1
|
Ostau NEV, Handke AE, Wiesenfarth M, Albers P, Antoch G, Noldus J, Reis H, Cotarelo C, Preetz J, Umutlu L, Ingenwerth M, Radtke JP, Hadaschik B, Schimmöller L, Kesch C. Bicenter validation of a risk model for the preoperative prediction of extraprostatic extension of localized prostate cancer combining clinical and multiparametric MRI parameters. World J Urol 2024; 42:530. [PMID: 39302458 PMCID: PMC11415414 DOI: 10.1007/s00345-024-05232-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND This study aimed to validate a previously published risk model (RM) which combines clinical and multiparametric MRI (mpMRI) parameters to predict extraprostatic extension (EPE) of prostate cancer (PC) prior to radical prostatectomy (RP). MATERIALS AND METHODS A previously published RM combining clinical with mpMRI parameters including European Society of Urogenital Radiology (ESUR) classification for EPE was retrospectively evaluated in a cohort of two urological university hospitals in Germany. Consecutive patients (n = 205, January 2015 -June 2021) with available preoperative MRI images, clinical information including PSA, prostate volume, ESUR classification for EPE, histopathological results of MRI-fusion biopsy and RP specimen were included. Validation was performed by receiver operating characteristic analysis and calibration plots. The RM's performance was compared to ESUR criteria. RESULTS Histopathological T3 stage was detected in 43% of the patients (n = 89); 45% at Essen and 42% at Düsseldorf. Discrimination performance between pT2 and pT3 of the RM in the entire cohort was AUC = 0.86 (AUC = 0.88 at site 1 and AUC = 0.85 at site 2). Calibration was good over the entire probability range. The discrimination performance of ESUR classification alone was comparable (AUC = 0.87). CONCLUSIONS The RM showed good discriminative performance to predict EPE for decision-making for RP as a patient-tailored risk stratification. However, when experienced MRI reading is available, standardized MRI reading with ESUR scoring is comparable regarding information outcome. A main limitation is the potentially limited transferability to other populations because of the high prevalence of EPE in our subgroups.
Collapse
Affiliation(s)
- Nicola Edith von Ostau
- Department of Urology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
| | - Analena Elisa Handke
- Department of Urology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
- Department of Urology, Ruhr-University Bochum, Marien Hospital, Herne, Germany
| | - Manuel Wiesenfarth
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Peter Albers
- Department of Urology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Gerald Antoch
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Düsseldorf, D-40225, Dusseldorf, Germany
| | - Joachim Noldus
- Department of Urology, Ruhr-University Bochum, Marien Hospital, Herne, Germany
| | - Henning Reis
- Division of Pathology, University Hospital Frankfurt, Frankfurt, Germany
| | - Cristina Cotarelo
- Department of Pathology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Pathology, University Hospital Mannheim, Mannheim, Germany
| | - Julia Preetz
- Department of Pathology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Lale Umutlu
- Division of Radiology, University Hospital Essen, Essen, Germany
| | - Marc Ingenwerth
- Department of Pathology, University Hospital Essen, Essen, Germany
| | - Jan Philipp Radtke
- Department of Urology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
- Department of Urology, University Hospital Düsseldorf, Düsseldorf, Germany
- Division of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Boris Hadaschik
- Department of Urology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Lars Schimmöller
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Düsseldorf, D-40225, Dusseldorf, Germany
- Department of Diagnostic, Interventional Radiology and Nuclear Medicine, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Claudia Kesch
- Department of Urology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| |
Collapse
|
2
|
Dane B, Bagga B, Bansal B, Beier S, Kim S, Reddy A, Fenty F, Keerthivasan M, Chandarana H. Accelerated T2-weighted MRI of the bowel at 3T using a single-shot technique with deep learning-based image reconstruction: impact on image quality and disease detection. Acad Radiol 2024:S1076-6332(24)00586-5. [PMID: 39198137 DOI: 10.1016/j.acra.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024]
Abstract
RATIONALE AND OBJECTIVE A single-shot T2-weighted deep-learning-based image reconstruction (DL-HASTE) has been recently developed allowing for shorter acquisition time than conventional half-Fourier acquisition single-shot turbo-spin echo (HASTE). The purpose of this study was to compare image quality of conventional 6 mm HASTE with DL-HASTE at 4 mm and 6 mm slice thickness. MATERIALS AND METHODS 91 patients (51 female; mean±SD age: 44±10years) who underwent 3T MR enterography from 5/15/2023-7/15/2023 including pelvic conventional HASTE and DL-HASTE were included. Patients either had 4 mm-DL-HASTE or 6 mm-DL-HASTE. Four abdominal radiologists, blinded to sequence type, independently evaluated overall image quality, artifacts over bowel, bowel wall sharpness, and confidence for the presence/absence of bowel abnormalities on 5-point Likert scales. Readers recorded the presence/absence of ileal wall thickening, ileal inflammation, stricture, and penetrating disease on each sequence. Wilcoxon signed-rank test with continuity correction was used for paired comparisons and Wilcoxon rank sum test was used for unpaired ordinal comparisons. A p < .05 indicated statistical significance. RESULTS Acquisition times for 6 mm HASTE, 4 mm-DL-HASTE, and 6 mm-DL-HASTE were 64 s, 51 s, and 49 s, respectively. Overall image quality and bowel sharpness were significantly improved for 4 mm-DL-HASTE versus HASTE for 3/4 readers (all p < .05) and similar for the 4th reader (p > .05). Diagnostic confidence was similar for all readers (p > .05). 6 mm-DL-HASTE was similar to HASTE for bowel sharpness, image quality, and confidence for 3/4 readers (all p > .05). The presence of ileal thickening, ileal inflammation, stricture, and penetrating disease were similar for all readers for HASTE, 4 mm-DL-HASTE, and 6 mm-DL-HASTE (all p > .05). CONCLUSION 4 mm-DL-HASTE had superior image quality than conventional HASTE at shorter acquisition time.
Collapse
Affiliation(s)
- Bari Dane
- NYU Langone Health Department of Radiology, 660 1st Avenue, New York, NY 10016 (B.D., B.B., S.B., S.K., A.R., F.F., H.C.); NYU Long Island Department of Radiology, Mineola, NY 11501 (B.D., B.B., B.B., S.B., A.R., F.F., M.K., H.C.).
| | - Barun Bagga
- NYU Langone Health Department of Radiology, 660 1st Avenue, New York, NY 10016 (B.D., B.B., S.B., S.K., A.R., F.F., H.C.); NYU Long Island Department of Radiology, Mineola, NY 11501 (B.D., B.B., B.B., S.B., A.R., F.F., M.K., H.C.)
| | - Bhavik Bansal
- NYU Long Island Department of Radiology, Mineola, NY 11501 (B.D., B.B., B.B., S.B., A.R., F.F., M.K., H.C.); All India Institute of Medical Sciences, New Delhi, India (B.B.)
| | - Sarah Beier
- NYU Langone Health Department of Radiology, 660 1st Avenue, New York, NY 10016 (B.D., B.B., S.B., S.K., A.R., F.F., H.C.); NYU Long Island Department of Radiology, Mineola, NY 11501 (B.D., B.B., B.B., S.B., A.R., F.F., M.K., H.C.)
| | - Sooah Kim
- NYU Langone Health Department of Radiology, 660 1st Avenue, New York, NY 10016 (B.D., B.B., S.B., S.K., A.R., F.F., H.C.)
