variables including sample collection, RNA isolation, and quantification are sources of bias that may hamper biological interpretation of the results. Here, we present a Two-tailed RT-qPCR panel for quality control, monitoring of technical performance, and optimization of microRNA profiling experiments from biofluid samples. The Two-tailed QC (quality control) panel is based on two sets of synthetic spike-in molecules and three endogenous microRNAs that are quantified with the highly specific Two-tailed RT-qPCR technology. The QC panel is a cost-effective way to assess quality of isolated microRNA, degree of inhibition, and erythrocyte contamination to ensure technical soundness of the obtained results. We provide assay sequences, detailed experimental protocol and guide to data interpretation. The application of the QC panel is demonstrated on the optimization of RNA isolation from biofluids with the miRNeasy Serum/Plasma Advanced Kit (Qiagen).
Collapse
Affiliation(s)
- Peter Androvic
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Vestec, 252 50, Czech Republic.,Laboratory of Growth Regulators, Faculty of Science, Palacky University, Olomouc, 78371, Czech Republic
| | - Nataliya Romanyuk
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Lucia Urdzikova-Machova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Eva Rohlova
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Vestec, 252 50, Czech Republic.,Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, 128 43, Czech Republic
| | - Mikael Kubista
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Vestec, 252 50, Czech Republic.,TATAA Biocenter AB, Gothenburg, 411 03, Sweden
| | - Lukas Valihrach
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Vestec, 252 50, Czech Republic.
| |
Collapse
|
32
|
Shirshova AN, Shamovskaya DA, Boyarskikh UA, Kushlinskii NE, Filipenko ML. One-phase phenol-free method for microRNA isolation from blood plasma. MethodsX 2018; 5:737-743. [PMID: 30094203 PMCID: PMC6070682 DOI: 10.1016/j.mex.2018.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/02/2018] [Indexed: 11/25/2022] Open
Abstract
MicroRNA extraction is an essential procedure when discovering MicroRNA-based biomarkers and approaches. Here we describe a new method for microRNA isolation from human blood plasma, based on isopropanol precipitation from the one-phase lysate. We demonstrate that the use of more than four volumes of lysis buffer based on 5 M guanidine isothiocyanate prevents the formation of large, viscous, and hardly soluble precipitate. Applying widely used linear polyacrylamide (LPAA) as the only precipitating agent proved ineffective. At the same time, adding poly(A)RNA or tRNA with LPAA significantly increased the amount of microRNA obtained. Replacing β-mercaptoethanol with less volatile dithiothreitol in lysis buffer did not lead to a decrease in the yield. We compared the method proposed with miRNeasy Mini Kit (Qiagen) for isolation of microRNA from human blood plasma. MicroRNA yield was evaluated by the difference in median Ct values obtained for exogenous cel-238 and endogenous microRNA-21 cDNA amplification. For both tested microRNA, the precipitation from one-phase lysate provided better recovery with lower Ct values (Δ median Ct 4.94 for cel-238, р = 1,0E-04 and Δ median Ct 2.18 for microRNA-21, р = 9,0E-04). Thus, the method we described showed high yield and operating convenience because it can be applied without special equipment.
Collapse
Affiliation(s)
- A N Shirshova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - D A Shamovskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - U A Boyarskikh
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - N E Kushlinskii
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - M L Filipenko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| |
Collapse
|
33
|
Pitkänen A, Ekolle Ndode-Ekane X, Lapinlampi N, Puhakka N. Epilepsy biomarkers - Toward etiology and pathology specificity. Neurobiol Dis 2018; 123:42-58. [PMID: 29782966 DOI: 10.1016/j.nbd.2018.05.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Abstract
A biomarker is a characteristic that is measured as an indicator of normal biologic processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic interventions. Biomarker modalities include molecular, histologic, radiographic, or physiologic characteristics. In 2015, the FDA-NIH Joint Leadership Council developed the BEST Resource (Biomarkers, EndpointS, and other Tools) to improve the understanding and use of biomarker terminology in biomedical research, clinical practice, and medical product development. The BEST biomarker categories include: (a) susceptibility/risk biomarkers, (b) diagnostic biomarkers, (c) monitoring biomarkers, (d) prognostic biomarkers, (e) predictive biomarkers, (f) pharmacodynamic/response biomarkers, and (g) safety biomarkers. Here we review 30 epilepsy biomarker studies that have identified (a) diagnostic biomarkers for epilepsy, epileptogenesis, epileptogenicity, drug-refractoriness, and status epilepticus - some of the epileptogenesis and epileptogenicity biomarkers can also be considered prognostic biomarkers for the development of epilepsy in subjects with a given brain insult, (b) predictive biomarkers for epilepsy surgery outcome, and (c) a response biomarker for therapy outcome. The biomarker modalities include plasma/serum/exosomal and cerebrospinal fluid molecular biomarkers, brain tissue molecular biomarkers, imaging biomarkers, electrophysiologic biomarkers, and behavioral/cognitive biomarkers. Both single and combinatory biomarkers have been described. Most of the reviewed biomarkers have an area under the curve >0.800 in receiver operating characteristics analysis, suggesting high sensitivity and specificity. As discussed in this review, we are in the early phase of the learning curve in epilepsy biomarker discovery. Many of the seven biomarker categories lack epilepsy-related biomarkers. There is a need for epilepsy biomarker discovery using proper, statistically powered study designs with validation cohorts, and the development and use of novel analytical methods. A strategic roadmap to discuss the research priorities in epilepsy biomarker discovery, regulatory issues, and optimization of the use of resources, similar to those devised in the cancer and Alzheimer's disease research areas, is also needed.
Collapse
Affiliation(s)
- Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland.
| | - Xavier Ekolle Ndode-Ekane
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Niina Lapinlampi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Noora Puhakka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|