1
|
Santos BLP, Vieira IMM, Ruzene DS, Silva DP. Unlocking the potential of biosurfactants: Production, applications, market challenges, and opportunities for agro-industrial waste valorization. ENVIRONMENTAL RESEARCH 2024; 244:117879. [PMID: 38086503 DOI: 10.1016/j.envres.2023.117879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Biosurfactants are eco-friendly compounds with unique properties and promising potential as sustainable alternatives to chemical surfactants. The current review explores the multifaceted nature of biosurfactant production and applications, highlighting key fermentative parameters and microorganisms able to convert carbon-containing sources into biosurfactants. A spotlight is given on biosurfactants' obstacles in the global market, focusing on production costs and the challenges of large-scale synthesis. Innovative approaches to valorizing agro-industrial waste were discussed, documenting the utilization of lignocellulosic waste, food waste, oily waste, and agro-industrial wastewater in the segment. This strategy strongly contributes to large-scale, cost-effective, and environmentally friendly biosurfactant production, while the recent advances in waste valorization pave the way for a sustainable society.
Collapse
Affiliation(s)
| | | | - Denise Santos Ruzene
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Biotechnology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Daniel Pereira Silva
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Biotechnology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Intellectual Property Science, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil.
| |
Collapse
|
2
|
Mohy Eldin A, Hossam N. Microbial surfactants: characteristics, production and broader application prospects in environment and industry. Prep Biochem Biotechnol 2023; 53:1013-1042. [PMID: 37651735 DOI: 10.1080/10826068.2023.2175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Microbial surfactants are green molecules with high surface activities having the most promising advantages over chemical surfactants including their ability to efficiently reducing surface and interfacial tension, nontoxic emulsion-based formulations, biocompatibility, biodegradability, simplicity of preparation from low cost materials such as residual by-products and renewable resources at large scales, effectiveness and stabilization under extreme conditions and broad spectrum antagonism of pathogens to be part of the biocontrol strategy. Thus, biosurfactants are universal tools of great current interest. The present work describes the major types and microbial origin of surfactants and their production optimization from agro-industrial wastes in the batch shake-flasks and bioreactor systems through solid-state and submerged fermentation industries. Various downstream strategies that had been developed to extract and purify biosurfactants are discussed. Further, the physicochemical properties and functional characteristics of biosurfactants open new future prospects for the development of efficient and eco-friendly commercially successful biotechnological product compounds with diverse potential applications in environment, industry, biomedicine, nanotechnology and energy-saving technology as well.
Collapse
Affiliation(s)
- Ahmed Mohy Eldin
- Department of Microbiology, Soils, Water and Environmental Research Institute (SWERI), Agricultural Research Center (ARC), Giza, Egypt
| | | |
Collapse
|
3
|
Gómez-Gutiérrez JA, Wong-Villarreal A, Aguilar-Marcelino L, Yañez-Ocampo G, Hernández-Nuñéz E, Caspeta-Mandujano JM, García-Flores A, Cruz-Arévalo J, Vargas-Uriostegui P, Gomez-Rodríguez O. In vitro nematicidal and acaricidal effect of biosurfactants produced by Bacillus against the root-knot nematode Nacobbus aberrans and the dust mite Tyrophagus putrescentiae. Braz J Microbiol 2023; 54:1127-1136. [PMID: 37119435 PMCID: PMC10234950 DOI: 10.1007/s42770-023-00981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/16/2023] [Indexed: 05/01/2023] Open
Abstract
In the present study, the nematicidal and acaricidal activity of three biosurfactants (BS) produced by strains of the Bacillus genus was evaluated. The BS produced by the Bacillus ROSS2 strain presented a mortality of 39.29% in juveniles (J2) of Nacobbus aberrans at a concentration of 30 mg/mL, this same strain is the one that presented the highest mortality in Tyrophagus putrescentiae, which was 57.97% at a concentration of 39 mg/mL. The BS were qualitatively identified by thin layer chromatography and are lipid in nature based on the retention factor (Rf). While the GC-MS analysis identified two main compounds that are 4,7-Methano-1H-indene-2,6-dicarboxylic acid, 3a,4,7,7a-tetrahydro-1, and Methyl 4-(pyrrol-1-yl)-1,2,5-oxadiazole-3-carboxylate1, which is the polar part indicated by the presence of dicarboxylic acid and carboxylate groups; while the non-polar portion can be interpreted as a hydrocarbon chain of variable length. Based on the present results, BS can be an alternative for the biocontrol of the root-knot nematode N. aberrans and the mite T. putrescentiae.