| | - Arthi Reddy
- NYU Langone Health Department of Radiology, 660 1st Avenue, New York, NY 10016 (B.D., B.B., S.B., S.K., A.R., F.F., H.C.); NYU Long Island Department of Radiology, Mineola, NY 11501 (B.D., B.B., B.B., S.B., A.R., F.F., M.K., H.C.)
| | - Felicia Fenty
- NYU Langone Health Department of Radiology, 660 1st Avenue, New York, NY 10016 (B.D., B.B., S.B., S.K., A.R., F.F., H.C.); NYU Long Island Department of Radiology, Mineola, NY 11501 (B.D., B.B., B.B., S.B., A.R., F.F., M.K., H.C.)
| | - Mahesh Keerthivasan
- NYU Long Island Department of Radiology, Mineola, NY 11501 (B.D., B.B., B.B., S.B., A.R., F.F., M.K., H.C.); Siemens Healthineers, Malvern, NJ (M.K.)
| | - Hersh Chandarana
- NYU Langone Health Department of Radiology, 660 1st Avenue, New York, NY 10016 (B.D., B.B., S.B., S.K., A.R., F.F., H.C.); NYU Long Island Department of Radiology, Mineola, NY 11501 (B.D., B.B., B.B., S.B., A.R., F.F., M.K., H.C.)
| |
Collapse
|
3
|
Boekestijn B, Feshtali S, Vasen H, van Leerdam ME, Bonsing BA, Mieog JSD, Wasser MN. Screening for pancreatic cancer in high-risk individuals using MRI: optimization of scan techniques to detect small lesions. Fam Cancer 2024; 23:295-308. [PMID: 38733421 PMCID: PMC11254973 DOI: 10.1007/s10689-024-00394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Pancreatic cancer has a dismal prognosis in the general population. However, early detection and treatment of disease in high-risk individuals can improve survival, as patients with localized disease and especially patients with lesions smaller than 10 mm show greatly improved 5-year survival rates. To achieve early detection through MRI surveillance programs, optimization of imaging is required. Advances in MRI technologies in both hardware and software over the years have enabled reliable detection of pancreatic cancer at a small size and early stage. Standardization of dedicated imaging protocols for the pancreas are still lacking. In this review we discuss state of the art scan techniques, sequences, reduction of artifacts and imaging strategies that enable early detection of lesions. Furthermore, we present the imaging features of small pancreatic cancers from a large cohort of high-risk individuals. Refinement of MRI techniques, increased scan quality and the use of artificial intelligence may further improve early detection and the prognosis of pancreatic cancer in a screening setting.
Collapse
Affiliation(s)
- Bas Boekestijn
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Shirin Feshtali
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Vasen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique E van Leerdam
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bert A Bonsing
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - J Sven D Mieog
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin N Wasser
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Doran E, Naim I, Bowtell R, Gowland PA, Glover PM, Bawden S. The impact of variations in subject geometry, respiration and coil repositioning on the specific absorption rate in parallel transmit abdominal imaging at 7 T. NMR IN BIOMEDICINE 2024; 37:e5032. [PMID: 37654051 DOI: 10.1002/nbm.5032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/14/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
Parallel transmit MRI at 7 T has increasingly been adopted in research projects and provides increased signal-to-noise ratios and novel contrasts. However, the interactions of fields in the body need to be carefully considered to ensure safe scanning. Recent advances in physically flexible body coils have allowed for high-field abdominal imaging, but the effects of increased variability on energy deposition need further exploration. The aim of this study was to assess the impact of subject geometry, respiration phase and coil positioning on the specific absorption rate (SAR). Ten healthy subjects (body mass index [BMI] = 25 ± 5 kg m-2 ) were scanned (at 3 T) during exhale breath-hold and images used to generate body models. Seven of these subjects were also scanned during inhale. Simplifications of the coil and body models were first explored, and then finite-difference time-domain simulations were run with a typical eight-channel parallel transmit coil positioned over the abdomen. Simulations were used to generate 10 g averaged SAR (SAR10g ) maps across 100,000 phase settings, and the worst-case scenario 10 g averaged SAR (wocSAR10g ) was identified using trigonometric maximisation. The average maximum SAR10g across the 10 subjects with 1 W input power per channel was 1.77 W kg-1 . Hotspots were always close to the body surface near the muscle wall boundary. The wocSAR10g across the 10 subjects ranged from 2.3 to 3.2 W kg-1 and was inversely correlated to fat volume percentage (R = 8) and BMI (R = 0.6). The coefficient of variation values in SAR10g due to variations in subject geometry, respiration phase and realistic coil repositioning were 12%, 4% and 12%, respectively. This study found that the variability due to realistic coil repositioning was similar to the variability due to differing healthy subject geometries for abdominal imaging. This is important as it suggests that population-based modelling is likely to be more useful than individual modelling in setting safe thresholds for abdominal imaging.
Collapse
Affiliation(s)
- Emma Doran
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Department of Clinical Physics and Bioengineering, NHS Greater Glasgow & Clyde, Glasgow, UK
| | - Iyad Naim
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Penny A Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Paul M Glover
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Stephen Bawden
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Englman C, Barrett T, Moore CM, Giganti F. Active Surveillance for Prostate Cancer: Expanding the Role of MR Imaging and the Use of PRECISE Criteria. Radiol Clin North Am 2024; 62:69-92. [PMID: 37973246 DOI: 10.1016/j.rcl.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Multiparametric magnetic resonance (MR) imaging has had an expanding role in active surveillance (AS) for prostate cancer. It can improve the accuracy of prostate biopsies, assist in patient selection, and help monitor cancer progression. The PRECISE recommendations standardize reporting of serial MR imaging scans during AS. We summarize the evidence on MR imaging-led AS and provide a clinical primer to help report using the PRECISE criteria. Some limitations to both serial imaging and the PRECISE recommendations must be considered as we move toward a more individualized risk-stratified approach to AS.
Collapse
Affiliation(s)
- Cameron Englman
- Department of Radiology, University College London Hospital NHS Foundation Trust, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK; Division of Surgery & Interventional Science, University College London, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK
| | - Tristan Barrett
- Department of Radiology, University of Cambridge, Box 218, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK; Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Box 218, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Caroline M Moore
- Division of Surgery & Interventional Science, University College London, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK; Department of Urology, University College London Hospital NHS Foundation Trust, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK
| | - Francesco Giganti
- Department of Radiology, University College London Hospital NHS Foundation Trust, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK; Division of Surgery & Interventional Science, University College London, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK.
