1
|
Martel N, Conquet G, Sababadichetty L, Benavides JA, Godreuil S, Miltgen G, Dupont C. Neglected class A carbapenemases: Systematic review of IMI/NmcA and FRI from a One Health perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178300. [PMID: 39754943 DOI: 10.1016/j.scitotenv.2024.178300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/13/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
Carbapenemase-producing Enterobacterales are pathogens classified as a critical priority by the World Health Organization and a burden on human health worldwide. IMI, NmcA, and FRI are under-detected class A carbapenemases that have been reported in the human, animal and environmental compartments, particularly these last 5 years. Bacteria producing these carbapenemases have been mostly identified in digestive carriage screenings, but they are also involved in severe infections, such as bacteremia. Their increasing detection in wild fauna and natural environments confirms their ubiquitous nature. Indeed, they have been especially found in aquatic ecosystems and in many animals living in close association with them. Therefore, the hydric compartment is suspected to be the main reservoir of IMI carbapenemases. Although they are almost confined to Enterobacter cloacae complex species, some variants are plasmid-encoded and may diffuse to other bacterial species that are more virulent or more adapted to humans. Furthermore, their association with other resistance mechanisms, such as Extended Spectrum Beta-Lactamases, leaves only few therapeutic options and raises concerns about the environmental spread of Multi-Drug-Resistant bacteria. These carbapenemase might be responsible of "mixed" outbreaks of CPE with a community origin and a possible secondary nosocomial spread. Therefore, more studies from a One Health perspective are needed to identify as many primary environmental (aquatic) reservoirs as possible, as well as secondary distribution routes (directly from the environment, via the food chain or animals…) which may also become secondary reservoirs for these carbapenemases, in order to implement measures to combat this potential emerging threat to humans. This review summarizes the main characteristics of the IMI, NmcA, and FRI carbapenemases, covering their detection, epidemiology, genetic environment, and associated resistance genes using a One Health approach.
Collapse
Affiliation(s)
- Nicolas Martel
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.
| | - Guilhem Conquet
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Loïk Sababadichetty
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Sainte-Clotilde, La Réunion, France
| | - Julio A Benavides
- UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Guillaume Miltgen
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Sainte-Clotilde, La Réunion, France; Biology Department, Maynooth National University of Ireland, Maynooth, Ireland; Laboratoire de Bactériologie, CHU Félix Guyon, Saint-Denis, La Réunion, France; Centre Régional en Antibiothérapie (CRAtb) de La Réunion, Saint-Pierre, La Réunion, France
| | - Chloé Dupont
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
2
|
Linkevicius M, Witteveen S, Buzea M, Flonta M, Indreas M, Nica M, Székely E, Tălăpan D, Svartström O, Alm E, Palm D, Monnet DL, Hendrickx AP, Kohlenberg A, Popescu GA. Genomic surveillance detects interregional spread of New Delhi metallo-beta-lactamase-1-producing Providencia stuartii in hospitals, Romania, December 2021 to September 2023. Euro Surveill 2024; 29:2400587. [PMID: 39574389 PMCID: PMC11583310 DOI: 10.2807/1560-7917.es.2024.29.47.2400587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024] Open
Abstract
BackgroundNew Delhi metallo-beta-lactamase (NDM)-producing Providencia stuartii has been reported from European Union/European Economic Area (EU/EEA) countries with increasing frequency. During 2018 to 2022, 355 cases of NDM-producing P. stuartii were detected in seven hospitals reporting on NDM-production in Enterobacterales in Romania.AimOur aim was to determine the extent of spread of NDM-producing P. stuartii in hospitals in Romania.MethodsWe analysed whole genome sequences and epidemiological data of 74 P. stuartii isolates collected in six hospitals from December 2021 to September 2023.ResultsWe identified four multi-hospital clusters including isolates detected over more than a year, indicating sustained spread of bla NDM-1-carrying P. stuartii within the healthcare system. These clusters consisted of isolates from up to four hospitals and three regions. Three multi-hospital clusters were caused by a specific multidrug-resistant P. stuartii sequence type 46 lineage carrying bla NDM-1 and a large set of additional resistance markers. Investigation in an international context showed that this lineage had already been detected in nine countries (Bulgaria, France, Germany, Ireland, the Netherlands, Romania, Switzerland, United Kingdom, United States) since 2015.ConclusionOur results alert about the risk of carbapenem-resistant P. stuartii transmission in healthcare settings. Enhanced infection prevention and control measures should be instituted as soon as cases are detected in healthcare facilities. National surveillance systems in EU/EEA countries should, in addition to carbapenem-resistant and/or carbapenemase-producing Klebsiella pneumoniae and Escherichia coli, consider reporting carbapenem-resistant and/or carbapenemase-producing P. stuartii and other Enterobacterales where relevant.
Collapse
Affiliation(s)
| | - Sandra Witteveen
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Mirela Flonta
- Spitalul Clinic de Boli Infecțioase, Cluj-Napoca, Romania
| | | | - Maria Nica
- Clinical Hospital of Infectious and Tropical Diseases "Dr. V. Babes" and "Carol Davila" UMF- Bucharest, Bucharest, Romania
| | - Edit Székely
- Targu Mures County Emergency Clinical Hospital, Targu Mures, Romania
| | - Daniela Tălăpan
- National Institute of Infectious Diseases "Prof. Dr. Matei Bals", Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Olov Svartström
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Erik Alm
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Daniel Palm
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | | | - Antoni Pa Hendrickx
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Anke Kohlenberg
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | | |
Collapse
|
3
|
Hide M, Meng S, Cheng S, Bañuls AL, Ky S, Yay C, Laurent D, Delvallez G. Colistin resistance in ESBL- and Carbapenemase-producing Escherichia coli and Klebsiella pneumoniae clinical isolates in Cambodia. J Glob Antimicrob Resist 2024; 38:236-244. [PMID: 39004342 DOI: 10.1016/j.jgar.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
OBJECTIVES Despite the critical importance of colistin as a last-resort antibiotic, limited studies have investigated colistin resistance in human infections in Cambodia. This study aimed to investigate the colistin resistance and its molecular determinants among Extended-spectrum beta-lactamase (ESBL)- and carbapenemase-producing (CP) Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli) isolated in Cambodia between 2016 and 2020. METHODS E. coli (n = 223) and K. pneumoniae (n = 39) were tested for colistin minimum inhibitory concentration (MIC) by broth microdilution. Resistant isolates were subjected to polymerase chain reaction (PCR) for detection of mobile colistin resistance genes (mcr) and chromosomal mutations in the two-component system (TCS). RESULTS Eighteen isolates (10 K. pneumoniae and 8 E. coli) revealed colistin resistance with a rate of 5.9% in E. coli and 34.8% in K. pneumoniae among ESBL isolates, and 1% in E. coli and 12.5% in K. pneumoniae among CP isolates. The resistance was associated with mcr variants (13/18 isolates, mcr-1, mcr-3, and mcr-8.2) and TCS mutations within E. coli and K. pneumoniae, with the first detection of mcr-8.2 in Cambodia, the discovery of new mutations potentially associated to colistin resistance in the TCS of E. coli (PhoP I47V, PhoQ N352K, PmrB G19R, and PmrD G85R) and the co-occurrence of mcr genes and colistin resistance conferring TCS mutations in 11 of 18 isolates. CONCLUSIONS The findings highlight the presence of colistin resistance in ESBL- and CP- Enterobacteriaceae involved in human infections in Cambodia as well as chromosomal mutations in TCS and the emergence of mcr-8.2 in E. coli and K. pneumoniae. It underscores the need for continuous surveillance, antimicrobial stewardship, and control measures to mitigate the spread of colistin resistance.
Collapse
Affiliation(s)
- Mallorie Hide
- MIVEGEC, Montpellier University, CNRS, IRD, Montpellier, France; Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia; LMI Drug Resistance in Southeast Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
| | - Soda Meng
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sokleaph Cheng
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia; LMI Drug Resistance in Southeast Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Anne-Laure Bañuls
- MIVEGEC, Montpellier University, CNRS, IRD, Montpellier, France; LMI Drug Resistance in Southeast Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Santy Ky
- Kantha Bopha Hospital, Phnom Penh, Cambodia
| | | | - Denis Laurent
- Kantha Bopha Hospital, Phnom Penh, Cambodia; Jayavarman VII Hospital, Siem Reap, Cambodia
| | - Gauthier Delvallez
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| |
Collapse
|
4
|
Lee YL, Wang WY, Ko WC, Hsueh PR. Global epidemiology and antimicrobial resistance of Enterobacterales harbouring genes encoding OXA-48-like carbapenemases: insights from the results of the Antimicrobial Testing Leadership and Surveillance (ATLAS) programme 2018-2021. J Antimicrob Chemother 2024; 79:1581-1589. [PMID: 38758189 DOI: 10.1093/jac/dkae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVES The recent emergence of carbapenem-resistant Enterobacterales poses a major and escalating threat to global public health. This study aimed to analyse the global distribution and antimicrobial resistance of Enterobacterales harbouring variant OXA-48-like carbapenemase-related genes. METHODS Enterobacterales isolates were collected from the Antimicrobial Testing Leadership and Surveillance (ATLAS) programme during 2018-2021. Comprehensive antimicrobial susceptibility testing and β-lactamase gene detection were also conducted, along with statistical analysis of the collected data. RESULTS Among the 72 244 isolates, 1934 Enterobacterales isolates were identified to harbour blaOXA-48-like genes, predominantly Klebsiella spp. (86.9%). High rates of multidrug resistance were observed, with only ceftazidime/avibactam and tigecycline showing favourable susceptibility. A discrepancy between the genotype and phenotype of carbapenem resistance was evident: 16.8% (233 out of 1384) of the Enterobacterales isolates with blaOXA-48-like genes exhibited susceptibility to meropenem. Specifically, 37.4% (64/95) of Escherichia coli strains with blaOXA-48-like genes displayed meropenem susceptibility, while the corresponding percentages for Klebsiella pneumoniae and Enterobacter cloacae complex were 25.2% (160/1184) and 0% (0/36), respectively (P < 0.05). Geographical analysis revealed that the highest prevalence of blaOXA-48-like genes occurred in Asia, the Middle East and Eastern Europe. The proportion of K. pneumoniae isolates harbouring blaOXA-232 increased from 23.9% in 2018 to 56.0% in 2021. By contrast, the proportion of blaOXA-48 decreased among K. pneumoniae isolates during 2018-2021. CONCLUSIONS This study underscores the widespread and increasing prevalence of blaOXA-48-like genes in Enterobacterales and emphasizes the need for enhanced surveillance, improved diagnostic methods and tailored antibiotic stewardship to combat the spread of these resistant pathogens.
Collapse
Affiliation(s)
- Yu-Lin Lee
- Division of Infectious Disease, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- PhD Program in Medical Biotechnology, Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Yao Wang
- Division of Infectious Disease, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Chien Ko
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, Chin Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- PhD Program for Ageing, School of Medicine, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
5
|
Lukovic B, Kabic J, Dragicevic M, Kuljanin S, Dimkic I, Jovcic B, Gajic I. Genetic basis of antimicrobial resistance, virulence features and phylogenomics of carbapenem-resistant Acinetobacter baumannii clinical isolates. Infection 2024:10.1007/s15010-024-02316-8. [PMID: 38856809 DOI: 10.1007/s15010-024-02316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE The worldwide emergence and clonal spread of carbapenem-resistant Acinetobacter baumannii (CRAB) is of great concern. In the present study, we determined the mechanisms of antimicrobial resistance, virulence gene repertoire and genomic relatedness of CRAB isolates circulating in Serbian hospitals. METHODS CRAB isolates were analyzed using whole-genome sequencing (WGS) for the presence of antimicrobial resistance-encoding genes, virulence factors-encoding genes, mobile genetic elements and genomic relatedness. Antimicrobial susceptibility testing was done by disk diffusion and broth microdilution methods. RESULTS Eleven isolates exhibited an MDR resistance phenotype, while four of them were XDR. MIC90 for meropenem and imipenem were > 64 µg/mL and 32 µg/mL, respectively. While all CRABs harbored blaOXA-66 variant of blaOXA-51 gene, those assigned to STPas2, STPas636 and STPas492 had blaADC-73,blaADC-74 and blaADC-30 variants, respectively. The following acquired carbapenemases-encoding genes were found: blaOXA-72 (n = 12), blaOXA-23 (n = 3), and blaNDM-1(n = 5), and were mapped to defined mobile genetic elements. MLST analysis assigned the analyzed CRAB isolates to three Pasteur sequence types (STs): STPas2, STPas492, and STPas636. The Majority of strains belonged to International Clone II (ICII) and carried tested virulence-related genes liable for adherence, biofilm formation, iron uptake, heme biosynthesis, zinc utilization, serum resistance, stress adaptation, intracellular survival and toxin activity. CONCLUSION WGS elucidated the resistance and virulence profiles of CRABs isolated from clinical samples in Serbian hospitals and genomic relatedness of CRAB isolates from Serbia and globally distributed CRABs.