Collapse
Affiliation(s)
- Jaime Adriel Gómez-Gutiérrez
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos Cuernavaca, Cuernavaca, Morelos, C.P, 62209 México
| | | | - Liliana Aguilar-Marcelino
- National Center for Disciplinary Research in Animal Health and Safety (INIFAP), Km 11 Federal Road Cuernavaca-Cuautla, 62550 Jiutepec, MR Mexico
| | - Gustavo Yañez-Ocampo
- Laboratorio de edafología y ambiente. Facultad de ciencias, Universidad Autónoma del estado de Mexico, Campus El Cerrillo, Carretera Toluca-Ixtlahuaca Km 15.5, Piedras Blancas, C.P, 50200 Toluca de Lerdo, México
| | - Emanuel Hernández-Nuñéz
- Centro de Investigaciones y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Recursos del Mar, Unidad Mérida, Mérida, Yucatán México
| | - Juan Manuel Caspeta-Mandujano
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos Cuernavaca, Cuernavaca, Morelos, C.P, 62209 México
| | - Alejandro García-Flores
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos Cuernavaca, Cuernavaca, Morelos, C.P, 62209 México
| | - Julio Cruz-Arévalo
- División Agroalimentaria, Universidad Tecnológica de la Selva, C.P, 29950 Ocosingo, Mexico
| | - Patricia Vargas-Uriostegui
- National Center for Disciplinary Research in Animal Health and Safety (INIFAP), Km 11 Federal Road Cuernavaca-Cuautla, 62550 Jiutepec, MR Mexico
| | - Olga Gomez-Rodríguez
- Programa de Fitopatología, Colegio de Postgraduados-Campus Montecillo, km. 36.5 Carretera México-Texcoco, 56230 Texcoco, Estado de México México
| |
Collapse
|
4
|
Dias MAM, Nitschke M. Bacterial-derived surfactants: an update on general aspects and forthcoming applications. Braz J Microbiol 2023; 54:103-123. [PMID: 36662441 PMCID: PMC9857925 DOI: 10.1007/s42770-023-00905-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
The search for sustainable alternatives to the production of chemicals using renewable substrates and natural processes has been widely encouraged. Microbial surfactants or biosurfactants are surface-active compounds synthesized by fungi, yeasts, and bacteria. Due to their great metabolic versatility, bacteria are the most traditional and well-known microbial surfactant producers, being Bacillus and Pseudomonas species their typical representatives. To be successfully applied in industry, surfactants need to maintain stability under the harsh environmental conditions present in manufacturing processes; thus, the prospection of biosurfactants derived from extremophiles is a promising strategy to the discovery of novel and useful molecules. Bacterial surfactants show interesting properties suitable for a range of applications in the oil industry, food, agriculture, pharmaceuticals, cosmetics, bioremediation, and more recently, nanotechnology. In addition, they can be synthesized using renewable resources as substrates, contributing to the circular economy and sustainability. The article presents a general and updated review of bacterial-derived biosurfactants, focusing on the potential of some groups that are still underexploited, as well as, recent trends and contributions of these versatile biomolecules to circular bioeconomy and nanotechnology.