| |
Collapse
|
6
|
Runderkamp BA, Roos T, van der Zwaag W, Strijkers GJ, Caan MWA, Nederveen AJ. Whole-liver flip-angle shimming at 7 T using parallel-transmit k T -point pulses and Fourier phase-encoded DREAM B 1 + mapping. Magn Reson Med 2024; 91:75-90. [PMID: 37799015 DOI: 10.1002/mrm.29819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/18/2023] [Accepted: 07/13/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE To obtain homogeneous signal throughout the human liver at 7 T. Flip angle (FA) shimming in 7T whole-liver imaging was performed through parallel-transmit kT -point pulses based on subject-specific multichannel absoluteB 1 + $$ {\mathrm{B}}_1^{+} $$ maps from Fourier phase-encoded dual refocusing echo acquisition mode (PE-DREAM). METHODS The optimal number of Fourier phase-encoding steps for PE-DREAMB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping was determined for a 7T eight-channel parallel-transmission system. FA shimming experiments were performed in the liver of 7 healthy subjects with varying body mass index. In these subjects, firstB 0 $$ {\mathrm{B}}_0 $$ shimming and Fourier PE-DREAMB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping were performed. Subsequently, three small-flip-angle 3D gradient-echo scans were acquired, comparing a circularly polarized (CP) mode, a phase shim, and a kT -point pulse. Resulting homogeneity was assessed and compared with estimated FA maps and distributions. RESULTS Fourier PE-DREAM with 13 phase-encoding steps resulted in a good tradeoff betweenB 1 + $$ {\mathrm{B}}_1^{+} $$ accuracy and scan time. Lower coefficient of variation values (average [min-max] across subjects) of the estimated FA in the volume of interest were observed using kT -points (7.4 [6.6%-8.0%]), compared with phase shimming (18.8 [12.9%-23.4%], p < 0.001) and CP (43.2 [39.4%-47.1%], p < 0.001). kT -points delivered whole-liver images with the nominal FA and the highest degree of homogeneity. CP and phase shimming resulted in either inaccurate or imprecise FA distributions. Here, locations having suboptimal FA in the estimated FA maps corresponded to liver areas suffering from inconsistent signal intensity and T1 -weighting in the gradient-echo scans. CONCLUSION Homogeneous whole-liver 3D gradient-echo acquisitions at 7 T can be obtained with eight-channel kT -point pulses calculated based on subject-specific multichannel absolute Fourier PE-DREAMB 1 + $$ {\mathrm{B}}_1^{+} $$ maps.
Collapse
Affiliation(s)
- Bobby A Runderkamp
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Thomas Roos
- Spinoza Centre for Neuroimaging, Royal Netherlands Academy for Arts and Sciences (KNAW), Amsterdam, the Netherlands
- High-Field Research Group, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wietske van der Zwaag
- Spinoza Centre for Neuroimaging, Royal Netherlands Academy for Arts and Sciences (KNAW), Amsterdam, the Netherlands
- Computational and Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, KNAW, Amsterdam, the Netherlands
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Matthan W A Caan
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Sayah A, Khayat E, Lee ECC, Makariou EV. Accuracy of Noncontrast T2 SPACE in Active MS Cord Lesion Detection. AJNR Am J Neuroradiol 2023; 44:1458-1463. [PMID: 38049982 PMCID: PMC10714856 DOI: 10.3174/ajnr.a8060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/06/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND AND PURPOSE The diagnosis of active MS lesions is often based on postgadolinium T1-weighted MR imaging. Recent studies suggest a risk of IV gadolinium to patients, predominantly based on gadolinium deposition in tissue. Noncontrast sequences have shown promise in MS diagnosis, but none differentiate acute from chronic MS lesions. We hypothesized that 3D T2 sampling perfection with application-optimized contrasts by using different flip angle evolution (SPACE) MR imaging can help detect and differentiate active-versus-chronic MS lesions without the need for IV contrast. MATERIALS AND METHODS In this single-center retrospective study, 340 spinal MR imaging cases of MS were collected in a 24-month period. Two senior neuroradiologists blindly and independently reviewed postcontrast T1-weighted sagittal and T2-SPACE sagittal images for the presence of MS lesions, associated cord expansion/atrophy on T2-SPACE, and enhancement on postcontrast T1WI. Discrepancies were resolved by consensus between the readers. Sensitivity, specificity, and accuracy of T2-SPACE compared with postcontrast T1WI were computed, and interobserver agreement was calculated. RESULTS The sensitivity of lesion detection on T2-SPACE was 85.71%, 95% CI, 63.66%-96.95%; with a specificity of 93.52%, 95% CI, 90.06%-96.05%; and an accuracy of 92.99%, 95% CI, 89.58%-95.56. Additionally, 16/21 (84.2%) acute enhancing cord lesions showed cord expansion on T2-SPACE. The interobserver agreement was 92%. CONCLUSIONS Our study shows that T2-SPACE facilitates noncontrast detection of acute MS lesions with high accuracy compared with postcontrast T1WI and with high interobserver agreement. The lack of gadolinium use provides an advantage, bypassing any potential adverse effects of repetitive contrast administration.
Collapse
Affiliation(s)
- Anousheh Sayah
- From the Department of Radiology (A.S., E.-C.C.L., E.V.M.), MedStar Georgetown University Hospital, Washington, DC
| | - Elias Khayat
- Georgetown University School of Medicine (E.K.), Washington, DC
| | - Earn-Chun C Lee
- From the Department of Radiology (A.S., E.-C.C.L., E.V.M.), MedStar Georgetown University Hospital, Washington, DC
| | - Erini V Makariou
- From the Department of Radiology (A.S., E.-C.C.L., E.V.M.), MedStar Georgetown University Hospital, Washington, DC
| |
Collapse
|
8
|
Ginocchio LA, Smereka PN, Tong A, Prabhu V, Nickel D, Arberet S, Chandarana H, Shanbhogue KP. Accelerated T2-weighted MRI of the liver at 3 T using a single-shot technique with deep learning-based image reconstruction: impact on the image quality and lesion detection. ABDOMINAL RADIOLOGY (NEW YORK) 2023; 48:282-290. [PMID: 36171342 DOI: 10.1007/s00261-022-03687-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE Fat-suppressed T2-weighted imaging (T2-FS) requires a long scan time and can be wrought with motion artifacts, urging the development of a shorter and more motion robust sequence. We compare the image quality of a single-shot T2-weighted MRI prototype with deep-learning-based image reconstruction (DL HASTE-FS) with a standard T2-FS sequence for 3 T liver MRI. METHODS 41 consecutive patients with 3 T abdominal MRI examinations including standard T2-FS and DL HASTE-FS, between 5/6/2020 and 11/23/2020, comprised the study cohort. Three radiologists independently reviewed images using a 5-point Likert scale for artifact and image quality measures, while also assessing for liver lesions. RESULTS DL HASTE-FS acquisition time was 54.93 ± 16.69, significantly (p < .001) shorter than standard T2-FS (114.00 ± 32.98 s). DL HASTE-FS received significantly higher scores for sharpness of liver margin (4.3 vs 3.3; p < .001), hepatic vessel margin (4.2 vs 3.3; p < .001), pancreatic duct margin (4.0 vs 1.9; p < .001); in-plane (4.0 vs 3.2; p < .001) and through-plane (3.9 vs 3.4; p < .001) motion artifacts; other ghosting artifacts (4.3 vs 2.9; p < .001); and overall image quality (4.0 vs 2.9; p < .001), in addition to receiving a higher score for homogeneity of fat suppression (3.7 vs 3.4; p = .04) and liver-fat contrast (p = .03). For liver lesions, DL HASTE-FS received significantly higher scores for sharpness of lesion margin (4.4 vs 3.7; p = .03). CONCLUSION Novel single-shot T2-weighted MRI with deep-learning-based image reconstruction demonstrated superior image quality compared with the standard T2-FS sequence for 3 T liver MRI, while being acquired in less than half the time.
