1
|
Ouachikh O, Chaix R, Sontheimer A, Coste J, Aider OA, Dautkulova A, Abdelouahab K, Hafidi A, Salah MB, Pereira B, Lemaire JJ. Brain color-coded diffusion imaging: Utility of ACPC reorientation of gradients in healthy subjects and patients. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108449. [PMID: 39378632 DOI: 10.1016/j.cmpb.2024.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/08/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND AND OBJECTIVE The common structural interpretation of diffusion color-encoded (DCE) maps assumes that the brain is aligned with the gradients of the MRI machine. This is seldom achieved in the field, leading to incorrect red (R), green (G) and blue (B) DCE values for the expected orientation of fiber bundles. We studied the virtual reorientation of gradients according to the anterior commissure - posterior commissure (ACPC) system on the RGB derivatives. METHODS We measured mean ± standard deviation of average, standard deviation, skewness and kurtosis of RGB derivatives, before (rO) and after (acpcO) gradient reorientation, in one healthy-subject group with head routinely positioned (HS-routine), and in two patient groups, one with essential tremor (ET-Opti), and one with Parkinson's disease (PD-Opti), with head position optimized according to ACPC before acquisition. We studied the pitch, roll and yaw angles of reorientation, and we compared rO and acpcO conditions, and groups (ad hoc statistics). RESULTS Pitch (maximum in the HS-routine group) was greater than roll and yaw. After reorientation of gradients, in the HS-routine group, DCE average increased, and Stddev, skewness and kurtosis decreased; R, G and B average increased, and R and B skewness and kurtosis decreased. By contrast, in the ET-Opti group and the PD-Opti group, R, G and B, average and Stddev increased, and skewness and kurtosis decreased. In both rO and acpcO conditions, in the ET-Opti and PD-Opti groups, average and standard deviation were higher, while skewness and kurtosis were lower. CONCLUSIONS DCE map interpretability depends on brain orientation. Reorientation realigns gradients with the anatomic and physiologic position of the head and brain, as exemplified.
Collapse
Affiliation(s)
- Omar Ouachikh
- Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Remi Chaix
- Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Anna Sontheimer
- Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Jerome Coste
- Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Omar Ait Aider
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Aigerim Dautkulova
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Kamel Abdelouahab
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Aziz Hafidi
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Maha Ben Salah
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Bruno Pereira
- Direction de la Recherche Clinique et de l'Innovation, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Jean-Jacques Lemaire
- Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
2
|
Zhang N, Zhao W, Shang S, Zhang H, Lv X, Chen L, Dou W, Ye J. Diffusion Kurtosis Imaging in Diagnosing Parkinson's Disease: A Preliminary Comparison Study Between Kurtosis Metric and Radiomic Features. Acad Radiol 2024:S1076-6332(24)00435-5. [PMID: 39122585 DOI: 10.1016/j.acra.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 08/12/2024]
Abstract
RATIONALE AND OBJECTIVES Parkinson's disease (PD) shows small structural changes in nigrostriatal pathways, which can be sensitively captured through diffusion kurtosis imaging (DKI). However, the value of DKI and its radiomic features in the classification performance of PD still need confirmation. This study aimed to compare the diagnostic efficiency of DKI-derived kurtosis metric and its radiomic features with different machine learning models for PD classification. MATERIALS AND METHODS 75 people with PD and 80 healthy individuals had their brains scanned using DKI. These images were pre-processed and the standard atlas were non-linearly registered to them. With the labels in atlas, different brain regions in nigrostriatal pathways, including the caudate nucleus, putamen, pallidum, thalamus, and substantia nigra, were chosen as the region of interests (ROIs) to warped to the native space to measure the mean kurtosis (MK). Additionally, new radiomic features were developed for comparison. To handle the large amount of data, a statistical method called Z-score normalization and another method called LASSO regression were used to simplify the information. From this, a few most important features were chosen, and a combined score called Radscore was calculated using LASSO regression. For the comprehensive analyses, three different conventional machine learning models were then created: logistic regression (LR), support vector machine (SVM), and random forest (RF). To ensure the models were accurate, a process called 10-fold cross-validation was used, where the data were split into 10 parts for training and testing. RESULTS Using MK alone, the models achieved good results in correctly identifying PD in the validation set, with LR at 0.90, RF at 0.93, and SVM at 0.90. When the radiomic features were added, the models performed even better, with LR at 0.92, RF at 0.95, and SVM at 0.91. Additionally, a nomogram combining all the information was created to predict the likelihood of someone having PD, which had an AUC of 0.91. CONCLUSION These findings suggest that the combination of DKI measurements and radiomic features can effectively diagnose PD by providing more detailed information about the brain's condition and the processes involved in the disease.