Collapse
Affiliation(s)
- Marcos André Moura Dias
- grid.11899.380000 0004 1937 0722Departamento de Físico-Química, Instituto de Química de São Carlos, Universidade de São Paulo-USP, Av Trabalhador São Carlense 400, CP 780, CEP 13560-970 São Carlos, SP Brasil
| | - Marcia Nitschke
- Departamento de Físico-Química, Instituto de Química de São Carlos, Universidade de São Paulo-USP, Av Trabalhador São Carlense 400, CP 780, CEP 13560-970, São Carlos, SP, Brasil.
| |
Collapse
|
5
|
Interactive analysis of biosurfactants in fruit-waste fermentation samples using BioSurfDB and MEGAN. Sci Rep 2022; 12:7769. [PMID: 35546170 PMCID: PMC9095615 DOI: 10.1038/s41598-022-11753-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/13/2022] [Indexed: 11/08/2022] Open
Abstract
Agroindustrial waste, such as fruit residues, are a renewable, abundant, low-cost, commonly-used carbon source. Biosurfactants are molecules of increasing interest due to their multifunctional properties, biodegradable nature and low toxicity, in comparison to synthetic surfactants. A better understanding of the associated microbial communities will aid prospecting for biosurfactant-producing microorganisms. In this study, six samples of fruit waste, from oranges, mangoes and mixed fruits, were subjected to autochthonous fermentation, so as to promote the growth of their associated microbiota, followed by short-read metagenomic sequencing. Using the DIAMOND+MEGAN analysis pipeline, taxonomic analysis shows that all six samples are dominated by Proteobacteria, in particular, a common core consisting of the genera Klebsiella, Enterobacter, Stenotrophomonas, Acinetobacter and Escherichia. Functional analysis indicates high similarity among samples and a significant number of reads map to genes that are involved in the biosynthesis of lipopeptide-class biosurfactants. Gene-centric analysis reveals Klebsiella as the main assignment for genes related to putisolvins biosynthesis. To simplify the interactive visualization and exploration of the surfactant-related genes in such samples, we have integrated the BiosurfDB classification into MEGAN and make this available. These results indicate that microbiota obtained from autochthonous fermentation have the genetic potential for biosynthesis of biosurfactants, suggesting that fruit wastes may provide a source of biosurfactant-producing microorganisms, with applications in the agricultural, chemical, food and pharmaceutical industries.
Collapse
|
6
|
Jorge MR, do Amaral Crispim B, Merey FM, Barufatti A, Cabrini I, da Silva Dantas FG, de Oliveira KMP, Kummrow F, Beatriz A, Santos T, Dias C, Ventura J, Nogueira CR, da Silva Gomes R, de Arruda EJ. Sulphonates' mixtures and emulsions obtained from technical cashew nut shell liquid and cardanol for control of Aedes aegypti (Diptera: Culicidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27870-27884. [PMID: 32405938 DOI: 10.1007/s11356-020-08998-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Aedes aegypti is the main mosquito vector of dengue, zika, chikungunya, and yellow fever diseases. The low effectiveness of vector control options is mainly related to the increased insect's resistance and to the toxicity of products used for non-target organisms. The development of new environmentally friendly and safer products is imperative. Technical cashew nut shell liquid (tCNSL), mostly composed by cardanol (C), is an abundant by-product of the cashew (Anacardium occidentale L.) production chain, available at low cost, and with proven larvicidal activity. However, chemical modifications in both tCNSL and cardanol were required to increase their water solubilities. Our objectives were to synthesise and characterise sustainable, low-cost and easy-to-use multiple function products based on tCNSL, cardanol, and the sulphonates obtained from both; and to evaluate all these products efficacy as surfactants, larvicidal, and antimicrobial agents. None of the sulphonates presented antimicrobial and larvicidal activities. tCNSL and cardanol were successfully emulsified with sodium technical cashew nut shell liquid sulphonate (NatCNSLS, complex mixture of surfactants). The emulsions obtained presented larvicidal activity due to the presence of tCNSL and cardanol in their composition. Our results showed that the tCNSL+NatCNSLS mixture emulsion was an effective larvicide and surfactant multiple function product, with high availability and easy-to-use, which can facilitate its large-scale use in different environments. Graphical abstract.