Collapse
Affiliation(s)
- Luke A Ginocchio
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, 660 First Avenue, 3rd Floor, New York, NY, 10016, USA.
| | - Paul N Smereka
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, 660 First Avenue, 3rd Floor, New York, NY, 10016, USA
| | - Angela Tong
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, 660 First Avenue, 3rd Floor, New York, NY, 10016, USA
| | - Vinay Prabhu
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, 660 First Avenue, 3rd Floor, New York, NY, 10016, USA
| | - Dominik Nickel
- MR Applications Predevelopment, Siemens Healthcare GmbH, 91052, Erlangen, Germany
| | - Simon Arberet
- Digital Technology and Innovation, Siemens Healthineers, Princeton, NJ, 08540, USA
| | - Hersh Chandarana
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, 660 First Avenue, 3rd Floor, New York, NY, 10016, USA
| | - Krishna P Shanbhogue
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, 660 First Avenue, 3rd Floor, New York, NY, 10016, USA
| |
Collapse
|
9
|
Renal imaging at 5 T versus 3 T: a comparison study. Insights Imaging 2022; 13:155. [PMID: 36153471 PMCID: PMC9509503 DOI: 10.1186/s13244-022-01290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background Recently, a whole-body 5 T MRI scanner was developed to open the door of abdominal imaging at high-field strength. This prospective study aimed to evaluate the feasibility of renal imaging at 5 T and compare the image quality, potential artifacts, and contrast ratios with 3 T. Methods Forty healthy volunteers underwent MRI examination both at 3 T and 5 T. MRI sequences included T1-weighted gradient-echo (GRE), T2-weighted fast spin echo, diffusion-weighted imaging, and multi-echo GRE T2* mapping. Image quality and presence of artifacts were assessed for all sequences using four-point scales. For anatomical imaging, the signal-to-noise ratio (SNR) and contrast ratio (CR) of abdomen organ tissues were calculated. Besides, for functional imaging, the contrast-to-noise ratio of cortex/medulla was calculated. Wilcoxon signed rank-sum test was used to compare the visual evaluation scores and quantitative measurements between 3 and 5 T images. Results Compared to 3 T examination, T1-weighted sequence at 5 T showed significantly better image quality with higher conspicuity of the renal veins and arteries, and comparable artifacts. Image quality was comparable between both field strengths on T2-weighted images, whereas a significantly higher level of artifacts was observed at 5 T. Besides, 5 T MRI contributed to higher SNR and CR for abdomen organ tissues. For functional imaging, 5 T MRI showed improved corticomedullar discrimination. There was no significant difference between apparent diffusion coefficient of renal at 3 T and 5 T, while 5 T MRI resulted in significantly shorter T2* values in both cortex and medulla. Conclusions 5 T MRI provides anatomical and functional images of the kidney with sufficient image quality.
Collapse
|
10
|
A novel free-breathing abdominal RAVE T2/T1 hybrid MRI sequence in patients with cystic fibrosis: Preliminary results. Eur J Radiol 2022; 154:110454. [DOI: 10.1016/j.ejrad.2022.110454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/05/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022]
|
11
|
Rothberg MB, Enders JJ, Kozel Z, Gopal N, Turkbey B, Pinto PA. The role of novel imaging in prostate cancer focal therapy: treatment and follow-up. Curr Opin Urol 2022; 32:231-238. [PMID: 35275101 DOI: 10.1097/mou.0000000000000986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Multiparametric magnetic resonance imaging (mpMRI) has fundamentally changed how intraprostatic lesions are visualized, serving as a highly sensitive means for detecting clinically significant prostate cancer (csPCa) via image-targeted biopsy. However, limitations associated with mpMRI have led to the development of new imaging technologies with the goal of better characterizing intraprostatic disease burden to more accurately guide treatment planning and surveillance for prostate cancer focal therapy. Herein, we review several novel imaging modalities with an emphasis on clinical data reported within the past two years. RECENT FINDINGS 7T MRI, artificial intelligence applied to mpMRI, positron emission tomography combined with either computerized tomography or MRI, contrast-enhanced ultrasound, and micro-ultrasound are novel imaging modalities with the potential to further improve intraprostatic lesion localization for applications in focal therapy for prostate cancer. Many of these technologies have demonstrated equivalent or favorable diagnostic accuracy compared to contemporary mpMRI for identifying csPCa and some have even shown improved capabilities to define lesion borders, to provide volumetric estimates of lesions, and to assess the adequacy of focal ablation of planned treatment zones. SUMMARY Novel imaging modalities with capabilities to better characterize intraprostatic lesions have the potential to improve accuracy in treatment planning, real-time assessment of the ablation zone, and posttreatment surveillance; however, many of these technologies require further validation to determine their clinical utility.
Collapse
Affiliation(s)
- Michael B Rothberg
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute
| | - Jacob J Enders
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute
| | - Zachary Kozel
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute
| | - Nikhil Gopal
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute
| | - Baris Turkbey
- Molecular Imaging Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter A Pinto
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute
| |
Collapse
|
12
|
Dietrich S, Aigner CS, Mayer J, Kolbitsch C, Schulz-Menger J, Schaeffter T, Schmitter S. Motion-compensated fat-water imaging for 3D cardiac MRI at ultra-high fields. Magn Reson Med 2022; 87:2621-2636. [PMID: 35092090 DOI: 10.1002/mrm.29144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Respiratory motion-compensated (MC) 3D cardiac fat-water imaging at 7T. METHODS Free-breathing bipolar 3D triple-echo gradient-recalled-echo (GRE) data with radial phase-encoding (RPE) trajectory were acquired in 11 healthy volunteers (7M\4F, 21-35 years, mean: 30 years) with a wide range of body mass index (BMI; 19.9-34.0 kg/m2 ) and volunteer tailored B 1 + shimming. The bipolar-corrected triple-echo GRE-RPE data were binned into different respiratory phases (self-navigation) and were used for the estimation of non-rigid motion vector fields (MF) and respiratory resolved (RR) maps of the main magnetic field deviations (ΔB0 ). RR ΔB0 maps and MC ΔB0 maps were compared to a reference respiratory phase to assess respiration-induced changes. Subsequently, cardiac binned fat-water images were obtained using a model-based, respiratory motion-corrected image reconstruction. RESULTS The 3D cardiac fat-water imaging at 7T was successfully demonstrated. Local respiration-induced frequency shifts in MC ΔB0 maps are small compared to the chemical shifts used in the multi-peak model. Compared to the reference exhale ΔB0 map these changes are in the order of 10 Hz on average. Cardiac binned MC fat-water reconstruction reduced respiration induced blurring in the fat-water images, and flow artifacts are reduced in the end-diastolic fat-water separated images. CONCLUSION This work demonstrates the feasibility of 3D fat-water imaging at UHF for the entire human heart despite spatial and temporal B 1 + and B0 variations, as well as respiratory and cardiac motion.
Collapse
Affiliation(s)
- Sebastian Dietrich
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | | | - Johannes Mayer
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jeanette Schulz-Menger
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine and HELIOS Hospital Berlin Buch, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Helios Clinics Berlin-Buch Department of Cardiology and Nephrology, Berlin, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,Department of Medical Engineering, Technische Universität Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
13
|
Arcot R, Polascik TJ. Evolution of Focal Therapy in Prostate Cancer: Past, Present, and Future. Urol Clin North Am 2021; 49:129-152. [PMID: 34776047 DOI: 10.1016/j.ucl.2021.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Organ sparing approaches for the management of localized prostate cancer were developed in part to overcome the morbidity associated with standard, whole gland treatment options. The first description of focal therapy was now over two decades ago and since that time much has changed. The evolution of patient selection, the approach to ablation, and surveillance after focal therapy have mirrored the technologic advancements in the field as well as the improved understanding of the biology of low-grade, low-risk prostate cancer. This review presents the evidence for the basis of focal therapy from the past to the present and future endeavors.