Collapse
Affiliation(s)
- Bojana Lukovic
- College of Health Sciences, Academy of Applied Studies Belgrade, Cara Dusana 254, Belgrade, 11080, Serbia.
| | - Jovana Kabic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milan Dragicevic
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Ivica Dimkic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Branko Jovcic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ina Gajic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Tiwari A, Krolicka A, Tran TT, Räisänen K, Ásmundsdóttir ÁM, Wikmark OG, Lood R, Pitkänen T. Antibiotic resistance monitoring in wastewater in the Nordic countries: A systematic review. ENVIRONMENTAL RESEARCH 2024; 246:118052. [PMID: 38163547 DOI: 10.1016/j.envres.2023.118052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
The Nordic countries (Denmark, Finland, Iceland, Norway, and Sweden) have effectively kept lower antibiotic-resistant bacterial (ARB) pathogen rates than many other countries. However, in recent years, these five countries have encountered a rise in ARB cases and challenges in treating infections due to the growing prevalence of ARB pathogens. Wastewater-based surveillance (WBS) is a valuable supplement to clinical methods for ARB surveillance, but there is a lack of comprehensive understanding of WBS application for ARB in the Nordic countries. This review aims to compile the latest state-of-the-art developments in WBS for ARB monitoring in the Nordic countries and compare them with clinical surveillance practices. After reviewing 1480 papers from the primary search, 54 were found relevant, and 15 additional WBS-related papers were included. Among 69 studies analyzed, 42 dedicated clinical epidemiology, while 27 focused on wastewater monitoring. The PRISMA review of the literature revealed that Nordic countries focus on four major WBS objectives of ARB: assessing ARB in the human population, identifying ARB evading wastewater treatment, quantifying removal rates, and evaluating potential ARB evolution during the treatment process. In both clinical and wastewater contexts, the most studied targets were pathogens producing carbapenemase and extended-spectrum beta-lactamase (ESBL), primarily Escherichia coli and Klebsiella spp. However, vancomycin-resistant Enterococcus (VRE) and methicillin-resistant Staphylococcus aureus (MRSA) have received more attention in clinical epidemiology than in wastewater studies, probably due to their lower detection rates in wastewater. Clinical surveillance has mostly used culturing, antibiotic susceptibility testing, and genotyping, but WBS employed PCR-based and metagenomics alongside culture-based techniques. Imported cases resulting from international travel and hospitalization abroad appear to have frequently contributed to the rise in ARB pathogen cases in these countries. The many similarities between the Nordic countries (e.g., knowledge exchange practices, antibiotic usage patterns, and the current ARB landscape) could facilitate collaborative efforts in developing and implementing WBS for ARB in population-level screening.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 70701, Kuopio, Finland.
| | - Adriana Krolicka
- Norwegian Research Centre AS (NORCE), Nygårdstangen, 5838, Bergen, Norway
| | - Tam T Tran
- Norwegian Research Centre AS (NORCE), Nygårdstangen, 5838, Bergen, Norway
| | - Kati Räisänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Odd-Gunnar Wikmark
- Norwegian Research Centre AS (NORCE), Nygårdstangen, 5838, Bergen, Norway; Unit for Environmental Science and Management, North West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Rolf Lood
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Tarja Pitkänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 70701, Kuopio, Finland; Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland.
| |
Collapse
|
7
|
Bar Ilan M, Kjerulf A. Who should be screened for carbapenemase-producing Enterobacterales and when? A systematic review. J Hosp Infect 2023; 142:74-87. [PMID: 37802236 DOI: 10.1016/j.jhin.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/08/2023]
Abstract
Carbapenemase-producing Enterobacterales (CPE) cases increases every year in Denmark and the proportion of CPE-positive cases with a travel history decreases. Several epidemiological links show transmission in Danish healthcare setting indicating infection prevention and control challenges and raising questions about the Danish CPE screening protocol. The aim of this review was to identify additional risk factors to those described in the Danish CPE-screening protocol in order to detect the Danish CPE-positive patients and thereby reduce the risk of transmission and outbreaks. A systematic literature search was conducted in PubMed, Embase and Cochrane Library during March 2022. A total of 1487 articles were screened, and 19 studies were included. Retrieved studies dealt with patients with laboratory-confirmed CPE (colonization and/or infection) and associated risk factors. Antimicrobial therapy, especially broad-spectrum antimicrobial agents, prior or current hospitalization of approximately one week in ICU and 20-28 days in other wards and travel history with or without hospitalization abroad were significant risk factors associated with CPE acquisition. Comorbidities and invasive procedures were identified as risk factors, but without identifying specific comorbidities or invasive procedures associated with risk for CPE-acquisition. This study suggests the need to develop an additional algorithm for CPE-screening in Denmark. In addition to risk-based screening on admission, screening of inpatients should be considered. The screening protocol might include screening of inpatients with comorbidities who are hospitalized >1 week in ICU or >3 weeks in other wards and who have previously received or currently are receiving antibiotic treatment. Further research is needed to develop a new CPE-screening algorithm.
Collapse
Affiliation(s)
- M Bar Ilan
- Infection Prevention and Control Unit, Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.
| | - A Kjerulf
- National Center for Infection Control, Department for Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
8
|
Zenebe T, Eguale T, Desalegn Z, Beshah D, Gebre-Selassie S, Mihret A, Abebe T. Distribution of ß-Lactamase Genes Among Multidrug-Resistant and Extended-Spectrum ß-Lactamase-Producing Diarrheagenic Escherichia coli from Under-Five Children in Ethiopia. Infect Drug Resist 2023; 16:7041-7054. [PMID: 37954506 PMCID: PMC10637226 DOI: 10.2147/idr.s432743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Purpose Escherichia coli strains that produce extended-spectrum ß-lactamase (ESBL) and carbapenemase are among the major threats to global health. The objective of the present study was to determine the distribution of ß-lactamase genes among multidrug-resistant (MDR) and ESBL-producing Diarrheagenic E. coli (DEC) pathotypes isolated from under-five children in Ethiopia. Patients and Methods A cross-sectional study was conducted in Addis Ababa and Debre Berhan, Ethiopia. It was a health-facility-based study and conducted between December 2020 and August 2021. A total of 476 under-five children participated in the study. DEC pathotypes were detected by conventional Polymerase Chain Reaction (PCR) assay. After evaluating the antimicrobial susceptibility profile of the DEC strains by disk diffusion method, confirmation test was done for ESBL and carbapenemase production. ß-lactamase encoding genes were identified from phenotypically ESBLs and carbapenemase positive DEC strains using PCR assay. Results In total, 183 DEC pathotypes were isolated from the 476 under-five children. Seventy-nine (43%, 79/183) MDR-DEC pathotypes were identified. MDR was common among enteroaggregative E. coli (EAEC) (58%, 44/76), followed by enterotoxigenic E. coli (ETEC) (44%, 17/39)) and enteroinvasive E. coli (EIEC) (30%, 7/23). Phenotypically, a total of 30 MDR-DEC pathotypes (16.4%, 30/183) were tested positive for ESBLs. Few ETEC (5.1%, 2/39) and EAEC (2.6%, 2/76) were carbapenemase producers. The predominant β-lactamase genes identified was blaTEM (80%, 24/30) followed by blaCTX-M (73%, 22/30), blaSHV (60%, 18/30), blaNDM (13%, 4/30), and blaOXA-48 (13%, 4/30). Majority of the ß-lactamase encoding genes were detected in EAEC (50%) and ETEC (20%). Co-existence of different β-lactamase genes was found in the present study. Conclusion The blaTEM, blaCTX-M, blaSHV, blaNDM, and blaOXA-48, that are associated with serious and urgent threats globally, were detected in diarrheagenic E. coli isolates from under-five children in Ethiopia. This study also revealed the coexistence of the β-lactamase genes.
Collapse
Affiliation(s)
- Tizazu Zenebe
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, Debre Berhan University, Debre Berhan, Ethiopia
| | - Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Ohio State University, Global One Health LLC, Addis Ababa, Ethiopia
| | - Zelalem Desalegn
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Beshah
- Department of Medical Laboratory, Tikur Anbessa Specialized Hospital, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Gebre-Selassie
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adane Mihret
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
9
|
Vieira ADA, Piccoli BC, Y Castro TR, Casarin BC, Tessele LF, Martins RCR, Schwarzbold AV, Trindade PDA. Pipeline validation for the identification of antimicrobial-resistant genes in carbapenem-resistant Klebsiella pneumoniae. Sci Rep 2023; 13:15189. [PMID: 37709838 PMCID: PMC10502106 DOI: 10.1038/s41598-023-42154-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023] Open
Abstract
Antimicrobial-resistant Klebsiella pneumoniae is a global threat to healthcare and an important cause of nosocomial infections. Antimicrobial resistance causes prolonged treatment periods, high mortality rates, and economic impacts. Whole Genome Sequencing (WGS) has been used in laboratory diagnosis, but there is limited evidence about pipeline validation to parse generated data. Thus, the present study aimed to validate a bioinformatics pipeline for the identification of antimicrobial resistance genes from carbapenem-resistant K. pneumoniae WGS. Sequences were obtained from a publicly available database, trimmed, de novo assembled, mapped to the K. pneumoniae reference genome, and annotated. Contigs were submitted to different tools for bacterial (Kraken2 and SpeciesFinder) and antimicrobial resistance gene identification (ResFinder and ABRicate). We analyzed 201 K. pneumoniae genomes. In the bacterial identification by Kraken2, all samples were correctly identified, and in SpeciesFinder, 92.54% were correctly identified as K. pneumoniae, 6.96% erroneously as Pseudomonas aeruginosa, and 0.5% erroneously as Citrobacter freundii. ResFinder found a greater number of antimicrobial resistance genes than ABRicate; however, many were identified more than once in the same sample. All tools presented 100% repeatability and reproducibility and > 75% performance in other metrics. Kraken2 was more assertive in recognizing bacterial species, and SpeciesFinder may need improvements.
Collapse
Affiliation(s)
- Andressa de Almeida Vieira
- Laboratório de Biologia Molecular e Bioinformática Aplicada à Microbiologia Clínica, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, 97105-900, Brazil
| | - Bruna Candia Piccoli
- Laboratório de Biologia Molecular e Bioinformática Aplicada à Microbiologia Clínica, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, 97105-900, Brazil
| | - Thaís Regina Y Castro
- Laboratório de Biologia Molecular e Bioinformática Aplicada à Microbiologia Clínica, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, 97105-900, Brazil
| | - Bruna Campestrini Casarin
- Laboratório de Biologia Molecular e Bioinformática Aplicada à Microbiologia Clínica, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, 97105-900, Brazil
| | - Luiza Funck Tessele
- Laboratório de Biologia Molecular e Bioinformática Aplicada à Microbiologia Clínica, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, 97105-900, Brazil
| | - Roberta Cristina Ruedas Martins
- Laboratório de Parasitologia Médica (LIM-46), Departamento de Doenças Infecciosas e Parasitárias, Instituto de Medicina Tropical da Universidade de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 01246-903, Brazil
| | | | - Priscila de Arruda Trindade
- Laboratório de Biologia Molecular e Bioinformática Aplicada à Microbiologia Clínica, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
10
|
Ljungquist O, Haldorsen B, Pöntinen AK, Janice J, Josefsen EH, Elstrøm P, Kacelnik O, Sundsfjord A, Samuelsen Ø. Nationwide, population-based observational study of the molecular epidemiology and temporal trend of carbapenemase-producing Enterobacterales in Norway, 2015 to 2021. Euro Surveill 2023; 28:2200774. [PMID: 37410381 PMCID: PMC10370044 DOI: 10.2807/1560-7917.es.2023.28.27.2200774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/29/2023] [Indexed: 07/07/2023] Open
Abstract
IntroductionNational and regional carbapenemase-producing Enterobacterales (CPE) surveillance is essential to understand the burden of antimicrobial resistance, elucidate outbreaks, and develop infection-control or antimicrobial-treatment recommendations.AimThis study aimed to describe CPE and their epidemiology in Norway from 2015 to 2021.MethodsA nationwide, population-based observational study of all verified clinical and carriage CPE isolates submitted to the national reference laboratory was conducted. Isolates were characterised by antimicrobial susceptibility testing, whole genome sequencing (WGS) and basic metadata. Annual CPE incidences were also estimated.ResultsA total of 389 CPE isolates were identified from 332 patients of 63 years median age (range: 0-98). These corresponded to 341 cases, 184 (54%) being male. Between 2015 and 2021, the annual incidence of CPE cases increased from 0.6 to 1.1 per 100,000 person-years. For CPE-isolates with available data on colonisation/infection, 58% (226/389) were associated with colonisation and 38% (149/389) with clinical infections. WGS revealed a predominance of OXA-48-like (51%; 198/389) and NDM (34%; 134/389) carbapenemases in a diversified population of Escherichia coli and Klebsiella pneumoniae, including high-risk clones also detected globally. Most CPE isolates were travel-related (63%; 245/389). Although local outbreaks and healthcare-associated transmission occurred, no interregional spread was detected. Nevertheless, 18% (70/389) of isolates not directly related to import points towards potentially unidentified transmission routes. A decline in travel-associated cases was observed during the COVID-19 pandemic.ConclusionsThe close-to-doubling of CPE case incidence between 2015 and 2021 was associated with foreign travel and genomic diversity. To limit further transmission and outbreaks, continued screening and monitoring is essential.
Collapse
Affiliation(s)
- Oskar Ljungquist
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Research Group on Host-Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Bjørg Haldorsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Anna Kaarina Pöntinen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jessin Janice
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Ellen Haldis Josefsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Petter Elstrøm
- Department of Antibiotic Resistance and Infection Prevention, Norwegian Institute of Public Health, Oslo, Norway
| | - Oliver Kacelnik
- Department of Antibiotic Resistance and Infection Prevention, Norwegian Institute of Public Health, Oslo, Norway
| | - Arnfinn Sundsfjord
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Research Group on Host-Microbe Interactions, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
11
|
Lindemann PC, Pedersen T, Oma DH, Janice J, Grøvan F, Chedid GM, Hafne LJ, Josefsen EH, Kacelnik O, Sundsfjord A, Samuelsen Ø. Intraregional hospital outbreak of OXA-244-producing Escherichia coli ST38 in Norway, 2020. Euro Surveill 2023; 28:2200773. [PMID: 37410380 PMCID: PMC10370041 DOI: 10.2807/1560-7917.es.2023.28.27.2200773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Infections with OXA-244-carbapenemase-producing Escherichia coli with sequence type (ST)38 have recently increased in Europe. Due to its low-level activity against carbapenems, OXA-244 can be difficult to detect. Previous assessments have not revealed a clear source and route of transmission for OXA-244-producing E. coli, but there are indications of non-healthcare related sources and community spread. Here we report a hospital-associated outbreak of OXA-244-producing E. coli ST38 involving three hospitals in Western Norway in 2020. The outbreak occurred over a 5-month period and included 12 cases identified through clinical (n = 6) and screening (n = 6) samples. The transmission chain was unclear; cases were identified in several wards and there was no clear overlap of patient stay. However, all patients had been admitted to the same tertiary hospital in the region, where screening revealed an outbreak in one ward (one clinical case and five screening cases). Outbreak control measures were instigated including contact tracing, isolation, and screening; no further cases were identified in 2021. This outbreak adds another dimension to the spread of OXA-244-producing E. coli ST38, illustrating this clone's ability to establish itself in the healthcare setting. Awareness of challenges concerning OXA-244-producing E. coli diagnostic is important to prevent further spread.