Collapse
Affiliation(s)
- Márcia Ramos Jorge
- Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, km 12-Unidade II, Cidade Universitária, Dourados, MS, 79804-970, Brazil
| | - Bruno do Amaral Crispim
- Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, km 12-Unidade II, Cidade Universitária, Dourados, MS, 79804-970, Brazil
| | - Felipe Mendes Merey
- Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, km 12-Unidade II, Cidade Universitária, Dourados, MS, 79804-970, Brazil
| | - Alexeia Barufatti
- Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, km 12-Unidade II, Cidade Universitária, Dourados, MS, 79804-970, Brazil
| | - Isaías Cabrini
- Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, km 12-Unidade II, Cidade Universitária, Dourados, MS, 79804-970, Brazil
| | - Fabiana Gomes da Silva Dantas
- Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, km 12-Unidade II, Cidade Universitária, Dourados, MS, 79804-970, Brazil
| | - Kelly Mari Pires de Oliveira
- Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, km 12-Unidade II, Cidade Universitária, Dourados, MS, 79804-970, Brazil
| | - Fábio Kummrow
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo-Campus Diadema, Rua São Nicolau, 210-Centro, Diadema, SP, 09913-030, Brazil
| | - Adilson Beatriz
- Instituto de Química, Universidade Federal de Mato Grosso do Sul, Avenida Senador Filinto Muller, 1555-Cidade Universitária, Campo Grande, MS, 79074-460, Brazil
| | - Tiago Santos
- Instituto de Investigação e Inovação em Saúde/Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Catarina Dias
- Instituto de Física de Materiais Avançados, Nanotecnologia e Fotónica, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - João Ventura
- Instituto de Física de Materiais Avançados, Nanotecnologia e Fotónica, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - Cláudio Rodrigo Nogueira
- Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, km 12-Unidade II, Cidade Universitária, Dourados, MS, 79804-970, Brazil
| | - Roberto da Silva Gomes
- School of Pharmacy, North Dakota State University, 1401 Albrecht Boulevard, Fargo, ND, 58102, USA
| | - Eduardo José de Arruda
- Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, km 12-Unidade II, Cidade Universitária, Dourados, MS, 79804-970, Brazil.
- Faculdade de Ciências Exatas e Tecnologia, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, Km 12-Unidade II|Caixa Postal: 364, Dourados, MS, CEP: 79804-970, Brazil.
| |
Collapse
|
7
|
Joy S, Khare SK, Sharma S. Synergistic extraction using sweep-floc coagulation and acidification of rhamnolipid produced from industrial lignocellulosic hydrolysate in a bioreactor using sequential (fill-and-draw) approach. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Coelho ALS, Feuser PE, Carciofi BAM, de Andrade CJ, de Oliveira D. Mannosylerythritol lipids: antimicrobial and biomedical properties. Appl Microbiol Biotechnol 2020; 104:2297-2318. [PMID: 31980917 DOI: 10.1007/s00253-020-10354-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 12/16/2022]
Abstract
Mannosylerythritol lipids (MELs) have attracted particular interest of medical, pharmaceutical, and cosmetic fields, due to their specific characteristics, including non-toxicity, easy biodegradability, and environmental compatibility. Therefore, this review aims to highlight recent findings on MEL biological properties, focusing on issues related to therapeutic applications. Among the main findings is that MELs can play a fundamental role due to their antimicrobial properties against several nosocomial pathogen microorganisms. Other remarkable biological properties of MELs are related to skincare, as antiaging (active agent), and in particular on recover of skin cells that were damaged by UV radiation. MEL is also related to the increased efficiency of DNA transfection in liposome systems. Regarding the health field, these glycolipids seem to be associated with disturbance in the membrane composition of cancerous cells, increasing expression of genes responsible for cytoplasmic stress and apoptosis. Moreover, MELs can be associated with nanoparticles, as a capping agent, also acting to increase the solubility and cytotoxicity of them. Furthermore, the differences in the chemical structure of MEL could improve and expand their biochemical diversity and applications. Such modifications could change their interfacial properties and, thus, reduce the surface tension value, enhance the solubility, lower critical micelle concentrations, and form unique self-assembly structures. The latest is closely related to molecular recognition and protein stabilization properties of MEL, that is, essential parameters for their effective cosmetical and pharmaceutical effects. Thus, this current research indicates the huge potential of MEL for use in biomedical formulations, either alone or in combination with other molecules.