Collapse
Affiliation(s)
- Rohith Arcot
- Division of Urology, Duke University Medical Center, Duke University, Duke Cancer Center, 20 Duke Medicine Circle, Durham, NC 27710, USA.
| | - Thomas J Polascik
- Division of Urology, Duke University Medical Center, Duke University, Duke Cancer Center, 20 Duke Medicine Circle, Durham, NC 27710, USA
| |
Collapse
|
14
|
O'Connor LP, Ramedani S, Daneshvar M, George AK, Abreu AL, Cacciamani GE, Lebastchi AH. Future perspective of focal therapy for localized prostate cancer. Asian J Urol 2021; 8:354-361. [PMID: 34765443 PMCID: PMC8566361 DOI: 10.1016/j.ajur.2021.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/09/2021] [Accepted: 04/06/2021] [Indexed: 10/25/2022] Open
Abstract
Objective To summarize the recent literature discussing focal therapy for localized prostate cancer. Methods A thorough literature review was performed using PubMed to identify recent studies involving focal therapy for the treatment of localized prostate cancer. Results In an effort to decrease the morbidity associated with prostate cancer treatment, many urologists are turning to focal therapy as an alternative treatment option. With this approach, the cancer bearing portion of the prostate is targeted while leaving the benign tissue untouched. Multiparametric magnetic resonance imaging remains the gold standard for visualization during focal therapy, but new imaging modalities such as prostate specific membrane antigen/positron emission tomography and contrast enhanced ultrasound are being investigated. Furthermore, several biomarkers, such as prostate cancer antigen 3 and prostate health index, are used in conjunction with imaging to improve risk stratification prior to focal therapy. Lastly, there are several novel technologies such as nanoparticles and transurethral devices that are under investigation for use in focal therapy. Conclusion Focal therapy is proving to be a promising option for the treatment of localized prostate cancer. However, further study is needed to determine the true efficacy of these exciting new technologies.
Collapse
Affiliation(s)
- Luke P O'Connor
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shayann Ramedani
- College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Michael Daneshvar
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arvin K George
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Andre Luis Abreu
- Center for Image-Guided and Focal Therapy for Prostate Cancer, Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Giovanni E Cacciamani
- Center for Image-Guided and Focal Therapy for Prostate Cancer, Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amir H Lebastchi
- Center for Image-Guided and Focal Therapy for Prostate Cancer, Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
15
|
Ineichen BV, Beck ES, Piccirelli M, Reich DS. New Prospects for Ultra-High-Field Magnetic Resonance Imaging in Multiple Sclerosis. Invest Radiol 2021; 56:773-784. [PMID: 34120128 PMCID: PMC8505164 DOI: 10.1097/rli.0000000000000804] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT There is growing interest in imaging multiple sclerosis (MS) through the ultra-high-field (UHF) lens, which currently means a static magnetic field strength of 7 T or higher. Because of higher signal-to-noise ratio and enhanced susceptibility effects, UHF magnetic resonance imaging improves conspicuity of MS pathological hallmarks, among them cortical demyelination and the central vein sign. This could, in turn, improve confidence in MS diagnosis and might also facilitate therapeutic monitoring of MS patients. Furthermore, UHF imaging offers unique insight into iron-related pathology, leptomeningeal inflammation, and spinal cord pathologies in neuroinflammation. Yet, limitations such as the longer scanning times to achieve improved resolution and incipient safety data on implanted medical devices need to be considered. In this review, we discuss applications of UHF imaging in MS, its advantages and limitations, and practical aspects of UHF in the clinical setting.
Collapse
Affiliation(s)
- Benjamin V. Ineichen
- From the Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Erin S. Beck
- From the Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Marco Piccirelli
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Daniel S. Reich
- From the Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
16
|
Platt T, Ladd ME, Paech D. 7 Tesla and Beyond: Advanced Methods and Clinical Applications in Magnetic Resonance Imaging. Invest Radiol 2021; 56:705-725. [PMID: 34510098 PMCID: PMC8505159 DOI: 10.1097/rli.0000000000000820] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022]
Abstract
ABSTRACT Ultrahigh magnetic fields offer significantly higher signal-to-noise ratio, and several magnetic resonance applications additionally benefit from a higher contrast-to-noise ratio, with static magnetic field strengths of B0 ≥ 7 T currently being referred to as ultrahigh fields (UHFs). The advantages of UHF can be used to resolve structures more precisely or to visualize physiological/pathophysiological effects that would be difficult or even impossible to detect at lower field strengths. However, with these advantages also come challenges, such as inhomogeneities applying standard radiofrequency excitation techniques, higher energy deposition in the human body, and enhanced B0 field inhomogeneities. The advantages but also the challenges of UHF as well as promising advanced methodological developments and clinical applications that particularly benefit from UHF are discussed in this review article.
Collapse
Affiliation(s)
- Tanja Platt
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
| | - Mark E. Ladd
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
- Faculty of Physics and Astronomy
- Faculty of Medicine, University of Heidelberg, Heidelberg
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen
| | - Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg
- Clinic for Neuroradiology, University of Bonn, Bonn, Germany
| |
Collapse
|
17
|
Dong M, Sun Q, Yu Q, Tao X, Yang C, Qiu W. Determining the optimal magnetic resonance imaging sequences for the efficient diagnosis of temporomandibular joint disorders. Quant Imaging Med Surg 2021; 11:1343-1353. [PMID: 33816173 DOI: 10.21037/qims-20-67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background To compare and analyze nine MRI sequences of the TMJ and determine the optimum sequence for the rapid diagnosis of TMDs so as to develop new clinical guidelines. Methods Twenty young volunteers (a total of 40 joints) aged 22-26 years were recruited. Three basic sequences, T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), and proton density-weighted imaging (PDWI), together with three positions, oblique sagittal (OSag) with closed mouth, oblique coronal (OCor) with closed mouth, and OSag with opened mouth, were selected in combination for testing. In the OCor position, four regions of interest (ROIs), the condyle (C), the disc (D), the disc outside (DO), and fat (F), were analyzed. For the OSag with closed mouth position and the OSag with opened mouth position sequences, the four ROIs were the condyle (C), the disc (D), the disc ahead (DA), and the disc rear (DR). The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and signal intensity ratio (SIR) were calculated and analyzed using independent sample t-tests and one-way analysis of variance. Two senior radiologists scored the images of the nine MRI sequences subjectively and selected three optimal sequences. Using the three selected sequences, 1479 patients with anterior disc displacement with reduction (ADDwR) or anterior disk displacement without reduction (ADDwoR) were evaluated by comparing the preoperative TMJ MRI with the outcomes of the maxillofacial arthroscopy or open surgery. Results The T1WI sequence showed the highest SNR while the T2WI group had the lowest SNR. The ROIs of the T2WI group had the highest CNR and SIR values in the OCor and OSag sequences. In the OCor sequence, the value for the SIR F/DO group was higher than the SIR C/D and SIR C/DO values. Using subjective analysis to evaluate the quality of the scans, the highest total scores were obtained for the OSag T2WI with opened mouth and OSag PDWI with closed mouth sequences. From the objective and subjective analysis, the three optimal sequences selected were OSag PDWI, OCor T2WI with closed mouth, and OSag T2WI with opened mouth. In patients with anterior disc displacement, the comparisons of the surgery and the selected MRI sequences indicated that the total diagnostic accuracy of the MRI was 96.3% (1,425/1,479 cases). For patients with ADDwoR, the diagnostic accuracy was 98.5% (1,372/1,393 cases), and for those with ADDwR it was 61.6% (53/86 cases). There were significant differences between the ADDwoR and ADDwR groups (χ2=312.92, P<0.01). Conclusions The three optimal MRI sequences for the rapid and efficient diagnosis of TMD were determined to be OSag PDWI, OCor T2WI with closed mouth, and OSag T2WI with opened mouth.