Collapse
Affiliation(s)
| | - Torunn Pedersen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Dorthea Hagen Oma
- Division of Patient Safety, Haukeland University Hospital, Bergen, Norway
| | - Jessin Janice
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | | | | | - Liv Jorunn Hafne
- Department of Microbiology, Haugesund Hospital, Haugesund, Norway
| | - Ellen H Josefsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Oliver Kacelnik
- Department of Antibiotic Resistance and Infection Prevention, Norwegian Institute of Public Health, Oslo, Norway
| | - Arnfinn Sundsfjord
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
12
|
Mattioni Marchetti V, Kraftova L, Finianos M, Sourenian T, Hrabak J, Bitar I. Polyclonal Spread of Fosfomycin Resistance among Carbapenemase-Producing Members of the Enterobacterales in the Czech Republic. Microbiol Spectr 2023; 11:e0009523. [PMID: 37098942 PMCID: PMC10269928 DOI: 10.1128/spectrum.00095-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/31/2023] [Indexed: 04/27/2023] Open
Abstract
Fosfomycin (FOS) has been recently reintroduced into clinical practice, but its effectiveness against multidrug-resistant (MDR) Enterobacterales is reduced due to the emergence of FOS resistance. The copresence of carbapenemases and FOS resistance could drastically limit antibiotic treatment. The aims of this study were (i) to investigate fosfomycin susceptibility profiles among carbapenem-resistant Enterobacterales (CRE) in the Czech Republic, (ii) to characterize the genetic environment of fosA genes among the collection, and (iii) to evaluate the presence of amino acid mutations in proteins involved in FOS resistance mechanisms. During the period from December 2018 to February 2022, 293 CRE isolates were collected from different hospitals in the Czech Republic. FOS MICs were assessed by the agar dilution method (ADM), FosA and FosC2 production was detected by the sodium phosphonoformate (PPF) test, and the presence of fosA-like genes was confirmed by PCR. Whole-genome sequencing was conducted with an Illumina NovaSeq 6000 system on selected strains, and the effect of point mutations in the FOS pathway was predicted using PROVEAN. Of these strains, 29% showed low susceptibility to fosfomycin (MIC, ≥16 μg/mL) by ADM. An NDM-producing Escherichia coli sequence type 648 (ST648) strain harbored a fosA10 gene on an IncK plasmid, while a VIM-producing Citrobacter freundii ST673 strain harbored a new fosA7 variant, designated fosA7.9. Analysis of mutations in the FOS pathway revealed several deleterious mutations occurring in GlpT, UhpT, UhpC, CyaA, and GlpR. Results regarding single substitutions in amino acid sequences highlighted a relationship between ST and specific mutations and an enhanced predisposition for certain STs to develop resistance. This study highlights the occurrence of several FOS resistance mechanisms in different clones spreading in the Czech Republic. IMPORTANCE Antimicrobial resistance (AMR) currently represents a concern for human health, and the reintroduction of antibiotics such as fosfomycin into clinical practice can provide further option in treatment of multidrug-resistant (MDR) bacterial infections. However, there is a global increase of fosfomycin-resistant bacteria, reducing its effectiveness. Considering this increase, it is crucial to monitor the spread of fosfomycin resistance in MDR bacteria in clinical settings and to investigate the resistance mechanism at the molecular level. Our study reports a large variety of fosfomycin resistance mechanisms among carbapenemase-producing Enterobacterales (CRE) in the Czech Republic. Our study summarizes the main achievements of our research on the use of molecular technologies, such as next-generation sequencing (NGS), to describe the heterogeneous mechanisms that reduce fosfomycin effectiveness in CRE. The results suggest that a program for widespread monitoring of fosfomycin resistance and epidemiology fosfomycin-resistant organisms can aide timely implementation of countermeasures to maintain the effectiveness of fosfomycin.
Collapse
Affiliation(s)
- V. Mattioni Marchetti
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - L. Kraftova
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - M. Finianos
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - T. Sourenian
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - J. Hrabak
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - I. Bitar
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| |
Collapse
|
13
|
O'Connell N, Gasior S, Slevin B, Power L, Barrett S, Bhutta S, Minihan B, Powell J, Dunne C. Microbial epidemiology and clinical risk factors of carbapenemase-producing Enterobacterales amongst Irish patients from first detection in 2009 until 2020. Infect Prev Pract 2022; 4:100230. [PMID: 35935263 PMCID: PMC9352914 DOI: 10.1016/j.infpip.2022.100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
Background Carbapenemase producing Enterobacterales (CPE) are major public health threats. Aim To review microbial epidemiology of CPE, as well as clinical risk factors and infections, amongst CPE positive patients over 12 years in an Irish tertiary hospital. Methods Retrospective observational study of data extracted from a laboratory CPE database, electronic healthcare records and manual review of patient charts. Common risk factors, treatment regimens for all CPE related infections, and clinical outcomes were ascertained. Findings Among CPE strains isolated from 460 patients, Klebsiella pneumoniae carbapenemase (KPC) was the carbapenemase most frequently detected, accounting for 87.4% (459) of all CPE enzymes. Citrobacter species 177 (33.7%) were the most common species harbouring this enzyme. 428 CPE positive patients (93%) were identified in the acute hospital setting; the most common risk factor for CPE acquisition was history of hospitalisation, observed in 305 (66%) cases. Thirty patients (6.5%) had confirmed infections post-acquisition, of which four were bloodstream infections. There were 19 subsequent episodes of non CPE-related bacteraemia in this cohort. All causal mortality at 30 days was 41 patients (8.9%). However, clinical review determined that CPE was an indirect associative factor in 8 patient deaths. Conclusions In this tertiary hospital setting, microbial epidemiology is changing; with both OXA-48 enzymes and KPC-producing Citrobacter species becoming more prevalent. Whilst the burden of CPE related infections, especially bacteraemia, was low over the study period, it remains critical that basic infection prevention and control practices are adhered to lest the observed changes in epidemiology result in an increase in clinical manifestations.
Collapse
Affiliation(s)
- N.H. O'Connell
- Department of Clinical Microbiology University Limerick Hospital Group (ULHG), Limerick, Ireland
- Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
- School of Medicine, University of Limerick, Limerick, Ireland
| | - S. Gasior
- School of Medicine, University of Limerick, Limerick, Ireland
| | - B. Slevin
- Department of Infection Prevention and Control, ULHG, Limerick, Ireland
| | - L. Power
- Department of Clinical Microbiology University Limerick Hospital Group (ULHG), Limerick, Ireland
| | - S. Barrett
- Department of Pharmacy, ULHG, Limerick, Ireland
| | - S.I. Bhutta
- Department of Gastroenterology, ULHG, Limerick, Ireland
| | - B. Minihan
- Department of Clinical Microbiology University Limerick Hospital Group (ULHG), Limerick, Ireland
| | - J. Powell
- Department of Clinical Microbiology University Limerick Hospital Group (ULHG), Limerick, Ireland
- Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
| | - C.P. Dunne
- Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
- School of Medicine, University of Limerick, Limerick, Ireland
- Corresponding author. Address: Foundation Chair and Director of Research, School of Medicine, University of Limerick, Ireland. Tel.: +35361234703.
| |
Collapse
|
14
|
Emeraud C, Godmer A, Girlich D, Vanparis O, Mahamdi F, Creton E, Jousset AB, Naas T, Bonnin RA, Dortet L. Activity of mecillinam against carbapenem-resistant Enterobacterales. J Antimicrob Chemother 2022; 77:2835-2839. [PMID: 35815675 PMCID: PMC9525088 DOI: 10.1093/jac/dkac226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/03/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Despite the fact that carbapenem-resistant Enterobacterales (CRE) mostly cause urinary tract infections (UTIs), only few studies have focused on the efficacity of mecillinam against these CRE. OBJECTIVES To evaluate the mecillinam susceptibility of a huge collection of CRE, including carbapenemase-producing Enterobacterales (CPE) and non-CPE (ESBL and AmpC producers with decreased permeability of the outer membrane). METHODS A total of 8310 non-duplicate clinical CRE, including 4042 OXA-48-like producers, 1094 NDM producers, 411 VIM producers, 174 KPC producers, 42 IMI producers, 153 multiple-carbapenemase producers and 45 isolates producing other types of carbapenemases (such as IMP-like enzymes or GES-5), were included in the study. WGS was performed on all CPE using Illumina technology. Categorization of susceptibility to mecillinam was performed using disc diffusion (mecillinam discs at 10 μg; I2A, France) according to EUCAST recommendations. The results were interpreted according to EUCAST guidelines (S ≥15 mm). RESULTS Significantly higher susceptibility rates were observed for carbapenem-resistant Proteus spp. (85%) and carbapenem-resistant Escherichia coli (84%), which are the two most common species responsible for UTIs, than for Klebsiella pneumoniae (67%), Enterobacter cloacae complex (75%), Citrobacter spp. (65%), Serratia spp. (34%) and Morganella morganii (12%). Susceptibility rates were 84%, 71% and 91% for OXA-48-like, NDM and IMI producers and 70% for non-CPE CRE. Mecillinam was less active against VIM and KPC producers (14% and 0%, respectively). CONCLUSIONS Mecillinam might be an alternative for the treatment of infections due to CRE, particularly UTIs, except for VIM and KPC producers and for M. morganii and Serratia spp species.
Collapse
Affiliation(s)
- Cécile Emeraud
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France,INSERM UMR 1184, RESIST Unit, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France,French National Reference Centre for Antimicrobial Resistance, Le Kremlin-Bicêtre, France
| | - Alexandre Godmer
- Department of Bacteriology, Saint-Antoine Hospital, APHP.Sorbonne-Université, Paris, France,Sorbonne Université, Centre d’Immunologie et des Maladies Infectieuses (Cimi-Paris), UMR 1135, Centre National de Référence des Mycobactéries, Paris, France
| | - Delphine Girlich
- INSERM UMR 1184, RESIST Unit, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France
| | - Océane Vanparis
- French National Reference Centre for Antimicrobial Resistance, Le Kremlin-Bicêtre, France
| | - Fériel Mahamdi
- French National Reference Centre for Antimicrobial Resistance, Le Kremlin-Bicêtre, France
| | - Elodie Creton
- French National Reference Centre for Antimicrobial Resistance, Le Kremlin-Bicêtre, France
| | - Agnès B Jousset
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France,INSERM UMR 1184, RESIST Unit, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France,French National Reference Centre for Antimicrobial Resistance, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France,INSERM UMR 1184, RESIST Unit, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France,French National Reference Centre for Antimicrobial Resistance, Le Kremlin-Bicêtre, France
| | - Rémy A Bonnin
- INSERM UMR 1184, RESIST Unit, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France,French National Reference Centre for Antimicrobial Resistance, Le Kremlin-Bicêtre, France
| | | |
Collapse
|
15
|
Zhao J, Li Z, Zhang Y, Liu X, Lu B, Cao B. Convergence of MCR-8.2 and Chromosome-Mediated Resistance to Colistin and Tigecycline in an NDM-5-Producing ST656 Klebsiella pneumoniae Isolate From a Lung Transplant Patient in China. Front Cell Infect Microbiol 2022; 12:922031. [PMID: 35899054 PMCID: PMC9310643 DOI: 10.3389/fcimb.2022.922031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
We characterized the first NDM-5 and MCR-8.2 co-harboring ST656 Klebsiella pneumoniae clinical isolate, combining with chromosomal gene-mediated resistance to colistin and tigecycline. The K. pneumoniae KP32558 was isolated from the bronchoalveolar lavage fluid from a lung transplant patient. Complete genome sequences were obtained through Illumina HiSeq sequencing and nanopore sequencing. The acquired resistance genes and mutations in chromosome-encoded genes associated with colistin and tigecycline resistance were analyzed. Comparative genomic analysis was conducted between mcr-8.2-carrying plasmids. The K. pneumoniae KP32558 was identified as a pan-drug resistant bacteria, belonging to ST656, and harbored plasmid-encoded blaNDM-5 and mcr-8.2 genes. The blaNDM-5 gene was located on an IncX3 type plasmid. The mcr-8.2 gene was located on a conjugative plasmid pKP32558-2-mcr8, which had a common ancestor with another two mcr-8.2-carrying plasmids pMCR8_020135 and pMCR8_095845. The MIC of KP32558 for colistin was 256 mg/L. The mcr-8.2 gene and mutations in the two-component system, pmrA and crrB, and the regulator mgrB, had a synergistic effect on the high-level colistin resistance. The truncation in the acrR gene, related to tigecycline resistance, was also identified. K. pneumoniae has evolved a variety of complex resistance mechanisms to the last-resort antimicrobials, close surveillance is urgently needed to monitor the prevalence of this clone.