Collapse
Affiliation(s)
- Ninggui Zhang
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China (N.Z., S.S., H.Z., J.Y.)
| | - Wei Zhao
- Department of Gastrointestinal Surgery, Northern Jiangsu People's Hospital, Yangzhou University, China (W.Z.)
| | - Song'an Shang
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China (N.Z., S.S., H.Z., J.Y.)
| | - Hongying Zhang
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China (N.Z., S.S., H.Z., J.Y.)
| | - Xiang Lv
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, China (X.I., L.C.)
| | - Lanlan Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, China (X.I., L.C.)
| | - Weiqiang Dou
- MR Research China, GE Healthcare, Beijing, China (W.D.)
| | - Jing Ye
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China (N.Z., S.S., H.Z., J.Y.).
| |
Collapse
|
3
|
Albadawi EA. Microstructural Changes in the Corpus Callosum in Neurodegenerative Diseases. Cureus 2024; 16:e67378. [PMID: 39310519 PMCID: PMC11413839 DOI: 10.7759/cureus.67378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
The corpus callosum, the largest white matter structure in the brain, plays a crucial role in interhemispheric communication and cognitive function. This review examines the microstructural changes observed in the corpus callosum across various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis (ALS). New neuroimaging studies, mainly those that use diffusion tensor imaging (DTI) and advanced tractography methods, were put together to show how changes have happened in the organization of white matter and the connections between them. Some of the most common ways the corpus callosum breaks down are discussed, including less fractional anisotropy, higher mean diffusivity, and atrophy in certain regions. The relationship between these microstructural changes and cognitive decline, motor dysfunction, and disease progression is explored. Additionally, we consider the potential of corpus callosum imaging as a biomarker for early disease detection and monitoring. Studies show that people with these disorders have lower fractional anisotropy and higher mean diffusivity in the corpus callosum, often in ways that are specific to the disease. These changes often happen before gray matter atrophy and are linked to symptoms, which suggests that the corpus callosum could be used as an early sign of neurodegeneration. The review also highlights the implications of these findings for understanding disease mechanisms and developing therapeutic strategies. Future directions, including the application of advanced imaging techniques and longitudinal studies, are discussed to elucidate the role of corpus callosum degeneration in neurodegenerative processes. This review underscores the importance of the corpus callosum in understanding the pathophysiology of neurodegenerative diseases and its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Emad A Albadawi
- Department of Basic Medical Sciences, College of Medicine, Taibah Univeristy, Madinah, SAU
| |
Collapse
|
4
|
Haliasos N, Giakoumettis D, Gnanaratnasingham P, Low HL, Misbahuddin A, Zikos P, Sakkalis V, Cleo S, Vakis A, Bisdas S. Personalizing Deep Brain Stimulation Therapy for Parkinson's Disease With Whole-Brain MRI Radiomics and Machine Learning. Cureus 2024; 16:e59915. [PMID: 38854362 PMCID: PMC11161197 DOI: 10.7759/cureus.59915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Background Deep brain stimulation (DBS) is a well-recognised treatment for advanced Parkinson's disease (PD) patients. Structural brain alterations of the white matter can correlate with disease progression and act as a biomarker for DBS therapy outcomes. This study aims to develop a machine learning-driven predictive model for DBS patient selection using whole-brain white matter radiomics and common clinical variables. Methodology A total of 120 PD patients underwent DBS of the subthalamic nucleus. Their therapy effect was assessed at the one-year follow-up with the Unified Parkinson's Disease Rating Scale-part III (UPDRSIII) motor component. Radiomics analysis of whole-brain white matter was performed with PyRadiomics. The following machine learning methods were used: logistic regression (LR), support vector machine, naïve Bayes, K-nearest neighbours, and random forest (RF) to allow prediction of clinically meaningful UPRDSIII motor response before and after. Clinical variables were also added to the model to improve accuracy. Results The RF model showed the best performance on the final whole dataset with an area under the curve (AUC) of 0.99, accuracy of 0.95, sensitivity of 0.93, and specificity of 0.97. At the same time, the LR model showed an AUC of 0.93, accuracy of 0.88, sensitivity of 0.84, and specificity of 0.91. Conclusions Machine learning models can be used in clinical decision support tools which can deliver true personalised therapy recommendations for PD patients. Clinicians and engineers should choose between best-performing, less interpretable models vs. most interpretable, lesser-performing models. Larger clinical trials would allow to build trust among clinicians and patients to widely use these AI tools in the future.