Collapse
Affiliation(s)
- Ana Letícia Silva Coelho
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Paulo Emílio Feuser
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Bruno Augusto Mattar Carciofi
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Cristiano José de Andrade
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
9
|
Pirog TP. THE PROPERTIES OF SURFACTANTS SYNTHESIZED BY Acinetobacter calcoaceticus ІMV В-7241 ON REFINED AND WASTE SUNFLOWER OIL. BIOTECHNOLOGIA ACTA 2018. [DOI: 10.15407/biotech11.06.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Nunes RKV, Martins UN, Brito TB, Nepel A, Costa EV, Barison A, Santos RLC, Cavalcanti SCH. Evaluation of (-)-borneol derivatives against the Zika vector, Aedes aegypti and a non-target species, Artemia sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31165-31174. [PMID: 30187415 DOI: 10.1007/s11356-018-2809-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Zika, dengue, and chikungunya are vector-borne diseases of pronounced concern transmitted by the mosquito Aedes aegypti Linn. (Diptera: Culicidae). The most important method to avoid outbreaks is to control mosquito spreading by the employment of insecticides and larvicides. Failure to control mosquito dispersal is mostly accounted to Ae. aegypti resistance to currently available larvicides and insecticides, encouraging the development of novel pesticides. In addition, the excessive use of larvicides poses serious threats to human health and the environment. Evaluation of natural products as larvicides in an attempt to overcome this situation is often found in the literature because products originated from nature are considered less toxic to non-target species and more eco-friendly. (-)-Borneol is a bicyclic monoterpene present in essential oils with moderate larvicidal activity. On account of these facts, it was of our interest to synthesize (-)-borneol ester derivatives aiming to study its structure-activity relationships against Ae. aegypti larvae. With the goal to estimate toxicity to a non-target species, evaluation of the lethal concentration 50% (LC50) on Artemia sp. (Artemiidae) and calculation of selectivity towards Ae. aegypti were carried out. The most potent derivative, (-)-Bornyl chloroacetate, exhibited the highest suitability index, demonstrating lower environmental toxicity than other borneol ester derivatives. A parabolic relationship between (-)-borneol esters larvicidal activity and partition coefficient (Log P) was achieved and a correlation equation obtained, validating the importance of lipophilicity to the larvicidal activity of these compounds.
Collapse
Affiliation(s)
- Rafaela K V Nunes
- Medicinal Chemistry Laboratory, Pharmacy Department, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Ulisses N Martins
- Medicinal Chemistry Laboratory, Pharmacy Department, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Thaysnara B Brito
- Medicinal Chemistry Laboratory, Pharmacy Department, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Angelita Nepel
- Nuclear Magnetic Resonance Laboratory, Chemistry Department, Federal University of Paraná, PO Box 19081, Curitiba, PR, 81531-990, Brazil
| | - Emmanoel V Costa
- Chemistry Department, Institute of Applied Sciences, Federal University of Amazonas, Manaus, Brazil
| | - Andersson Barison
- Nuclear Magnetic Resonance Laboratory, Chemistry Department, Federal University of Paraná, PO Box 19081, Curitiba, PR, 81531-990, Brazil
| | - Roseli L C Santos
- Parasitology Laboratory, Morphology Department, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Sócrates C H Cavalcanti
- Medicinal Chemistry Laboratory, Pharmacy Department, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil.
| |
Collapse
|