Collapse
Affiliation(s)
- Jiankang Zhao
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ziyao Li
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yulin Zhang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xinmeng Liu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Binghuai Lu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Binghuai Lu, ; Bin Cao,
| | - Bin Cao
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
- Department of Respiratory Medicine, Capital Medical University, Beijing, China
- *Correspondence: Binghuai Lu, ; Bin Cao,
| |
Collapse
|
16
|
Wielders CCH, Schouls LM, Woudt SHS, Notermans DW, Hendrickx APA, Bakker J, Kuijper EJ, Schoffelen AF, de Greeff SC. Epidemiology of carbapenem-resistant and carbapenemase-producing Enterobacterales in the Netherlands 2017-2019. Antimicrob Resist Infect Control 2022; 11:57. [PMID: 35397546 PMCID: PMC8994189 DOI: 10.1186/s13756-022-01097-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/21/2022] [Indexed: 12/24/2022] Open
Abstract
Background The Netherlands is currently considered a low endemic country for carbapenem-resistant Enterobacterales (CRE) and carbapenemase-producing Enterobacterales (CPE), experiencing only sporadic hospital outbreaks. This study aims to describe susceptibility to carbapenems and the epidemiology of carbapenemase production in Enterobacterales in the Netherlands in 2017–2019. Methods Three complementary nationwide surveillance systems are in place to monitor carbapenem susceptibility in the Netherlands. Routine antimicrobial susceptibility test results from medical microbiology laboratories were used to study phenotypic susceptibility of Escherichia coli and Klebsiella pneumoniae. Pathogen surveillance (of all Enterobacterales species) and mandatory notifications were used to describe the characteristics of CPE positive isolates and affected persons. Results The prevalence of isolates with gradient strip test-confirmed elevated meropenem (> 0.25 mg/L) or imipenem (> 1 mg/L) minimum inhibitory concentration (MIC) in the Netherlands was very low in 2017–2019, with percentages of 0.06% in E. coli and 0.49% in K. pneumoniae, and carbapenem resistances of 0.02% and 0.18%, respectively. A total of 895 unique species/carbapenemase-encoding allele combinations of CPE from 764 persons were submitted between 2017 and 2019, with the annual number of submissions increasing slightly each year. Epidemiological data was available for 660 persons. Screening because of presumed colonisation risk was the reason for sampling in 70.0% (462/660) of persons. Hospitalization abroad was the most common risk factor, being identified in 45.9% of persons. Conclusions Carbapenem resistance of E. coli and K. pneumoniae remains low in the Netherlands. The annual number of CPE isolates slightly increased during the period 2017–2019. Recent hospitalization abroad is the main risk factor for acquisition of CPE.
Supplementary Information The online version contains supplementary material available at 10.1186/s13756-022-01097-9.
Collapse
Affiliation(s)
- Cornelia C H Wielders
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands.
| | - Leo M Schouls
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Sjoukje H S Woudt
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Daan W Notermans
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands.,Department of Medical Microbiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Antoni P A Hendrickx
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Jacinta Bakker
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Ed J Kuijper
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Annelot F Schoffelen
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Sabine C de Greeff
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | | | | |
Collapse
|
17
|
Seman A, Mihret A, Sebre S, Awoke T, Yeshitela B, Yitayew B, Aseffa A, Asrat D, Abebe T. Prevalence and Molecular Characterization of Extended Spectrum β-Lactamase and Carbapenemase-Producing Enterobacteriaceae Isolates from Bloodstream Infection Suspected Patients in Addis Ababa, Ethiopia. Infect Drug Resist 2022; 15:1367-1382. [PMID: 35378892 PMCID: PMC8976516 DOI: 10.2147/idr.s349566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/11/2022] [Indexed: 12/30/2022] Open
Abstract
Background Production of Extended spectrum beta-lactamase (ESBL) and Carbapenemase is the most common strategy for drug resistance in clinical isolates of Enterobacteriaceae. This study was conducted to determine the magnitude of ESBL and Carbapenemase production (CPE) among clinical isolates of Enterobacteriaceae causing bloodstream infections (BSI) in Ethiopia. Methods A cross-sectional study was performed from September 2018 to January 2019 in Ethiopia. A total of 2397 BSI suspected patients were enrolled and blood culture was performed using a BacT/Alert instrument in combination with conventional methods for identification. After antimicrobial susceptibility test, phenotypic confirmation of ESBLs was done by combined disc-diffusion. Meanwhile carbapenemase production was done by modified carbapenem inactivation method. Multiplex PCR was conducted to detect the presence of blaCTX-M,blaSHV,blaTEM, blaKPC and blaNDM genes. Results A total of 104 (4.3%) Enterobacteriaceae were isolated from 2397 BSI suspected patients. Klebsiella pneumoniae (55/104, 52%) was the predominant isolate followed by E. coli, (19.2%, 20/104) and K.oxytoca (17.3%, 18/104). ESBL and carbapenemase production were observed from 70 (67.3%, 57.4 −76.2% at 95% CI) and 8 (7.7%, 3.4–14.6% at 95% CI) isolates respectively. The highest frequency of ESBL and carbapenemase production was observed in K. pneumoniae 78.2% (43/55) and 9.1% (5/55), respectively. All the 70 isolates confirmed as ESBL producers harbored at least one of the ESBL genes and the majority of them carried multiple beta-lactamase genes (84.3%), where blaCTX-M, type was the most predominant (67.3%). Similarly, the entire eight isolates positive for carbapenemase carried blaNDM but none of them carried blaKPC. Conclusion In our study, the rate of ESBL production among BSI-causing Enterobacteriaceae was alarming and most of the isolates carried multiple types of ESBL genes. A significant magnitude of CPE isolates causing BSI was recorded.
Collapse
Affiliation(s)
- Aminu Seman
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Correspondence: Aminu Seman, Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia, Tel +251 920 747 176, Email ;
| | - Adane Mihret
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Shemse Sebre
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Tewachew Awoke
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Biruk Yeshitela
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Berhanu Yitayew
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Berhan University, Debre Berhan, Ethiopia
| | - Abraham Aseffa
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Daniel Asrat
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tamrat Abebe
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
18
|
Zhu Y, Huang WE, Yang Q. Clinical Perspective of Antimicrobial Resistance in Bacteria. Infect Drug Resist 2022; 15:735-746. [PMID: 35264857 PMCID: PMC8899096 DOI: 10.2147/idr.s345574] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/18/2022] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial resistance (AMR) has become a global clinical problem in recent years. With the discovery of antibiotics, infections were not a deadly problem for clinicians as they used to be. However, worldwide AMR comes with the overuse/misuse of antibiotics and the spread of resistance is deteriorated by a multitude of mobile genetic elements and relevant resistant genes. This review provides an overview of the current situation, mechanism, epidemiology, detection methods and clinical treatment for antimicrobial resistant genes in clinical important bacteria including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), penicillin-resistant Streptococcus pneumoniae (PRSP), extended-spectrum β-lactamase-producing Enterobacteriaceae, acquired AmpC β-lactamase-producing Enterobacteriaceae, carbapenemase-producing Enterobacteriaceae (CPE), multidrug-resistant (MDR) Acinetobacter baumannii and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Qiwen Yang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Correspondence: Qiwen Yang; Wei E Huang, Email ;
| |
Collapse
|
19
|
Intracellular Transposition and Capture of Mobile Genetic Elements following Intercellular Conjugation of Multidrug Resistance Conjugative Plasmids from Clinical Enterobacteriaceae Isolates. Microbiol Spectr 2022; 10:e0214021. [PMID: 35044219 PMCID: PMC8768599 DOI: 10.1128/spectrum.02140-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mobile genetic elements (MGEs) are often associated with antimicrobial resistance genes (ARGs). They are responsible for intracellular transposition between different replicons and intercellular conjugation and are therefore important agents of ARG dissemination. Detection and characterization of functional MGEs, especially in clinical isolates, would increase our understanding of the underlying pathways of transposition and recombination and allow us to determine interventional strategies to interrupt this process. Entrapment vectors can be used to capture active MGEs, as they contain a positive selection genetic system conferring a selectable phenotype upon the insertion of an MGE within certain regions of that system. Previously, we developed the pBACpAK entrapment vector that results in a tetracycline-resistant phenotype when MGEs translocate and disrupt the cI repressor gene. We have previously used pBACpAK to capture MGEs in clinical Escherichia coli isolates following transformation with pBACpAK. In this study, we aimed to extend the utilization of pBACpAK to other bacterial taxa. We utilized an MGE-free recipient E. coli strain containing pBACpAK to capture MGEs on conjugative, ARG-containing plasmids following conjugation from clinical Enterobacteriaceae donors. Following the conjugative transfer of multiple conjugative plasmids and screening for tetracycline resistance in these transconjugants, we captured several insertion sequence (IS) elements and novel transposons (Tn7350 and Tn7351) and detected the de novo formation of novel putative composite transposons where the pBACpAK-located tet(A) is flanked by ISKpn25 from the transferred conjugative plasmid, as well as the ISKpn14-mediated integration of an entire 119-kb, blaNDM-1-containing conjugative plasmid from Klebsiella pneumoniae. IMPORTANCE By analyzing transposition activity within our MGE-free recipient, we can gain insights into the interaction and evolution of multidrug resistance-conferring MGEs following conjugation, including the movement of multiple ISs, the formation of composite transposons, and cointegration and/or recombination between different replicons in the same cell. This combination of recipient and entrapment vector will allow fine-scale experimental studies of factors affecting intracellular transposition and MGE formation in and from ARG-encoding MGEs from multiple species of clinically relevant Enterobacteriaceae.
Collapse
|
20
|
Moser AI, Keller PM, Campos-Madueno EI, Poirel L, Nordmann P, Endimiani A. A Patient With Multiple Carbapenemase Producers Including an Unusual Citrobacter sedlakii Hosting an IncC bla NDM-1- and armA-carrying Plasmid. Pathog Immun 2022; 6:119-134. [PMID: 34988342 PMCID: PMC8714174 DOI: 10.20411/pai.v6i2.482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022] Open
Abstract
Background. Patients colonized with multiple species of carbapenemase-producing Enterobacterales (CPE) are increasingly observed. This phenomenon can be due to the high local prevalence of these pathogens, the presence of important host risk factors, and the great genetic promiscuity of some carbapenemase genes. Methods. We analyzed 4 CPE (Escherichia coli, Klebsiella pneumoniae, Providencia stuartii, Citrobacter sedlakii), 1 extended-spectrum cephalosporin-resistant K. pneumoniae (ESC-R-Kp), and 1 carbapenemase-producing Acinetobacter baumannii simultaneously isolated from a patient transferred from Macedonia. Susceptibility tests were performed using a microdilution MIC system. The complete genome sequences were obtained by using both short-read and long-read whole-genome sequencing technologies. Results. All CPE presented high-level resistance to all aminoglycosides due to the expression of the armA 16S rRNA methylase. In C. sedlakii and E. coli (ST69), both the carbapenemase blaNDM-1 and armA genes were located on an identical IncC plasmid of type 1a. The K. pneumoniae (ST268) and P. stuartii carried chromosomal blaNDM-1 and blaOXA-48, respectively, while the ESC-R-Kp (ST395) harbored a plasmid-located blaCTX-M-15. In the latter 3 isolates, armA-harboring IncC plasmids similar to plasmids found in C. sedlakii and E. coli were also detected. The A. baumannii strain possessed the blaOXA-40 carbapenemase gene. Conclusions. The characterization of the genetic organization of IncC-type plasmids harbored by 3 different species from the same patient offered insights into the evolution of these broad-host-range plasmids. Moreover, we characterized here the first complete genome sequence of a carbapenemase-producing C. sedlakii strain, providing a reference for future studies on this rarely reported species.
Collapse
Affiliation(s)
- Aline I Moser
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| | - Peter M Keller
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| | - Edgar I Campos-Madueno
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland.,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Laurent Poirel
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland.,French INSERM European Unit, University of Fribourg (LEA-IAME), Fribourg, Switzerland.,National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Patrice Nordmann
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland.,French INSERM European Unit, University of Fribourg (LEA-IAME), Fribourg, Switzerland.,National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
Greninger AL, Zerr DM. NGSocomial Infections: High-Resolution Views of Hospital-Acquired Infections Through Genomic Epidemiology. J Pediatric Infect Dis Soc 2021; 10:S88-S95. [PMID: 34951469 PMCID: PMC8755322 DOI: 10.1093/jpids/piab074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hospital outbreak investigations are high-stakes epidemiology. Contacts between staff and patients are numerous; environmental and community exposures are plentiful; and patients are highly vulnerable. Having the best data is paramount to understanding an outbreak in order to stop ongoing transmission and prevent future outbreaks. In the past 5 years, the high-resolution view of transmission offered by analyzing pathogen whole-genome sequencing (WGS) is increasingly part of hospital outbreak investigations. Concerns over speed and actionability, assay validation, liability, cost, and payment models lead to further opportunities for work in this area. Now accelerated by funding for COVID-19, the use of genomics in hospital outbreak investigations has firmly moved from the academic literature to more quotidian operations, with associated concerns involving regulatory affairs, data integration, and clinical interpretation. This review details past uses of WGS data in hospital-acquired infection outbreaks as well as future opportunities to increase its utility and growth in hospital infection prevention.
Collapse
Affiliation(s)
- Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Corresponding Author: Alexander L. Greninger MD, PhD, MS, MPhil, 1616 Eastlake Ave East Suite 320, Seattle, WA 98102, USA. E-mail:
| | - Danielle M Zerr
- Department of Pediatrics, University of Washington Medical Center, Seattle, Washington, USA,Division of Infectious Diseases, Seattle Children’s Hospital, Seattle, Washington, USA
| |
Collapse
|
22
|
A global perspective on improving patient care in uncomplicated urinary tract infection: Expert consensus and practical guidance. J Glob Antimicrob Resist 2021; 28:18-29. [PMID: 34896337 DOI: 10.1016/j.jgar.2021.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/01/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Uncomplicated urinary tract infections (uUTIs) are a common problem in women. Management is mainly based on empirical prescribing, but there are concerns about overtreatment and antimicrobial resistance (AMR), especially in patients with recurrent uUTIs. METHODS A multidisciplinary panel of experts met to discuss diagnosis, treatment, prevention, guidelines, AMR, clinical trial design, and the impact of COVID-19 on clinical practice. RESULTS Symptoms remain the cornerstone of uUTI diagnosis, and urine culture is necessary only when empirical treatment fails, or rapid recurrence of symptoms or AMR is suspected. Specific antimicrobials are first-line therapy (typically nitrofurantoin, fosfomycin, trimethoprim-sulfamethoxazole, and pivmecillinam; dependent on availability and local resistance data). Fluoroquinolones are not first-line options for uUTIs due primarily to safety concerns, but also rising resistance rates. High-quality data to support most non-antimicrobial approaches are lacking. Local AMR data specific to community-acquired uUTIs are needed, but representative information is difficult to obtain; instead, identification of risk factors for AMR can provide a basis to guide empirical antimicrobial prescribing. The COVID-19 pandemic has impacted management of uUTIs in some countries and may have long-lasting implications for future models of care. CONCLUSIONS The management of uUTIs in women can be improved without increasing complexity, including simplified diagnosis, and empirical antimicrobial prescribing based on patient characteristics, including review of recent antimicrobial use and past pathogen resistance profiles, drug availability, and guidelines. Current data for non-antimicrobial approaches are limited. The influence of COVID-19 on telehealth could provide an opportunity to enhance patient care in the long term.