Collapse
Affiliation(s)
- Nikolaos Haliasos
- Neurosurgery, Queen's Hospital, Romford, GBR
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University, London, GBR
- Health and Medical Sciences, The Alan Turing Institute for Data Science and Artificial Intelligence, London, GBR
| | | | | | | | | | | | - Vangelis Sakkalis
- Institute of Computer Science, Foundation for Research and Technology, Heraklion, GRC
| | - Spanaki Cleo
- Neurology, School of Medicine, University of Crete, Heraklion, GRC
| | - Antonios Vakis
- Neurosurgery, School of Medicine, University of Crete, Heraklion, GRC
| | | |
Collapse
|
5
|
Vincent B, Shukla M. The Common Denominators of Parkinson's Disease Pathogenesis and Methamphetamine Abuse. Curr Neuropharmacol 2024; 22:2113-2156. [PMID: 37691228 PMCID: PMC11337683 DOI: 10.2174/1570159x21666230907151226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023] Open
Abstract
The pervasiveness and mortality associated with methamphetamine abuse have doubled during the past decade, suggesting a possible worldwide substance use crisis. Epitomizing the pathophysiology and toxicology of methamphetamine abuse proclaims severe signs and symptoms of neurotoxic and neurobehavioral manifestations in both humans and animals. Most importantly, chronic use of this drug enhances the probability of developing neurodegenerative diseases manifolds. Parkinson's disease is one such neurological disorder, which significantly and evidently not only shares a number of toxic pathogenic mechanisms induced by methamphetamine exposure but is also interlinked both structurally and genetically. Methamphetamine-induced neurodegeneration involves altered dopamine homeostasis that promotes the aggregation of α-synuclein protofibrils in the dopaminergic neurons and drives these neurons to make them more vulnerable to degeneration, as recognized in Parkinson's disease. Moreover, the pathologic mechanisms such as mitochondrial dysfunction, oxidative stress, neuroinflammation and decreased neurogenesis detected in methamphetamine abusers dramatically resemble to what is observed in Parkinson's disease cases. Therefore, the present review comprehensively cumulates a holistic illustration of various genetic and molecular mechanisms putting across the notion of how methamphetamine administration and intoxication might lead to Parkinson's disease-like pathology and Parkinsonism.
Collapse
Affiliation(s)
- Bruno Vincent
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| | - Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210, Bangkok, Thailand
| |
Collapse
|
6
|
Jellinger KA. Pathobiology of Cognitive Impairment in Parkinson Disease: Challenges and Outlooks. Int J Mol Sci 2023; 25:498. [PMID: 38203667 PMCID: PMC10778722 DOI: 10.3390/ijms25010498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cognitive impairment (CI) is a characteristic non-motor feature of Parkinson disease (PD) that poses a severe burden on the patients and caregivers, yet relatively little is known about its pathobiology. Cognitive deficits are evident throughout the course of PD, with around 25% of subtle cognitive decline and mild CI (MCI) at the time of diagnosis and up to 83% of patients developing dementia after 20 years. The heterogeneity of cognitive phenotypes suggests that a common neuropathological process, characterized by progressive degeneration of the dopaminergic striatonigral system and of many other neuronal systems, results not only in structural deficits but also extensive changes of functional neuronal network activities and neurotransmitter dysfunctions. Modern neuroimaging studies revealed multilocular cortical and subcortical atrophies and alterations in intrinsic neuronal connectivities. The decreased functional connectivity (FC) of the default mode network (DMN) in the bilateral prefrontal cortex is affected already before the development of clinical CI and in the absence of structural changes. Longitudinal cognitive decline is associated with frontostriatal and limbic affections, white matter microlesions and changes between multiple functional neuronal networks, including thalamo-insular, frontoparietal and attention networks, the cholinergic forebrain and the noradrenergic system. Superimposed Alzheimer-related (and other concomitant) pathologies due to interactions between α-synuclein, tau-protein and β-amyloid contribute to dementia pathogenesis in both PD and dementia with Lewy bodies (DLB). To further elucidate the interaction of the pathomechanisms responsible for CI in PD, well-designed longitudinal clinico-pathological studies are warranted that are supported by fluid and sophisticated imaging biomarkers as a basis for better early diagnosis and future disease-modifying therapies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