Collapse
Affiliation(s)
- Minjun Dong
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Sun
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Yu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Tao
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chi Yang
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Key Lab of Stomatology, Shanghai, China
| | - Weiliu Qiu
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Key Lab of Stomatology, Shanghai, China
| |
Collapse
|
18
|
Zhang TT, Chang W, Wang ZJ, Sun DC, Ohliger MA, Yeh BM. Bowel Wall Visualization Using MR Enterography in Relationship to Bowel Lumen Contents and Patient Demographics. J Magn Reson Imaging 2021; 54:728-736. [DOI: 10.1002/jmri.27589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ting Ting Zhang
- Department of Radiology and Biomedical Imaging UCSF Medical Center San Francisco California USA
- Department of Radiology Xinhua Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Wei‐Chou Chang
- Department of Radiology and Biomedical Imaging UCSF Medical Center San Francisco California USA
- Department of Radiology Tri‐Service General Hospital, National Defense Medical Center Taipei Taiwan
| | - Zhen Jane Wang
- Department of Radiology and Biomedical Imaging UCSF Medical Center San Francisco California USA
| | - Derek C. Sun
- Department of Radiology and Biomedical Imaging UCSF Medical Center San Francisco California USA
| | - Michael A. Ohliger
- Department of Radiology and Biomedical Imaging UCSF Medical Center San Francisco California USA
| | - Benjamin M. Yeh
- Department of Radiology and Biomedical Imaging UCSF Medical Center San Francisco California USA
| |
Collapse
|
19
|
Hommes D, Klatte D, Otten W, Beltman M, Klass G, Zand A, Sprangers R. Health outcomes and experiences of direct-to-consumer high-intensity screening using both whole-body magnetic resonance imaging and cardiological examination. PLoS One 2020; 15:e0242066. [PMID: 33216779 PMCID: PMC7678982 DOI: 10.1371/journal.pone.0242066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/26/2020] [Indexed: 11/18/2022] Open
Abstract
Background Alongside a clinical and research setting, whole body magnetic resonance imaging (WB-MRI) is increasingly offered as a direct-to-consumer screening service. Data is needed on the clinical relevance of findings and associated psychological impact of such screening. Therefore, we conducted a prospective follow-up study to provide insight in the effectiveness and psychological impact of direct-to-consumer screening using both WB-MRI and cardiological examination. Methods and findings The study population consisted of 3603 voluntary, primarily middle-aged participants who underwent commercial WB-MRI and cardiological screening at one of 6 study clinics in Germany or the Netherlands between July 2014 and March 2016. MRI investigation consisted of directed scans of the brain, neck, abdomen and pelvis. Cardiovascular examination included pulmonary function, resting electrocardiogram, transthoracic echocardiogram and a bicycle exercise stress test. Findings were assessed by experienced radiologists and cardiologists. In addition, participants were inquired about several (psychological) domains, including the expectations and consequences of the screening procedure. Out of 3603 individuals, 402 (11.2%) demonstrated abnormal MRI (n = 381) and/or cardiological findings (n = 79) for which they were advised to undergo further consultation <3 months in regular healthcare. In 59.1% of cases of abnormal MRI findings which were consulted, fully completed consultations were available in 87.1%. After consultation, 77.6% of initial MRI outcomes were adopted. In 40.9% of cases of abnormal MRI findings, recommendations for consultation were not adhered to during the study period. 71.1% of adopted MRI-findings required treatment or monitoring, including 19 malignancies. For abnormal cardiological findings, 70.9% of cases were consulted in regular healthcare. Of these, 91.1% had a completed follow-up procedure of which 72.5% of initial findings were adopted and 83.8% of these findings required treatment or monitoring. The most frequently reported psychological consequences of the screening procedure were getting reassurance (72.0%) and insight into one’s own health status (83.0%). 5.0% reported to feel insecure about their health and 6.2% worried more about their health as a consequence of screening. Main limitations of the study were considered the telephonic follow-up of referred clients and the heterogeneity of screening equipment and assessment of radiologists and cardiologists. Conclusions Direct-to-consumer screening using whole-body MRI and cardiological testing is feasible and effective for the detection of clinically relevant and treatable abnormalities. Psychological harm was not frequently reported in study participants.
Collapse
Affiliation(s)
- Daniel Hommes
- Dept. of Gastroenterology, Leiden University Medical Centre, Leiden, The Netherlands
- Dept. of Internal Medicine, University of California Los Angeles (UCLA), Los Angeles, California, United States of America
- * E-mail:
| | - Derk Klatte
- Dept. of Gastroenterology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Wilma Otten
- Expertise Group Child Health, Unit Healthy Living, The Netherlands Organization for Applied Scientific Research (TNO), The Netherlands
| | - Maaike Beltman
- Expertise Group Child Health, Unit Healthy Living, The Netherlands Organization for Applied Scientific Research (TNO), The Netherlands
| | - Günter Klass
- Dept. of Radiology, Mathias-Spital, Rheine, Germany
| | - Aria Zand
- Dept. of Gastroenterology, Leiden University Medical Centre, Leiden, The Netherlands
- Dept. of Internal Medicine, University of California Los Angeles (UCLA), Los Angeles, California, United States of America
| | | |
Collapse
|
20
|
O'Connor LP, Lebastchi AH, Horuz R, Rastinehad AR, Siddiqui MM, Grummet J, Kastner C, Ahmed HU, Pinto PA, Turkbey B. Role of multiparametric prostate MRI in the management of prostate cancer. World J Urol 2020; 39:651-659. [PMID: 32583039 DOI: 10.1007/s00345-020-03310-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Prostate cancer has traditionally been diagnosed by an elevation in PSA or abnormal exam leading to a systematic transrectal ultrasound (TRUS)-guided biopsy. This diagnostic pathway underdiagnoses clinically significant disease while over diagnosing clinically insignificant disease. In this review, we aim to provide an overview of the recent literature regarding the role of multiparametric MRI (mpMRI) in the management of prostate cancer. MATERIALS AND METHODS A thorough literature review was performed using PubMed to identify articles discussing use of mpMRI of the prostate in management of prostate cancer. CONCLUSION The incorporation of mpMRI of the prostate addresses the shortcomings of the prostate biopsy while providing several other advantages. mpMRI allows some men to avoid an immediate biopsy and permits visualization of areas likely to harbor clinically significant cancer prior to biopsy to facilitate use of MR-targeted prostate biopsies. This allows for reduction in diagnosis of clinically insignificant disease as well as improved detection and better characterization of higher risk cancers, as well as the improved selection of patients for active surveillance. In addition, mpMRI can be used for selection and monitoring of patients for active surveillance and treatment planning during surgery and focal therapy.