Collapse
|
23
|
Tsakris A, Koumaki V, Baka S, Balakrishnan I. Activity of mecillinam against OXA-48-like carbapenemase-producing Enterobacterales. J Antimicrob Chemother 2021; 77:537-538. [PMID: 34741607 DOI: 10.1093/jac/dkab401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Athanasios Tsakris
- Department of Microbiology, Medical School, University of Athens, Athens, Greece
| | - Vasiliki Koumaki
- Department of Microbiology, Medical School, University of Athens, Athens, Greece.,Department of Microbiology, Aretaieion Hospital, University of Athens, Athens, Greece
| | - Stavroula Baka
- Department of Microbiology, Aretaieion Hospital, University of Athens, Athens, Greece
| | - Indran Balakrishnan
- Department of Medical Microbiology, Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
24
|
Binsker U, Käsbohrer A, Hammerl JA. Global colistin use: A review of the emergence of resistant Enterobacterales and the impact on their genetic basis. FEMS Microbiol Rev 2021; 46:6382128. [PMID: 34612488 PMCID: PMC8829026 DOI: 10.1093/femsre/fuab049] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
The dramatic global rise of MDR and XDR Enterobacterales in human medicine forced clinicians to the reintroduction of colistin as last-resort drug. Meanwhile, colistin is used in the veterinary medicine since its discovery, leading to a steadily increasing prevalence of resistant isolates in the livestock and meat-based food sector. Consequently, transmission of resistant isolates from animals to humans, acquisition via food and exposure to colistin in the clinic are reasons for the increased prevalence of colistin-resistant Enterobacterales in humans in the last decades. Initially, resistance mechanisms were caused by mutations in chromosomal genes. However, since the discovery in 2015, the focus has shifted exclusively to mobile colistin resistances (mcr). This review will advance the understanding of chromosomal-mediated resistance mechanisms in Enterobacterales. We provide an overview about genes involved in colistin resistance and the current global situation of colistin-resistant Enterobacterales. A comparison of the global colistin use in veterinary and human medicine highlights the effort to reduce colistin sales in veterinary medicine under the One Health approach. In contrast, it uncovers the alarming rise in colistin consumption in human medicine due to the emergence of MDR Enterobacterales, which might be an important driver for the increasing emergence of chromosome-mediated colistin resistance.
Collapse
Affiliation(s)
- Ulrike Binsker
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Annemarie Käsbohrer
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany.,Department for Farm Animals and Veterinary Public Health, Institute of Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jens A Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
25
|
Molecular Characterization of KPC-2-Producing Enterobacter cloacae Complex Isolates from Cali, Colombia. Antibiotics (Basel) 2021; 10:antibiotics10060694. [PMID: 34200675 PMCID: PMC8229714 DOI: 10.3390/antibiotics10060694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/28/2022] Open
Abstract
The Enterobacter cloacae complex is an emerging opportunistic pathogen whose increased resistance to carbapenems is considered a public health problem. This is due to the loss of efficacy of beta-lactam antibiotics, which are used as the first treatment option in the management of infections caused by Gram-negative bacteria. The objective of this study was to perform the molecular characterization of 28 isolates of the E. cloacae complex resistant to cephalosporins and carbapenems isolated between 2011 and 2018 from five hospitals located in the municipality of Santiago de Cali, Colombia. Molecular detection of blaKPC, blaVIM, blaNDM and blaOXA-48-like genes was performed on these isolates and the genetic relationship between the isolates was assessed using multilocus sequence typing (MLST). Forty-three percent of the isolates carried the blaKPC-2 gene variant. MLST showed high genetic diversity among isolates, the most frequent being the sequence type ST510 with a frequency of 50%. The identification of the genes involved in carbapenem resistance and dispersing genotypes is an important step toward the development of effective prevention and epidemiological surveillance strategies in Colombian hospitals.
Collapse
|
26
|
Koskinen K, Penttinen R, Örmälä-Odegrip AM, Giske CG, Ketola T, Jalasvuori M. Systematic Comparison of Epidemic and Non-Epidemic Carbapenem Resistant Klebsiella pneumoniae Strains. Front Cell Infect Microbiol 2021; 11:599924. [PMID: 33708644 PMCID: PMC7940544 DOI: 10.3389/fcimb.2021.599924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
Over the past few decades, extensively drug resistant (XDR) resistant Klebsiella pneumoniae has become a notable burden to healthcare all over the world. Especially carbapenemase-producing strains are problematic due to their capability to withstand even last resort antibiotics. Some sequence types (STs) of K. pneumoniae are significantly more prevalent in hospital settings in comparison to other equally resistant strains. This provokes the question whether or not there are phenotypic characteristics that may render certain K. pneumoniae more suitable for epidemic dispersal between patients, hospitals, and different environments. In this study, we selected seven epidemic and non-epidemic carbapenem resistant K. pneumoniae isolates for extensive systematic characterization for phenotypic and genotypic qualities in order to identify potential factors that precede or emerge from epidemic successfulness. Studied characteristics include growth rates and densities in different conditions (media, temperature, pH, resource levels), tolerance to alcohol and drought, inhibition between strains, ability to compensate pH, as well as various genomic features. Overall, there are clear differences between isolates, yet, only drought tolerance was found to notably associate with non-epidemic K. pneumoniae strains. We further report a preliminary study on the potential to control K. pneumoniae ST11 with an antimicrobial component produced by a non-epidemic K. pneumoniae. This component initially restricts bacterial growth, but stable resistance develops rapidly in vitro.
Collapse
Affiliation(s)
- Katariina Koskinen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | | | - Anni-Maria Örmälä-Odegrip
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christian G Giske
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Tarmo Ketola
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Matti Jalasvuori
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
27
|
Fuchs F, Ahmadzada A, Plambeck L, Wille T, Hamprecht A. Susceptibility of Clinical Enterobacterales Isolates With Common and Rare Carbapenemases to Mecillinam. Front Microbiol 2021; 11:627267. [PMID: 33510739 PMCID: PMC7835630 DOI: 10.3389/fmicb.2020.627267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022] Open
Abstract
Purpose: To investigate the susceptibility of carbapenemase-producing Enterobacterales (CPE) to mecillinam based on the recently updated European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints for uncomplicated Urinary Tract Infection (uUTI). Methods: The challenge collection consisted of 105 molecularly characterized Enterobacterales [Klebsiella spp. (N = 49), Escherichia coli (N = 30), Enterobacter cloacae (n = 13), Citrobacter freundii (N = 9), Proteus mirabilis (N = 3), and Raoultella ornithinolytica (N = 1)]. Isolates produced OXA-48 (N = 18), OXA-48-like (N = 18), VIM (N = 22), NDM (N = 22), KPC (N = 12), IMI (N = 9), IMP (N = 6), GES (N = 1), OXA-58 (N = 2) or combinations thereof (N = 5). MICs of carbapenems were determined by agar gradient diffusion (AGD). MICs of mecillinam were assessed by agar dilution (reference method) and compared to disk diffusion (DD) and AGD. Results: Overall 23/105 CPE (21.9%) were susceptible to mecillinam. Susceptibility was observed in E. coli (N = 12), E. cloacae (N = 7), and Klebsiella pneumoniae (N = 4) producing IMI, OXA-48, OXA-48-like, and NDM-1 carbapenemases. MIC50 for mecillinam in all isolates was 128 mg/L while MIC50 for meropenem was 8 mg/L. Lower MICs for mecillinam were found in IMI (MIC50 8 mg/L) and OXA-48-like (MIC50 16 mg/L) producers. The comparison of the different susceptibility methods showed very major errors of 12.2% with AGD and 8.5% with disk diffusion when compared to the reference method. Conclusion: Mecillinam susceptibility was restricted to isolates producing IMI-, OXA-48-like, and NDM-1 carbapenemases and was documented despite high carbapenem MICs in some isolates. Mecillinam could be a promising oral antimicrobial in uUTI caused by E. coli and E. cloacae isolates carrying IMI- and OXA-48-like carbapenemases; however, susceptibility testing by AGD and disk diffusion remains problematic.
Collapse
Affiliation(s)
- Frieder Fuchs
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Aysel Ahmadzada
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Lars Plambeck
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Thorsten Wille
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Axel Hamprecht
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty and University Hospital of Cologne, University of Cologne, Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.,Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
28
|
Bokhary H, Pangesti KNA, Rashid H, Abd El Ghany M, Hill-Cawthorne GA. Travel-Related Antimicrobial Resistance: A Systematic Review. Trop Med Infect Dis 2021; 6:11. [PMID: 33467065 PMCID: PMC7838817 DOI: 10.3390/tropicalmed6010011] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
There is increasing evidence that human movement facilitates the global spread of resistant bacteria and antimicrobial resistance (AMR) genes. We systematically reviewed the literature on the impact of travel on the dissemination of AMR. We searched the databases Medline, EMBASE and SCOPUS from database inception until the end of June 2019. Of the 3052 titles identified, 2253 articles passed the initial screening, of which 238 met the inclusion criteria. The studies covered 30,060 drug-resistant isolates from 26 identified bacterial species. Most were enteric, accounting for 65% of the identified species and 92% of all documented isolates. High-income countries were more likely to be recipient nations for AMR originating from middle- and low-income countries. The most common origin of travellers with resistant bacteria was Asia, covering 36% of the total isolates. Beta-lactams and quinolones were the most documented drug-resistant organisms, accounting for 35% and 31% of the overall drug resistance, respectively. Medical tourism was twice as likely to be associated with multidrug-resistant organisms than general travel. International travel is a vehicle for the transmission of antimicrobial resistance globally. Health systems should identify recent travellers to ensure that adequate precautions are taken.
Collapse
Affiliation(s)
- Hamid Bokhary
- School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (K.N.A.P.); (G.A.H.-C.)
- University Medical Center, Umm Al-Qura University, Al Jamiah, Makkah, Makkah Region 24243, Saudi Arabia
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead, NSW 2145, Australia; (H.R.); or (M.A.E.G.)
- The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Krisna N. A. Pangesti
- School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (K.N.A.P.); (G.A.H.-C.)
- The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Harunor Rashid
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead, NSW 2145, Australia; (H.R.); or (M.A.E.G.)
- National Centre for Immunisation Research and Surveillance (NCIRS), Kids Research, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Moataz Abd El Ghany
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead, NSW 2145, Australia; (H.R.); or (M.A.E.G.)
- The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Grant A. Hill-Cawthorne
- School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (K.N.A.P.); (G.A.H.-C.)
| |
Collapse
|
29
|
Dynamics of bla KPC-2 Dissemination from Non-CG258 Klebsiella pneumoniae to Other Enterobacterales via IncN Plasmids in an Area of High Endemicity. Antimicrob Agents Chemother 2020; 64:AAC.01743-20. [PMID: 32958711 DOI: 10.1128/aac.01743-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) pose a significant threat to global public health. The most important mechanism for carbapenem resistance is the production of carbapenemases. Klebsiella pneumoniae carbapenemase (KPC) represents one of the main carbapenemases worldwide. Complex mechanisms of bla KPC dissemination have been reported in Colombia, a country with a high endemicity of carbapenem resistance. Here, we characterized the dynamics of dissemination of bla KPC gene among CRE infecting and colonizing patients in three hospitals localized in a highly endemic area of Colombia (2013 and 2015). We identified the genomic characteristics of KPC-producing Enterobacterales recovered from patients infected/colonized and reconstructed the dynamics of dissemination of bla KPC-2 using both short and long read sequencing. We found that spread of bla KPC-2 among Enterobacterales in the participating hospitals was due to intra- and interspecies horizontal gene transfer (HGT) mediated by promiscuous plasmids associated with transposable elements that was originated from a multispecies outbreak of KPC-producing Enterobacterales in a neonatal intensive care unit. The plasmids were detected in isolates recovered in other units within the same hospital and nearby hospitals. The gene "epidemic" was driven by IncN-pST15-type plasmids carrying a novel Tn4401b structure and non-Tn4401 elements (NTEKPC) in Klebsiella spp., Escherichia coli, Enterobacter spp., and Citrobacter spp. Of note, mcr-9 was found to coexist with bla KPC-2 in species of the Enterobacter cloacae complex. Our findings suggest that the main mechanism for dissemination of bla KPC-2 is HGT mediated by highly transferable plasmids among species of Enterobacterales in infected/colonized patients, presenting a major challenge for public health interventions in developing countries such as Colombia.