7
|
Jahanshahi A, Ghareaghaji N, Hassanpour S, Vafadar A, Mousavi S, Khezerloo D. Cortical gray matter and cerebral white matter atrophy and asymmetry in Parkinson's disease patients with normal cognitive precede. Int J Neurosci 2023:1-6. [PMID: 38085250 DOI: 10.1080/00207454.2023.2294260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Parkinson's disease is the second most common neurodegenerative disorder with complex and distributed motor and non-motor symptoms. In this study, cortical gray matter (GM) and cerebral white matter (WM) overall atrophy, and asymmetry of atrophy are investigated in PD with normal cognitive function. METHOD Forty-eight male Parkinson's disease(PD) patients with normal cognitive precede (PD-NC), and thirty matched healthy control (HC) subjects were selected from the Parkinson's Progression Markers Initiative (PPMI) database. Brain structures volumes were extracted using Freesurfer software based on subject 3 tesla MRI images. The normalized volume of cortical GM and cerebral WM were compared in two study groups, and then the asymmetry index (AI) of GM and WM atrophy was also assessed in two groups. Statistical analysis was constructed using a t-test with p < 0.05 of significance. RESULTS No significant difference was observed in the volume of cortical GM and cerebral WM in the two study groups. The cortical GM asymmetry index in the PD-NC group was significantly (p = 0.01) higher than the HC group, however, no difference was observed for the cerebral WM asymmetry index. CONCLUSION Atrophy in cortical GM and WM was not observed between the PD-NC and the HC group, however, the asymmetry index in GM was significant between the two group. It seems that the brain's bilateral balance has ruptured in PD. Cortical GM asymmetry in PD-NC can be considered a potent biomarker and should be investigated more in the future. In future studies, construction of a longitudinal study on this issue could be useful.
Collapse
Affiliation(s)
- Amirreza Jahanshahi
- Department of Radiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Ghareaghaji
- Department of Radiology, Faculty of Allied Medical Sciences, Tabriz University of Medical Science, Tabriz, Iran
| | - Samaneh Hassanpour
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Vafadar
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeid Mousavi
- Department of Statistics and Epidemiology, Faculty of Health Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Khezerloo
- Department of Radiology, Faculty of Allied Medical Sciences, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
8
|
Huang X, He Q, Ruan X, Li Y, Kuang Z, Wang M, Guo R, Bu S, Wang Z, Yu S, Chen A, Wei X. Structural connectivity from DTI to predict mild cognitive impairment in de novo Parkinson's disease. Neuroimage Clin 2023; 41:103548. [PMID: 38061176 PMCID: PMC10755095 DOI: 10.1016/j.nicl.2023.103548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/01/2024]
Abstract
BACKGROUND Early detection of Parkinson's disease (PD) patients at high risk for mild cognitive impairment (MCI) can help with timely intervention. White matter structural connectivity is considered an early and sensitive indicator of neurodegenerative disease. OBJECTIVES To investigate whether baseline white matter structural connectivity features from diffusion tensor imaging (DTI) of de novo PD patients can help predict PD-MCI conversion at an individual level using machine learning methods. METHODS We included 90 de novo PD patients who underwent DTI and 3D T1-weighted imaging. Elastic net-based feature consensus ranking (ENFCR) was used with 1000 random training sets to select clinical and structural connectivity features. Linear discrimination analysis (LDA), support vector machine (SVM), K-nearest neighbor (KNN) and naïve Bayes (NB) classifiers were trained based on features selected more than 500 times. The area under the ROC curve (AUC), accuracy (ACC), sensitivity (SEN) and specificity (SPE) were used to evaluate model performance. RESULTS A total of 57 PD patients were classified as PD-MCI nonconverters, and 33 PD patients were classified as PD-MCI converters. The models trained with clinical data showed moderate performance (AUC range: 0.62-0.68; ACC range: 0.63-0.77; SEN range: 0.45-0.66; SPE range: 0.64-0.84). Models trained with structural connectivity (AUC range, 0.81-0.84; ACC range, 0.75-0.86; SEN range, 0.77-0.91; SPE range, 0.71-0.88) performed similar to models that were trained with both clinical and structural connectivity data (AUC range, 0.81-0.85; ACC range, 0.74-0.85; SEN range, 0.79-0.91; SPE range, 0.70-0.89). CONCLUSIONS Baseline white matter structural connectivity from DTI is helpful in predicting future MCI conversion in de novo PD patients.