Collapse
Affiliation(s)
- Luke P O'Connor
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Amir H Lebastchi
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Rahim Horuz
- Department of Urology, Istanbul Medipol University, Istanbul, Turkey
| | | | - M Minhaj Siddiqui
- Division of Urology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeremy Grummet
- Department of Surgery, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Christof Kastner
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Hashim U Ahmed
- Imperial Prostate, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Peter A Pinto
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Baris Turkbey
- Molecular Imaging Program, National Cancer Institute, NIH, 10 Center Drive Room B3B85, Bethesda, MD, USA. .,, 10 Center Drive Room B3B85, Bethesda, MD, 20814, USA.
| |
Collapse
|
21
|
Abstract
Imaging of the biliary system has improved and has allowed MR to become a key noninvasive tool for evaluation of the biliary system. A variety of magnetic resonance cholangiopancreatography techniques have been developed, with improved visualization of the biliary system and biliary pathology. Key avenues of advancement include increasing the speed of acquisition, improving spatial resolution, and reducing artifacts. T1-weighted imaging using gadolinium-based hepatobiliary contrast agents allows for evaluation in additional indications, such as liver donor evaluation, biliary leak identification, and choledochal cyst confirmation. There is potential for further increased utility of MR in the evaluation of the biliary system.
Collapse
Affiliation(s)
| | - Frank H Miller
- Body Imaging Section and Fellowship, Department of Radiology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, 676 North Saint Clair, Suite 800, Chicago, IL 60611, USA
| | - Benjamin M Yeh
- University of California - San Francisco, 505 Parnassus Avenue, M391 Box 0628, San Francisco, CA 94143-0628, USA
| |
Collapse
|
22
|
Akakuru OU, Iqbal MZ, Saeed M, Liu C, Paunesku T, Woloschak G, Hosmane NS, Wu A. The Transition from Metal-Based to Metal-Free Contrast Agents for T1 Magnetic Resonance Imaging Enhancement. Bioconjug Chem 2019; 30:2264-2286. [PMID: 31380621 DOI: 10.1021/acs.bioconjchem.9b00499] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnetic resonance imaging (MRI) has received significant attention as the noninvasive diagnostic technique for complex diseases. Image-guided therapeutic strategy for diseases such as cancer has also been at the front line of biomedical research, thanks to the innovative MRI, enhanced by the prior delivery of contrast agents (CAs) into patients' bodies through injection. These CAs have contributed a great deal to the clinical utility of MRI but have been based on metal-containing compounds such as gadolinium, manganese, and iron oxide. Some of these CAs have led to cytotoxicities such as the incurable Nephrogenic Systemic Fibrosis (NSF), resulting in their removal from the market. On the other hand, CAs based on organic nitroxide radicals, by virtue of their structural composition, are metal free and without the aforementioned drawbacks. They also have improved biocompatibility, ease of functionalization, and long blood circulation times, and have been proven to offer tissue contrast enhancement with longitudinal relaxivities comparable with those for the metal-containing CAs. Thus, this Review highlights the recent progress in metal-based CAs and their shortcomings. In addition, the remarkable goals achieved by the organic nitroxide radical CAs in the enhancement of MR images have also been discussed extensively. The focal point of this Review is to emphasize or demonstrate the crucial need for transition into the use of organic nitroxide radicals-metal-free CAs-as against the metal-containing CAs, with the aim of achieving safer application of MRI for early disease diagnosis and image-guided therapy.
Collapse
Affiliation(s)
- Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - M Zubair Iqbal
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,Department of Materials Engineering, College of Materials and Textiles , Zhejiang Sci-Tech University , No. 2 Road of Xiasha , Hangzhou 310018 , P.R. China
| | - Madiha Saeed
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - Tatjana Paunesku
- Department of Radiation Oncology , Northwestern University , Chicago , Illinois 60611 , United States
| | - Gayle Woloschak
- Department of Radiation Oncology , Northwestern University , Chicago , Illinois 60611 , United States
| | - Narayan S Hosmane
- Department of Chemistry and Biochemistry , Northern Illinois University , DeKalb , Illinois 60115 , United States
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China
| |
Collapse
|
23
|
Durastanti G, Leardini A, Siegler S, Durante S, Bazzocchi A, Belvedere C. Comparison of cartilage and bone morphological models of the ankle joint derived from different medical imaging technologies. Quant Imaging Med Surg 2019; 9:1368-1382. [PMID: 31559166 DOI: 10.21037/qims.2019.08.08] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Accurate geometrical models of bones and cartilage are necessary in biomechanical modelling of human joints, and in planning and designing of joint replacements. Image-based subject-specific model development requires image segmentation, spatial filtering and 3-dimensional rendering. This is usually based on computed tomography (CT) for bone models, on magnetic resonance imaging (MRI) for cartilage models. This process has been reported extensively in the past, but no studies have ever compared the accuracy and quality of these models when obtained also by merging different imaging modalities. The scope of the present work is to provide this comparative analysis in order to identify optimal imaging modality and registration techniques for producing 3-dimensional bone and cartilage models of the ankle joint. Methods One cadaveric leg was instrumented with multimodal markers and scanned using five different imaging modalities: a standard, a dual-energy and a cone-beam CT (CBCT) device, and a 1.5 and 3.0 Tesla MRI devices. Bone, cartilage, and combined bone and cartilage models were produced from each of these imaging modalities, and registered in space according to matching model surfaces or to corresponding marker centres. To assess the quality in overall model reconstruction, distance map analyses were performed and the difference between model surfaces obtained from the different imaging modalities and registration techniques was measured. Results The registration between models worked better with model surface matching than corresponding marker positions, particularly with MRI. The best bone models were obtained with the CBCT. Models with cartilage were defined better with the 3.0 Tesla than the 1.5 Tesla. For the combined bone and cartilage models, the colour maps and the numerical results from distance map analysis (DMA) showed that the smallest distances and the largest homogeneity were obtained from the CBCT and the 3.0 T MRI via model surface registration. Conclusions These observations are important in producing accurate bone and cartilage models from medical imaging and relevant for applications such as designing of custom-made ankle replacements or, more in general, of implants for total as well as focal joint replacements.
Collapse
Affiliation(s)
- Gilda Durastanti
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Leardini
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sorin Siegler
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, USA
| | - Stefano Durante
- Nursing, Technical and Rehabilitation Assistance Service, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Claudio Belvedere
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
24
|
Erturk MA, Li X, Van de Moortele PF, Ugurbil K, Metzger GJ. Evolution of UHF Body Imaging in the Human Torso at 7T: Technology, Applications, and Future Directions. Top Magn Reson Imaging 2019; 28:101-124. [PMID: 31188271 PMCID: PMC6587233 DOI: 10.1097/rmr.0000000000000202] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The potential value of ultrahigh field (UHF) magnetic resonance imaging (MRI) and spectroscopy to biomedical research and in clinical applications drives the development of technologies to overcome its many challenges. The increased difficulties of imaging the human torso compared with the head include its overall size, the dimensions and location of its anatomic targets, the increased prevalence and magnitude of physiologic effects, the limited availability of tailored RF coils, and the necessary transmit chain hardware. Tackling these issues involves addressing notoriously inhomogeneous transmit B1 (B1) fields, limitations in peak B1, larger spatial variations of the static magnetic field B0, and patient safety issues related to implants and local RF power deposition. However, as research institutions and vendors continue to innovate, the potential gains are beginning to be realized. Solutions overcoming the unique challenges associated with imaging the human torso are reviewed as are current studies capitalizing on the benefits of UHF in several anatomies and applications. As the field progresses, strategies associated with the RF system architecture, calibration methods, RF pulse optimization, and power monitoring need to be further integrated into the MRI systems making what are currently complex processes more streamlined. Meanwhile, the UHF MRI community must seize the opportunity to build upon what have been so far proof of principle and feasibility studies and begin to further explore the true impact in both research and the clinic.