Collapse
|
30
|
Perlaza-Jiménez L, Wu Q, Torres VVL, Zhang X, Li J, Rocker A, Lithgow T, Zhou T, Vijaykrishna D. Forensic genomics of a novel Klebsiella quasipneumoniae type from a neonatal intensive care unit in China reveals patterns of colonization, evolution and epidemiology. Microb Genom 2020; 6:mgen000433. [PMID: 32931409 PMCID: PMC7660260 DOI: 10.1099/mgen.0.000433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
During March 2017, a neonatal patient with severe diarrhoea subsequently developed septicaemia and died, with Klebsiella isolated as the causative microorganism. In keeping with infection control protocols, the coincident illness of an attending staff member and three other neonates with Klebsiella infection triggered an outbreak response, leading to microbiological assessment of isolates collected from the staff member and all 21 co-housed neonates. Multilocus sequence typing and genomic sequencing identified that the isolates from the 21 neonates were of a new Klebsiella sequence type, ST2727, and taxonomically belonged to K. quasipneumoniae subsp. similipneumoniae (formerly referred to as KpIIB). Genomic characterization showed that the isolated ST2727 strains had diverged from other K. quasipneumoniae subsp. similipneumoniae strains at least 90 years ago, whereas the neonatal samples were highly similar with a genomic divergence of 3.6 months. There was no relationship to the Klebsiella isolate from the staff member. This demonstrates that no transmission occurred from staff to patient or between patients. Rather, the data suggest that ST2727 colonized each neonate from a common hospital source. Sequence-based analysis of the genomes revealed several genes for antimicrobial resistance and some virulence features, but suggest that ST2727 is neither extremely-drug resistant nor hypervirulent. Our results highlight the clinical significance and genomic properties of ST2727 and urge genome-based measures be implemented for diagnostics and surveillance within hospital environments. Additionally, the present study demonstrates the need to scale the power of genomic analysis in retrospective studies where relatively few samples are available.
Collapse
Affiliation(s)
| | - Qing Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Von Vergel L. Torres
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Australia
| | - Xiaoxiao Zhang
- Women’s Hospital School of Medicine Zhejiang University, Hangzhou, PR China
| | - Jiahui Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Australia
| | - Andrea Rocker
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Australia
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Australia
| | - Tieli Zhou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Dhanasekaran Vijaykrishna
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Australia
| |
Collapse
|
31
|
Dabos L, Patiño-Navarrete R, Nastro M, Famiglietti A, Glaser P, Rodriguez CH, Naas T. SME-4-producing Serratia marcescens from Argentina belonging to clade 2 of the S. marcescens phylogeny. J Antimicrob Chemother 2020; 74:1836-1841. [PMID: 30993333 DOI: 10.1093/jac/dkz115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/24/2019] [Accepted: 02/20/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND SME carbapenemases are increasingly reported, especially from North and South America. Here, we describe an SME-4-producing Serratia marcescens (SME-Sm) clinical isolate from Argentina and compare its genome with other SME-Sm and Sm isolates recovered from public databases. METHODS Sm isolates were characterized by WGS using Illumina technology, susceptibility testing and MIC determination. Carbapenemase activity was revealed by biochemical tests based on imipenem hydrolysis. A whole-genome phylogeny was estimated for all the Sm isolates retrieved from public databases with kSNP3 and a whole-genome phylogenetic analysis based on non-recombinant core SNPs was inferred for Sm complete genomes and for those encoding any blaSME variants. RESULTS Sm163 was resistant to amoxicillin, temocillin, aztreonam and carbapenems, remaining susceptible to extended-spectrum cephalosporins. WGS analysis of Sm163 revealed a genome of 5139329 bp and a chromosomally encoded blaSME-4 carbapenemase gene located on a genomic island closely related to SmarGI1-1 of Sm N11-02820. Comparison of the Sm genomes revealed that the 14 SME-Sm isolates possess this genomic island inserted at the same loci, that 13/14 belong to clade 1 and that 11/14 form a well-defined subcluster of cluster I of Sm clade 1, while Sm163 belongs to clade 2, suggesting that an SME-encoding genomic island may have been transferred between isolates from different clades. CONCLUSIONS To the best of our knowledge this is the first report of an SME-4-encoding Sm from Argentina. The blaSME-4 gene is located on a SmarGI1-1-like genomic island. The genome of Sm163 belongs to clade 2, unlike all the other SME-Sm isolates, which belong to clade 1.
Collapse
Affiliation(s)
- Laura Dabos
- EA7361 'Structure, dynamic, function and expression of broad spectrum β-lactamases', Paris-Sud University, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Joint research Unit EERA 'Evolution and Ecology of Resistance to Antibiotics', Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Rafael Patiño-Navarrete
- Joint research Unit EERA 'Evolution and Ecology of Resistance to Antibiotics', Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Marcela Nastro
- Departamento de Bioquímica Clinica, Hospital de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Angela Famiglietti
- Departamento de Bioquímica Clinica, Hospital de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Philippe Glaser
- Joint research Unit EERA 'Evolution and Ecology of Resistance to Antibiotics', Institut Pasteur-APHP-University Paris Sud, Paris, France.,CNRS, UMR3525, Paris, France
| | - Carlos H Rodriguez
- Departamento de Bioquímica Clinica, Hospital de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Thierry Naas
- EA7361 'Structure, dynamic, function and expression of broad spectrum β-lactamases', Paris-Sud University, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Joint research Unit EERA 'Evolution and Ecology of Resistance to Antibiotics', Institut Pasteur-APHP-University Paris Sud, Paris, France.,Department of Bacteriology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France
| |
Collapse
|
32
|
Brolund A, Lagerqvist N, Byfors S, Struelens MJ, Monnet DL, Albiger B, Kohlenberg A. Worsening epidemiological situation of carbapenemase-producing Enterobacteriaceae in Europe, assessment by national experts from 37 countries, July 2018. ACTA ACUST UNITED AC 2020; 24. [PMID: 30862330 PMCID: PMC6402177 DOI: 10.2807/1560-7917.es.2019.24.9.1900123] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A survey on the epidemiological situation, surveillance and containment activities for carbapenemase-producing Enterobacteriaceae (CPE) was conducted in European countries in 2018. All 37 participating countries reported CPE cases. Since 2015, the epidemiological stage of CPE expansion has increased in 11 countries. Reference laboratory capability, dedicated surveillance and a specific national containment plan are in existence in 33, 27 and 14 countries, respectively. Enhanced control efforts are needed for CPE containment in Europe.
Collapse
Affiliation(s)
- Alma Brolund
- These authors contributed equally to this work.,Public Health Agency of Sweden, Solna, Sweden
| | - Nina Lagerqvist
- European Public Health Microbiology Training Programme (EUPHEM), European Centre for Disease Prevention and Control, Stockholm, Sweden.,These authors contributed equally to this work.,Public Health Agency of Sweden, Solna, Sweden
| | - Sara Byfors
- Public Health Agency of Sweden, Solna, Sweden
| | - Marc J Struelens
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | | | - Barbara Albiger
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Anke Kohlenberg
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | | |
Collapse
|
33
|
Gama JA, Kloos J, Johnsen PJ, Samuelsen Ø. Host dependent maintenance of a bla NDM-1-encoding plasmid in clinical Escherichia coli isolates. Sci Rep 2020; 10:9332. [PMID: 32518312 PMCID: PMC7283256 DOI: 10.1038/s41598-020-66239-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/15/2020] [Indexed: 11/09/2022] Open
Abstract
Dissemination of bacterial clones carrying plasmid-mediated resistance genes is a major factor contributing to the increasing prevalence of antibiotic resistance. Understanding the evolution of successful clones and the association to mobile resistance elements are therefore crucial. In this study, we determined the sequence of a 145 kb IncC multi-drug resistance plasmid (pK71-77-1-NDM), harbouring resistance genes to last-resort antibiotics including carbapenems. We show that the plasmid is able to transfer into a range of genetically diverse clinical Escherichia coli strains and that the fitness cost imposed on the host is often low. Moreover, the plasmid is stably maintained under non-selective conditions across different genetic backgrounds. However, we also observed a lower conjugation frequency and higher fitness cost in the E. coli sequence type (ST) 73 background, which could partially explain why this clone is associated with a lower level of antibiotic resistance than other E. coli clones. This is supported by a bioinformatical analysis showing that the ST73 background harbours plasmids less frequently than the other studied E. coli STs. Studying the evolution of antibiotic resistance in a clinical context and in diverse genetic backgrounds improves our understanding of the variability in plasmid-host associations.
Collapse
Affiliation(s)
- João Alves Gama
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Julia Kloos
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Pål J Johnsen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway. .,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
34
|
Virulence Potential of a Multidrug-Resistant Escherichia coli Strain Belonging to the Emerging Clonal Group ST101-B1 Isolated from Bloodstream Infection. Microorganisms 2020; 8:microorganisms8060827. [PMID: 32486334 PMCID: PMC7355805 DOI: 10.3390/microorganisms8060827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli EC121 is a multidrug-resistant (MDR) strain isolated from a bloodstream infection of an inpatient with persistent gastroenteritis and T-zone lymphoma that died due to septic shock. Despite causing an extraintestinal infection, previous studies showed that it did not have the usual characteristics of an extraintestinal pathogenic E. coli. Instead, it belonged to phylogenetic group B1 and harbored few known virulence genes. To evaluate the pathogenic potential of strain EC121, an extensive genome sequencing and in vitro characterization of various pathogenicity-associated properties were performed. The genomic analysis showed that strain EC121 harbors more than 50 complete virulence genetic clusters. It also displays the capacity to adhere to a variety of epithelial cell lineages and invade T24 bladder cells, as well as the ability to form biofilms on abiotic surfaces, and survive the bactericidal serum complement activity. Additionally, EC121 was shown to be virulent in the Galleria mellonella model. Furthermore, EC121 is an MDR strain harboring 14 antimicrobial resistance genes, including blaCTX-M-2. Completing the scenario, it belongs to serotype O154:H25 and to sequence type 101-B1, which has been epidemiologically linked to extraintestinal infections as well as to antimicrobial resistance spread. This study with E. coli strain EC121 shows that clinical isolates considered opportunistic might be true pathogens that go underestimated.
Collapse
|
35
|
Genovese C, La Fauci V, D'Amato S, Squeri A, Anzalone C, Costa GB, Fedele F, Squeri R. Molecular epidemiology of antimicrobial resistant microorganisms in the 21th century: a review of the literature. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:256-273. [PMID: 32420962 PMCID: PMC7569612 DOI: 10.23750/abm.v91i2.9176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/10/2020] [Indexed: 12/26/2022]
Abstract
Healthcare-associated infections (HAIs) are the most frequent and severe complication acquired in healthcare settings with high impact in terms of morbidity, mortality and costs. Many bacteria could be implicated in these infections, but, expecially multidrug resistance bacteria could play an important role. Many microbial typing technologies have been developed until to the the bacterial whole-genome sequencing and the choice of a molecular typing method therefore will depend on the skill level and resources of the laboratory and the aim and scale of the investigation. In several studies the molecular investigation of pathogens involved in HAIs was performed with many microorganisms identified as causative agents such as Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Clostridium difficile, Acinetobacter spp., Enterobacter spp., Enterococcus spp., Staphylococcus aureus and several more minor species. Here, we will describe the most and least frequently reported clonal complex, sequence types and ribotypes with their worldwide geographic distribution for the most important species involved in HAIs.
Collapse
Affiliation(s)
- Cristina Genovese
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | - Vincenza La Fauci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | - Smeralda D'Amato
- Postgraduate Medical School in Hygiene and Preventive Medicine, University of Messina, Italy.
| | - Andrea Squeri
- Department of Human Pathology of the adult and developmental age Gaetano Barresi, University of Messina, Messina, Italy.
| | - Carmelina Anzalone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | - Gaetano Bruno Costa
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | - Francesco Fedele
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | | |
Collapse
|
36
|
Räisänen K, Lyytikäinen O, Kauranen J, Tarkka E, Forsblom-Helander B, Grönroos JO, Vuento R, Arifulla D, Sarvikivi E, Toura S, Jalava J. Molecular epidemiology of carbapenemase-producing Enterobacterales in Finland, 2012-2018. Eur J Clin Microbiol Infect Dis 2020; 39:1651-1656. [PMID: 32307627 PMCID: PMC7427707 DOI: 10.1007/s10096-020-03885-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/30/2020] [Indexed: 12/29/2022]
Abstract
Carbapenemase-producing Enterobacterales (CPE) pose an increasing threat to patient safety and healthcare systems globally. We present molecular epidemiology of CPE in Finland during 2012–2018 with detailed characteristics of CPE strains causing clusters during the same time period. All Finnish clinical microbiology laboratories send Enterobacterales isolates with reduced susceptibility to carbapenems or isolates producing carbapenemase to the reference laboratory for further characterization by whole genome sequencing (WGS). In total, 231 CPE strains from 202 patients were identified during 2012–2018. Of the strains, 59% were found by screening and 32% from clinical specimens, the latter were most commonly urine. Travel and/or hospitalization history abroad was reported for 108/171 strains (63%). The most common species were Klebsiella pneumoniae (45%), Escherichia coli (40%), and Citrobacter freundii (6%), and the most common carbapenemase genes blaNDM-like (35%), blaOXA-48-like (33%), and blaKPC-like (31%). During 2012–2018, the annual number of CPE strains increased from 9 to 70 and different sequence types from 7 to 33, and blaOXA-48-like genes became the most prevalent. Of the clusters, 3/8 were linked to traveling or hospitalization abroad and 5/8 were caused by K. pneumoniae clone clonal complex 258. Most of the clusters were caused by K. pneumoniae producing KPC. High variety among different sequence types indicates that majority of CPE cases detected in Finland are likely imported from foreign countries. Nearly one-third of the cases are not found by screening suggesting that there is hidden transmission occurring in the healthcare settings.