Collapse
Affiliation(s)
- M Arcan Erturk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | | | | | | | | |
Collapse
|
25
|
Steensma BR, Luttje M, Voogt IJ, Klomp DW, Luijten PR, van den Berg CA, Raaijmakers AJ. Comparing signal-to-noise ratio for prostate imaging at 7T and 3T. J Magn Reson Imaging 2019; 49:1446-1455. [PMID: 30350388 PMCID: PMC6587835 DOI: 10.1002/jmri.26527] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In MRI, the signal-to-noise ratio (SNR) theoretically increases with B0 field strength. However, because of attenuation of the radiofrequency (RF) fields at 7T, it is not certain if this SNR gain can be realized for prostate imaging. PURPOSE/HYPOTHESIS To investigate the SNR gain in prostate imaging at 7T as compared with 3T. It is expected that SNR will improve for prostate imaging at 7T compared with 3T. STUDY TYPE Prospective. SUBJECTS Four healthy volunteers and one prostate cancer patient. FIELD STRENGTH/SEQUENCE All subjects were scanned at 3T and at 7T using optimal coil setups for both field strengths. For all volunteers, proton density-weighted images were acquired for SNR analysis and actual flip angle imaging (AFI) B 1 + | maps were acquired for correction of measured SNR values. In the patient, a T2 -weighted (T2 w) image was acquired at 3T and at 7T. ASSESSMENT SNR was calculated in the prostate region for all volunteers. SNR was normalized for flip angle, receiver bandwidth, and voxel volume. SNR was also calculated for different sensitivity encoding (SENSE) acceleration factors. STATISTICAL TESTING SNR values are represented as the arithmetic mean of SNR values in the prostate. Estimated SNR in the T2 w image is calculated as the arithmetic mean of the signal intensity (SI) divided by the standard deviation of the SI in a specified zone. Tumor-to-tissue contrast is calculated as (SItumor +SIzone )/( SItumor -SIzone ). RESULTS An increase in SNR ranging from 1.7-fold to 2.8-fold was measured in the prostate at 7T in comparison to 3T for four volunteers. At 7T, it is possible to achieve a 4-fold SENSE acceleration in the left-right direction with similar SNR to a nonaccelerated 3T image. T2 w imaging was done at 3T and 7T in one patient, where improved tumor-to-tissue contrast was demonstrated at 7T. DATA CONCLUSION SNR improves for prostate imaging at 7T as compared with 3T. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:1446-1455.
Collapse
Affiliation(s)
- Bart R. Steensma
- University Medical Center UtrechtDepartment of RadiologyUtrechtThe Netherlands
| | - Mariska Luttje
- University Medical Center UtrechtDepartment of RadiologyUtrechtThe Netherlands
| | - Ingmar J. Voogt
- University Medical Center UtrechtDepartment of RadiologyUtrechtThe Netherlands
| | - Dennis W.J. Klomp
- University Medical Center UtrechtDepartment of RadiologyUtrechtThe Netherlands
| | - Peter R. Luijten
- University Medical Center UtrechtDepartment of RadiologyUtrechtThe Netherlands
| | | | - Alexander J.E. Raaijmakers
- University Medical Center UtrechtDepartment of RadiologyUtrechtThe Netherlands
- Eindhoven University of TechnologyDepartment of Biomedical EngineeringUtrechtThe Netherlands
| |
Collapse
|
26
|
Krikken E, Steensma BR, Voogt IJ, Luijten PR, Klomp DW, Raaijmakers AJ, Wijnen JP. Homogeneous B 1+ for bilateral breast imaging at 7 T using a five dipole transmit array merged with a high density receive loop array. NMR IN BIOMEDICINE 2019; 32:e4039. [PMID: 30489661 PMCID: PMC6587506 DOI: 10.1002/nbm.4039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/24/2018] [Accepted: 10/12/2018] [Indexed: 06/09/2023]
Abstract
To explore the use of five meandering dipole antennas in a multi-transmit setup, combined with a high density receive array for breast imaging at 7 T for improved penetration depth and more homogeneous B1 field. Five meandering dipole antennas and 30 receiver loops were positioned on two cups around the breasts. Finite difference time domain simulations were performed to evaluate RF safety limits of the transmit setup. Scattering parameters of the transmit setup and coupling between the antennas and the detuned loops were measured. In vivo parallel imaging performance was investigated for various acceleration factors. After RF shimming, a B1 map, a T1 -weighted image, and a T2 -weighted image were acquired to assess B1 efficiency, uniformity in contrast weighting, and imaging performance in clinical applications. The maximum achievable local SAR10g value was 7.0 W/kg for 5 × 1 W accepted power. The dipoles were tuned and matched to a maximum reflection of -11.8 dB, and a maximum inter-element coupling of -14.2 dB. The maximum coupling between the antennas and the receive loops was -18.2 dB and the mean noise correlation for the 30 receive loops 7.83 ± 8.69%. In vivo measurements showed an increased field of view, which reached to the axilla, and a high transmit efficiency. This coil enabled the acquisition of T1 -weighted images with a high spatial resolution of 0.7 mm3 isotropic and T2 -weighted spin echo images with uniformly weighted contrast.
Collapse
Affiliation(s)
- Erwin Krikken
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Bart R. Steensma
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Ingmar J. Voogt
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Peter R. Luijten
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Dennis W.J. Klomp
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Alexander J.E. Raaijmakers
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Jannie P. Wijnen
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW To present a perspective on the current status and future directions of focal therapy for prostate cancer (PCa). RECENT FINDINGS Focal therapy for localized PCa is a rapidly evolving field. Various recent concepts - the index lesion driving prognosis, the enhanced detection of clinically significant PCa using multiparametric MRI and targeted biopsy, improved risk-stratification using novel blood/tissue biomarkers, the recognition that reducing radical treatment-related morbidity (along with reducing pathologic progression) is a clinically meaningful end-point - have all led to a growing interest in focal therapy. Novel focal therapy modalities are being investigated, mostly in phase 1 and 2 studies. Recently, level I prospective randomized data comparing partial gland ablation with a standard-of-care treatment became available from one study. Recent developments in imaging, including 7-T MRI, functional imaging, radiomics and contrast-enhanced ultrasound show early promise. We also discuss emerging concepts in patient selection for focal therapy. SUMMARY PCa focal therapy has evolved considerably in the recent few years. Overall, these novel focal therapy treatments demonstrate safety and feasibility, low treatment-related toxicity and acceptable short-term and in some cases medium-term oncologic outcomes. As imaging techniques evolve, patient selection, detection of clinically significant PCa and noninvasive assessment of therapeutic efficacy will be further optimized. The aspirational goal of achieving oncologic control while reducing radical treatment-related morbidity will drive further innovation in the field.
Collapse
|