Collapse
Affiliation(s)
- Kati Räisänen
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland.
| | - Outi Lyytikäinen
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Eveliina Tarkka
- Clinical Microbiology, University of Helsinki, Helsinki, Finland.,Helsinki University Hospital, Helsinki, Finland
| | - Benita Forsblom-Helander
- Clinical Microbiology, University of Helsinki, Helsinki, Finland.,Helsinki University Hospital, Helsinki, Finland
| | - Juha O Grönroos
- Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Risto Vuento
- Department of Microbiology, Fimlab Laboratories Ltd., Tampere, Finland
| | - Dinah Arifulla
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Emmi Sarvikivi
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Saija Toura
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Jari Jalava
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
37
|
Hammerum AM, Lauridsen CAS, Blem SL, Roer L, Hansen F, Henius AE, Holzknecht BJ, Søes L, Andersen LP, Røder BL, Justesen US, Østergaard C, Søndergaard T, Dzajic E, Wang M, Fulgsang-Damgaard D, Møller KL, Porsbo LJ, Hasman H. Investigation of possible clonal transmission of carbapenemase-producing Klebsiella pneumoniae complex member isolates in Denmark using core genome MLST and National Patient Registry Data. Int J Antimicrob Agents 2020; 55:105931. [PMID: 32135203 DOI: 10.1016/j.ijantimicag.2020.105931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/29/2020] [Accepted: 02/23/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES The aim of this study was to identify clonally-related carbapenemase-producing Klebsiella pneumoniae complex members that could be involved in outbreaks among hospitalized patients in Denmark, and to identify possible epidemiological links. METHODS From January 2014 to June 2018, 103 isolates belonging to the K. pneumoniae complex were collected from 102 patients. From the whole-genome sequencing (WGS) data, presence of genes encoding carbapenemase and multilocal sequence typing (MLST) data were extracted. Core genome MLST (cgMLST) cluster analysis was performed. Using data from the Danish National Patient Registry (DNPR) and reported travel history, presumptive outbreaks were investigated for possible epidemiological links. RESULTS The most common detected carbapenemase gene was blaOXA-48, followed by blaNDM-1. The 103 K. pneumoniae complex isolates belonged to 47 sequence types (STs) and cgMLST subdivided the isolates into 80 different complex types. cgMLST identified 13 clusters with 2-4 isolates per cluster. For five of the 13 clusters, a direct link (the patients stayed at the same ward on the same day) could be detected between at least some of the patients. In two clusters, the patients resided simultaneously at the same hospital, but not the same ward. A possible link (same ward within 1-13 days) was detected for the patients in one cluster. For five clusters detected by cgMLST, no epidemiological link could be detected using data from DNPR. CONCLUSION In this study, cgMLST combined with patient hospital admission data and travel information was found to be a reliable and detailed approach to detect possible clonal transmission of carbapenemase-producing K. pneumoniae complex members.
Collapse
Affiliation(s)
- Anette M Hammerum
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.
| | - Caroline A S Lauridsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Sanne L Blem
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Louise Roer
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Frank Hansen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Anna E Henius
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | - Lillian Søes
- Department of Clinical Microbiology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Leif P Andersen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Bent L Røder
- Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark
| | - Ulrik S Justesen
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Claus Østergaard
- Department of Clinical Microbiology, Lillebaelt Hospital, Vejle, Denmark
| | - Turid Søndergaard
- Department of Clinical Microbiology, Hospital Sønderjylland, Sønderborg, Denmark
| | - Esad Dzajic
- Department of Clinical Microbiology, Hospital South West Jutland, Esbjerg, Denmark
| | - Mikala Wang
- Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Lone Jannok Porsbo
- Infectious Disease Epidemiology & Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Henrik Hasman
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
38
|
Touati A, Mairi A. Epidemiology of carbapenemase-producing Enterobacterales in the Middle East: a systematic review. Expert Rev Anti Infect Ther 2020; 18:241-250. [PMID: 32043905 DOI: 10.1080/14787210.2020.1729126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: The Middle East is actually recognized as endemic for carbapenemases-producing Enterobacterales (CPE) including at least OXA-48-like and NDM-like.Areas covered: We performed a search of PubMed and Scopus using relevant keywords. We included peer-reviewed articles published only in English reporting any data on carbapenemase-producing bacteria from Middle East countries. The last literature search was performed on 26 October 2019. All studies describing carbapenemase-producing Enterobacterales isolated from humans, animals or environmental samples from the Middle East were included.Expert opinion: The Middle-East is considered an endemic region for CPE strains and the extensive international exchange could facilitate the spread of CPE from these countries to other parts of the Globe in which the prevalence of the CPE is low. The expansion of the Middle East conflict has been associated with the rapid collapse of the existing health care system of the concerned countries. Considering that Millions of refugees have fled their country, they could introduce these CPE strains in countries with low endemicity. In conclusion, the health care system actors should take in a count the endemicity of CPE in these countries and develop local surveillance programs to limit the spread of these MDR bacteria.
Collapse
Affiliation(s)
- Abdelaziz Touati
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie
| | - Assia Mairi
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algérie
| |
Collapse
|
39
|
Efficacy of mecillinam against clinical multidrug-resistant Escherichia coli in a murine urinary tract infection model. Int J Antimicrob Agents 2020; 55:105851. [DOI: 10.1016/j.ijantimicag.2019.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/13/2019] [Accepted: 11/17/2019] [Indexed: 02/02/2023]
|
40
|
Abstract
Surveillance studies have shown that OXA-48-like carbapenemases are the most common carbapenemases in Enterobacterales in certain regions of the world and are being introduced on a regular basis into regions of nonendemicity, where they are responsible for nosocomial outbreaks. OXA-48, OXA-181, OXA-232, OXA-204, OXA-162, and OXA-244, in that order, are the most common enzymes identified among the OXA-48-like carbapenemase group. OXA-48 is associated with different Tn1999 variants on IncL plasmids and is endemic in North Africa and the Middle East. OXA-162 and OXA-244 are derivatives of OXA-48 and are present in Europe. OXA-181 and OXA-232 are associated with ISEcp1, Tn2013 on ColE2, and IncX3 types of plasmids and are endemic in the Indian subcontinent (e.g., India, Bangladesh, Pakistan, and Sri Lanka) and certain sub-Saharan African countries. Overall, clonal dissemination plays a minor role in the spread of OXA-48-like carbapenemases, but certain high-risk clones (e.g., Klebsiella pneumoniae sequence type 147 [ST147], ST307, ST15, and ST14 and Escherichia coli ST38 and ST410) have been associated with the global dispersion of OXA-48, OXA-181, OXA-232, and OXA-204. Chromosomal integration of bla OXA-48 within Tn6237 occurred among E. coli ST38 isolates, especially in the United Kingdom. The detection of Enterobacterales with OXA-48-like enzymes using phenotypic methods has improved recently but remains challenging for clinical laboratories in regions of nonendemicity. Identification of the specific type of OXA-48-like enzyme requires sequencing of the corresponding genes. Bacteria (especially K. pneumoniae and E. coli) with bla OXA-48, bla OXA-181, and bla OXA-232 are emerging in different parts of the world and are most likely underreported due to problems with the laboratory detection of these enzymes. The medical community should be aware of the looming threat that is posed by bacteria with OXA-48-like carbapenemases.
Collapse
|
41
|
Iovene MR, Pota V, Galdiero M, Corvino G, Lella FMD, Stelitano D, Passavanti MB, Pace MC, Alfieri A, Franco SD, Aurilio C, Sansone P, Niyas VKM, Fiore M. First Italian outbreak of VIM-producing Serratia marcescensin an adult polyvalent intensive care unit, August-October 2018: A case report and literature review. World J Clin Cases 2019. [DOI: 10.12998/wjcc.v7.i21.3518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
42
|
Iovene MR, Pota V, Galdiero M, Corvino G, Di Lella FM, Stelitano D, Passavanti MB, Pace MC, Alfieri A, Di Franco S, Aurilio C, Sansone P, Niyas VKM, Fiore M. First Italian outbreak of VIM-producing Serratia marcescens in an adult polyvalent intensive care unit, August-October 2018: A case report and literature review. World J Clin Cases 2019; 7:3535-3548. [PMID: 31750335 PMCID: PMC6854422 DOI: 10.12998/wjcc.v7.i21.3535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/14/2019] [Accepted: 07/27/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacteriaceae has become a significant public health concern as hospital outbreaks are now being frequently reported and these organisms are becoming difficult to treat with the available antibiotics.
CASE SUMMARY An outbreak of VIM-producing Serratia marcescens occurred over a period of 11 wk (August, 1 to October, 18) in patients admitted to the adult polyvalent intensive care unit of the University of Campania “Luigi Vanvitelli” located in Naples. Four episodes occurred in three patients (two patients infected, and one patient colonized). All the strains revealed the production of VIM.
CONCLUSION After three decades of carbapenem antibiotics use, the emergence of carbapenem-resistance in Enterobacteriaceae has become a significant concern and a stricter control to preserve its clinical application is mandatory. This is, to our knowledge, the first outbreak of VIM-producing Serratia marcescens in Europe. Surveillance policies must be implemented to avoid future outbreaks.
Collapse
Affiliation(s)
- Maria Rosaria Iovene
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Vincenzo Pota
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Giusy Corvino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Federica Maria Di Lella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Debora Stelitano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Maria Beatrice Passavanti
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Maria Caterina Pace
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Aniello Alfieri
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Sveva Di Franco
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Caterina Aurilio
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Pasquale Sansone
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | | | - Marco Fiore
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| |
Collapse
|
43
|
Haldorsen B, Giske CG, Hansen DS, Helgason KO, Kahlmeter G, Löhr IH, Matuschek E, Österblad M, Rantakokko-Jalava K, Wang M, Småbrekke L, Samuelsen Ø, Sundsfjord A. Performance of the EUCAST disc diffusion method and two MIC methods in detection of Enterobacteriaceae with reduced susceptibility to meropenem: the NordicAST CPE study. J Antimicrob Chemother 2019; 73:2738-2747. [PMID: 30053113 PMCID: PMC6148324 DOI: 10.1093/jac/dky276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Objectives To examine performance of EUCAST disc diffusion and supplementary MIC methods for detection of Enterobacteriaceae with reduced susceptibility to meropenem using EUCAST screening recommendations. Methods Sixty-one Nordic laboratories delivered data on EUCAST disc diffusion (n = 61), semi-automated meropenem MIC (n = 23; VITEK2, n = 20 and Phoenix, n = 3) and gradient meropenem MIC (n = 58) methods. The strains (n = 27) included the major carbapenemase classes (A, n = 4; B, n = 9; D, n = 6) involved in the global spread of carbapenemase-producing Enterobacteriaceae (CPE) and non-CPE strains (n = 8) covering a range of broth microdilution (BMD) meropenem MICs. Results A triplicate Klebsiella variicola (meropenem MIC 0.5 mg/L) harbouring OXA-48 and Escherichia coli ATCC 25922 showed an overall good precision. Meropenem zone diameters below the EUCAST screening cut-off (<27 mm) were reported for strains with MIC ≥1 mg/L (n = 21), irrespective of resistance mechanism. For three strains (MIC = 0.5 mg/L) with OXA-48/-181, eight laboratories provided meropenem zone diameters above the screening cut-off. Very major errors (VMEs) were not observed. The overall distributions of major errors (MEs) and minor errors (mEs) were 9% and 36% (disc diffusion), 26% and 18% (VITEK2) and 7% and 20% (gradient MIC), respectively. Differences in ME and mE distributions between disc diffusion and MIC gradient tests compared with semi-automated methods were significant (P < 0.0001), using BMD MICs as a reference for categorization. Conclusions The EUCAST disc diffusion method is a robust method to screen for CPE but isolates with meropenem MICs <1 mg/L pose challenges. The high ME rate in semi-automated methods might deter appropriate use of carbapenems in CPE infections with limited therapeutic options.
Collapse
Affiliation(s)
- Bjørg Haldorsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Christian G Giske
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dennis S Hansen
- Department of Clinical Microbiology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Kristjan Orri Helgason
- Department of Clinical Microbiology, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Iren H Löhr
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
| | | | - Monica Österblad
- Bacterial Infections Unit, National Institute for Health and Welfare, Turku, Finland
| | | | - Mikala Wang
- Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Småbrekke
- Department of Pharmacy, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.,Department of Pharmacy, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Arnfinn Sundsfjord
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.,Department of Medical Biology, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway
| | | |
Collapse
|
44
|
Antimicrobial activity of amphipathic α,α-disubstituted β-amino amide derivatives against ESBL - CARBA producing multi-resistant bacteria; effect of halogenation, lipophilicity and cationic character. Eur J Med Chem 2019; 183:111671. [PMID: 31536892 DOI: 10.1016/j.ejmech.2019.111671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 02/06/2023]
Abstract
The rapid emergence and spread of multi-resistant bacteria have created an urgent need for new antimicrobial agents. We report here a series of amphipathic α,α-disubstituted β-amino amide derivatives with activity against 30 multi-resistant clinical isolates of Gram-positive and Gram-negative bacteria, including isolates with extended spectrum β-lactamase - carbapenemase (ESBL-CARBA) production. A variety of halogenated aromatic side-chains were investigated to improve antimicrobial potency and minimize formation of Phase I metabolites. Net positive charge and cationic character of the derivatives had an important effect on toxicity against human cell lines. The most potent and selective derivative was the diguanidine derivative 4e with 3,5-di-brominated benzylic side-chains. Derivative 4e displayed minimum inhibitory concentrations (MIC) of 0.25-8 μg/mL against Gram-positive and Gram-negative reference strains, and 2-32 μg/mL against multi-resistant clinical isolates. Derivative 4e showed also low toxicity against human red blood cells (EC50 > 200 μg/mL), human hepatocyte carcinoma cells (HepG2: EC50 > 64 μg/mL), and human lung fibroblast cells (MRC-5: EC50 > 64 μg/mL). The broad-spectrum antimicrobial activity and low toxicity of diguanylated derivatives such as 4e make them attractive as lead compounds for development of novel antimicrobial drugs.
Collapse
|
45
|
Identification of Mutations in the mrdA Gene Encoding PBP2 That Reduce Carbapenem and Diazabicyclooctane Susceptibility of Escherichia coli Clinical Isolates with Mutations in ftsI (PBP3) and Which Carry bla NDM-1. mSphere 2019; 4:4/4/e00074-19. [PMID: 31270174 PMCID: PMC6609223 DOI: 10.1128/msphere.00074-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Emerging antibacterial resistance is a consequence of the continued use of our current antibacterial therapies, and it is limiting their utility, especially for infections caused by multidrug-resistant isolates. β-Lactams have enjoyed extensive clinical success, but their broad usage is linked to perhaps the most extensive and progressive example of resistance development for any antibacterial scaffold. In Gram-negative pathogens, this largely involves constant evolution of new β-lactamases able to degrade successive generations of this scaffold. In addition, more recently, alterations in the targets of these compounds, penicillin-binding proteins (PBPs), are being described in clinical isolates, which often also have multiple β-lactamases. This study underscores the multifactorial nature of β-lactam resistance by uncovering alterations of PBP2 that reduce susceptibility to carbapenems in E. coli clinical isolates that also have alterations of PBP3 and express the NDM-1 β-lactamase. The changes in PBP2 also reduced susceptibility to the intrinsic antibacterial activity of some diazabicyclooctane (DBO) compounds that can target PBP2. This may have implications for the development and use of the members of this relatively newer scaffold that are inhibitors of PBP2 in addition to their inhibition of serine-β-lactamases. Penicillin-binding proteins (PBPs) are essential for bacterial cell wall biosynthesis, and several are clinically validated antibacterial targets of β-lactam antibiotics. We identified mutations in the mrdA gene encoding the PBP2 protein in two Escherichia coliblaNDM-1 clinical isolates that reduce susceptibility to carbapenems and to the intrinsic antibacterial activity of a diazabicyclooctane (DBO) PBP2 and β-lactamase inhibitor. These mutations coexisted with previously described mutations in ftsI (encoding PBP3) that reduce susceptibility to monobactams, penicillins, and cephalosporins. Clinical exposure to β-lactams is driving the emergence of multifactorial resistance that may impact the therapeutic usefulness of existing antibacterials and novel compounds that target PBPs. IMPORTANCE Emerging antibacterial resistance is a consequence of the continued use of our current antibacterial therapies, and it is limiting their utility, especially for infections caused by multidrug-resistant isolates. β-Lactams have enjoyed extensive clinical success, but their broad usage is linked to perhaps the most extensive and progressive example of resistance development for any antibacterial scaffold. In Gram-negative pathogens, this largely involves constant evolution of new β-lactamases able to degrade successive generations of this scaffold. In addition, more recently, alterations in the targets of these compounds, penicillin-binding proteins (PBPs), are being described in clinical isolates, which often also have multiple β-lactamases. This study underscores the multifactorial nature of β-lactam resistance by uncovering alterations of PBP2 that reduce susceptibility to carbapenems in E. coli clinical isolates that also have alterations of PBP3 and express the NDM-1 β-lactamase. The changes in PBP2 also reduced susceptibility to the intrinsic antibacterial activity of some diazabicyclooctane (DBO) compounds that can target PBP2. This may have implications for the development and use of the members of this relatively newer scaffold that are inhibitors of PBP2 in addition to their inhibition of serine-β-lactamases.
Collapse
|
46
|
Xu J, He F. Characterization of a NDM-7 carbapenemase-producing Escherichia coli ST410 clinical strain isolated from a urinary tract infection in China. Infect Drug Resist 2019; 12:1555-1564. [PMID: 31239731 PMCID: PMC6559143 DOI: 10.2147/idr.s206211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/17/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose: The emergence of New Delhi metallo-beta-lactamase (NDM) carbapenemase-producing Escherichia coli leaves few therapeutic options. Infections due to NDM-7 carbapenemase-producing E. coli are infrequent. In this study, we report the whole-genome sequence of an NDM-7 carbapenemase-producing E. coli belonging to sequence type (ST) 410 isolated from a patient with a urinary tract infection in China. Patients and methods: The NDM-7 producing E. coli strain EC25 was isolated from a urine sample of a male patient hospitalized in a tertiary hospital in Zhejiang Province of China. Susceptibility assay of antibiotics was performed according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI). The whole genome of the strain was sequenced, and the bla NDM-7-harboring plasmid was analyzed. The genomic characterization and molecular epidemiology of the strain were further elucidated. Results: E. coli EC25 was resistant to all antimicrobials tested, except tigecycline and colistin. The whole genome of E. coli EC25 was composed of one chromosomal DNA and five plasmids. Four virulence factors and twenty-five antimicrobial resistance genes, including bla NDM-7, were identified. Resistance genes were all located in an IncF-type plasmid (pEC25-1), except bla NDM-7, which was located in an individual IncX3-type plasmid (pEC25_NDM-7). Twenty-one phylogenetically related strains were identified. The phylogenetically related E. coli ST410 strains exist globally. The closest relative strain of EC25 was a strain isolated from Sichuan province of China in 2016, with a similar IncX3-type plasmid that encoded bla NDM-5. Conclusion: Our study reports the emergence of an E. coli ST410 strain harboring bla NDM-7 in China. This strain may evolve as a successful epidemic clone of NDM-producing E. coli in China, and the bla NDM gene is prone to mutate during its dissemination.
Collapse
Affiliation(s)
- Juan Xu
- Institute of Hygiene, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, 310013, People's Republic of China
| | - Fang He
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, People's Republic of China
| |
Collapse
|
47
|
Abstract
Infections due to carbapenemase-producing Gram-negative pathogens are associated with limited treatment options and consequently lead to increased mortality and morbidity. In response, combinations of existing β-lactams and novel β-lactamase inhibitors, such as ceftazidime-avibactam (CAZ-AVI), have been developed as alternative treatment options. To understand the development of resistance and evolutionary trajectories under CAZ-AVI exposure, we studied the effects of ceftazidime (CAZ) and CAZ-AVI on the carbapenemase OXA-48 and the epidemic OXA-48 plasmid in Escherichia coli Exposure of CAZ and CAZ-AVI resulted in single (P68A) and double (P68A,Y211S) amino acid substitutions in OXA-48, respectively. The antimicrobial susceptibility data and enzyme kinetics showed that the P68A substitution was responsible for an increased activity toward CAZ, whereas P68A,Y211S led to a decrease in the inhibitory activity of AVI. X-ray crystallography and molecular modeling of the mutants demonstrated increased flexibility within the active site, which could explain the elevated CAZ hydrolysis and reduced inhibitory activity of AVI. Interestingly, these substitutions resulted in collateral effects compromising the activity of OXA-48 toward carbapenems and penicillins. Moreover, exposure to CAZ-AVI selected for mutations within the OXA-48-encoding plasmid that severely reduced fitness in the absence of antimicrobial selection. These evolutionary trade-offs may contribute to limit the evolution of OXA-48-mediated CAZ and CAZ-AVI resistance, as well as potentially resensitize isolates toward other therapeutic alternatives.IMPORTANCE The recent introduction of novel β-lactam/β-lactamase inhibitor combinations like ceftazidime-avibactam has increased our ability to treat infections caused by multidrug-resistant Gram-negative bacteria, including carbapenemase-producing Enterobacterales However, the increasing number of cases of reported resistance to ceftazidime-avibactam is a concern. OXA-48 is a carbapenemase that has no significant effect on ceftazidime, but is inhibited by avibactam. Since isolates with OXA-48 frequently harbor extended-spectrum β-lactamases that are inhibited by avibactam, it is likely that ceftazidime-avibactam will be used to treat infections caused by OXA-48-producing Enterobacterales. Our data show that exposure to ceftazidime-avibactam can lead to changes in OXA-48, resulting in increased ability to hydrolyze ceftazidime and withstand the inhibitory effect of avibactam. Thus, resistance toward ceftazidime-avibactam among OXA-48-producing Enterobacterales should be monitored. Interestingly, the compromising effect of the amino acid substitutions in OXA-48 on other β-lactams and the effect of ceftazidime-avibactam exposure on the epidemic OXA-48 plasmid indicate that the evolution of ceftazidime-avibactam resistance comes with collateral effects.
Collapse
|
48
|
Elstrøm P, Astrup E, Hegstad K, Samuelsen Ø, Enger H, Kacelnik O. The fight to keep resistance at bay, epidemiology of carbapenemase producing organisms (CPOs), vancomycin resistant enterococci (VRE) and methicillin resistant Staphylococcus aureus (MRSA) in Norway, 2006 - 2017. PLoS One 2019; 14:e0211741. [PMID: 30716133 PMCID: PMC6361454 DOI: 10.1371/journal.pone.0211741] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/18/2019] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Scandinavian countries have traditionally had a low prevalence of resistant organisms, but have in recent years experienced a change in their epidemiology. We aim to describe the epidemiology of carbapenemase-producing organisms (CPOs), vancomycin-resistant enterococci (VRE) and methicillin-resistant S. aureus (MRSA) in Norway, measure the importance of infections contracted abroad, and assess the morbidity and mortality associated with these resistant bacteria in Norway. METHODS AND MATERIALS We used data from the Norwegian surveillance system for communicable diseases covering all findings of the selected resistant bacteria including both infections and colonisation, in the period 2006-2017. Annual trends were assessed using negative binomial regression. For MRSA, we were able to calculate the Morisita-Horn index and transmission numbers following importation in order to assess the effect this had on further domestic transmission. RESULTS The incidence rates (per 100,000 personyears) of the three groups of resistant bacteria have increased during the period. In 2017 the incidence rates were 0.82 for CPOs, 7.09 for VRE and 43.8 for MRSA. 81% of CPO cases were diagnosed in hospitals, but 73% were infected abroad. Most VRE cases were infected in Norwegian hospitals, 85% were associated with hospitals outbreaks. MRSA was predominantly diagnosed in the community, only 21% were diagnosed in hospitals. Of all MRSA cases, 35% were infected in other countries. Most MRSA spa-types were not identified again after introduction, resulting in a transmission of MRSA equivalent to a mean of 0.30 persons infected from each spa-type identified (range: 0-22). The proportion of infections among all notified cases within each diagnose was 44% for MRSA, 9% for VRE and 45% for CPOs. Among persons notified with bacteraemia, the 30 days all-cause mortality were 20%, 16% and 50% for MRSA, VRE and CPOs respectively. DISCUSSION The incidence rates of CPOs, VRE and MRSA in Norway are low, but increasing. The continuing increase of notified resistant bacteria highlights the need for a revision of existing infection prevention and control guidelines.
Collapse
Affiliation(s)
- Petter Elstrøm
- Department of Antibiotic Resistance and Infection Prevention, Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Astrup
- Department of Antibiotic Resistance and Infection Prevention, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristin Hegstad
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Research Group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø –The Artic University of Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Microbial Pharmacology and Population Dynamics Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø –The Artic University of Norway, Tromsø, Norway
| | - Hege Enger
- Norwegian Reference Laboratory for MRSA, St. Olavs University Hospital, Trondheim, Norway
| | - Oliver Kacelnik
- Department of Antibiotic Resistance and Infection Prevention, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
49
|
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) contribute significantly to the global public health threat of antimicrobial resistance. OXA-48 and its variants are unique carbapenemases with low-level hydrolytic activity toward carbapenems but no intrinsic activity against expanded-spectrum cephalosporins. bla OXA-48 is typically located on a plasmid but may also be integrated chromosomally, and this gene has progressively disseminated throughout Europe and the Middle East. Despite the inability of OXA-48-like carbapenemases to hydrolyze expanded-spectrum cephalosporins, pooled isolates demonstrate high variable resistance to ceftazidime and cefepime, likely representing high rates of extended-spectrum beta-lactamase (ESBL) coproduction. In vitro data from pooled studies suggest that avibactam is the most potent beta-lactamase inhibitor when combined with ceftazidime, cefepime, aztreonam, meropenem, or imipenem. Resistance to novel avibactam combinations such as imipenem-avibactam or aztreonam-avibactam has not yet been reported in OXA-48 producers, although only a few clinical isolates have been tested. Although combination therapy is thought to improve the chances of clinical cure and survival in CPE infection, successful outcomes were seen in ∼70% of patients with infections caused by OXA-48-producing Enterobacteriaceae treated with ceftazidime-avibactam monotherapy. A carbapenem in combination with either amikacin or colistin has achieved treatment success in a few case reports. Uncertainty remains regarding the best treatment options and strategies for managing these infections. Newly available antibiotics such as ceftazidime-avibactam show promise; however, recent reports of resistance are concerning. Newer choices of antimicrobial agents will likely be required to combat this problem.
Collapse
|
50
|
Igumnova EM, Mishchenko E, Haug T, Blencke HM, Sollid JUE, Fredheim EGA, Lauksund S, Stensvåg K, Strøm MB. Amphipathic sulfonamidobenzamides mimicking small antimicrobial marine natural products; investigation of antibacterial and anti-biofilm activity against antibiotic resistant clinical isolates. Bioorg Med Chem 2018; 26:4930-4941. [PMID: 30185388 DOI: 10.1016/j.bmc.2018.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/22/2018] [Accepted: 08/26/2018] [Indexed: 01/20/2023]
Abstract
There is an urgent need for novel antimicrobial agents to address the threat of bacterial resistance to modern society. We have used a structural motif found in antimicrobial marine hit compounds as a basis for synthesizing a library of antimicrobial sulfonamidobenzamide lead compounds. Potent in vitro antimicrobial activity against clinically relevant bacterial strains was demonstrated for two compounds, G6 and J18, with minimal inhibitory concentrations (MIC) of 4-16 μg/ml against clinical methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). The two compounds G6 and J18, together with several other compounds of this library, also caused ≥90% eradication of pre-established biofilm of methicillin-resistant S. epidermidis (MRSE) at 40 μg/ml. Using a luciferase assay, the mechanism of action of G6 was shown to resemble the biocide chlorhexidine by targeting the bacterial cell membrane.
Collapse
Affiliation(s)
- Elizaveta M Igumnova
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Ekaterina Mishchenko
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Tor Haug
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Hans-Matti Blencke
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Johanna U Ericson Sollid
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Elizabeth G Aarag Fredheim
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Silje Lauksund
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Klara Stensvåg
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Morten B Strøm
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway.
| |
Collapse
|