Collapse
Affiliation(s)
- Xiaofei Huang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China
| | - Qing He
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China
| | - Xiuhang Ruan
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China
| | - Yuting Li
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China; Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Guangdong, China
| | - Zhanyu Kuang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China
| | - Mengfan Wang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China
| | - Riyu Guo
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China
| | - Shuwen Bu
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China
| | - Zhaoxiu Wang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China
| | - Shaode Yu
- School of Information and Communication Engineering, Communication University of China, Beijing, China.
| | - Amei Chen
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China.
| | - Xinhua Wei
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangdong, China.
| |
Collapse
|
9
|
Liao TW, Wang JJ, Tsai CC, Wang PN, Chen YL, Wu YM, Wu YR. A fixel-based analysis of white matter reductions early detects Parkinson disease with mild cognitive impairment. Biomed J 2023; 47:100678. [PMID: 37949112 PMCID: PMC11399627 DOI: 10.1016/j.bj.2023.100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND White matter (WM) tract alterations are early signs of cognitive impairment in Parkinson disease (PD) patients. Fixel-based analysis (FBA) has advantages over traditional diffusion tensor imaging in managing complex and crossing fibers. We used FBA to measure fiber-specific changes in patients with PD mild cognitive impairment (PD-MCI) and PD normal cognition (PD-NC). METHODS Seventy-one patients with PD without dementia were included: 39 PD-MCI and 32 PD-NC. All underwent diffusion-weighted imaging, clinical examinations, and tests to evaluate their cognitive function globally and in five cognitive domains. FBA was used to investigate fiber-tract alterations and compare PD-MCI with PD-NC subjects. Correlations with each cognitive test were analyzed. RESULTS Patients with PD-MCI were significantly older (p = 0.044), had a higher male-to-female ratio (P = 0.006) and total Unified Parkinson's Disease Rating Scale score (P = 0.001). All fixel-based metrics were significantly reduced within the body of the corpus callosum and superior corona radiata in PD-MCI patients (family-wise error-corrected P value < 0.05) compared with PD-NC patients. The cingulum, superior longitudinal fasciculi, and thalamocortical circuit exhibited predominantly fiber-bundle cross-section (FC) changes. In regression analysis, reduced FC values in cerebellar circuits were associated with poor motor function in PD-MCI patients and poor picture-naming ability in PD-NC patients. CONCLUSIONS PD-MCI patients have significant WM alterations compared with PD-NC patients. FBA revealed these changes in various bundle tracts, helping us to better understand specific WM changes that are functionally implicated in PD cognitive decline. FBA is potentially useful in detecting early cognitive decline in PD.
Collapse
Affiliation(s)
- Ting-Wei Liao
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Diagnostic Radiology, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan; Department of Chemical Engineering, Ming-Chi University of Technology, New Taipei City, Taiwan; Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Chien Tsai
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Ning Wang
- Division of General Neurology, Department of Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yao-Liang Chen
- Department of Chemical Engineering, Ming-Chi University of Technology, New Taipei City, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Ming Wu
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; Department of Neurology, Chang Gung University, College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
10
|
Yang K, Wu Z, Long J, Li W, Wang X, Hu N, Zhao X, Sun T. White matter changes in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:150. [PMID: 37907554 PMCID: PMC10618166 DOI: 10.1038/s41531-023-00592-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). It is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and the formation of Lewy bodies (LBs). Although PD is primarily considered a gray matter (GM) disease, alterations in white matter (WM) have gained increasing attention in PD research recently. Here we review evidence collected by magnetic resonance imaging (MRI) techniques which indicate WM abnormalities in PD, and discuss the correlations between WM changes and specific PD symptoms. Then we summarize transcriptome and genome studies showing the changes of oligodendrocyte (OLs)/myelin in PD. We conclude that WM abnormalities caused by the changes of myelin/OLs might be important for PD pathology, which could be potential targets for PD treatment.
Collapse
Affiliation(s)
- Kai Yang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China.
| | - Zhengqi Wu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China
| | - Jie Long
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China
| | - Wenxin Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China
| | - Xi Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China
| | - Ning Hu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China
| | - Xinyue Zhao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
11
|
Boito D, Eklund A, Tisell A, Levi R, Özarslan E, Blystad I. MRI with generalized diffusion encoding reveals damaged white matter in patients previously hospitalized for COVID-19 and with persisting symptoms at follow-up. Brain Commun 2023; 5:fcad284. [PMID: 37953843 PMCID: PMC10638510 DOI: 10.1093/braincomms/fcad284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/25/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
There is mounting evidence of the long-term effects of COVID-19 on the central nervous system, with patients experiencing diverse symptoms, often suggesting brain involvement. Conventional brain MRI of these patients shows unspecific patterns, with no clear connection of the symptomatology to brain tissue abnormalities, whereas diffusion tensor studies and volumetric analyses detect measurable changes in the brain after COVID-19. Diffusion MRI exploits the random motion of water molecules to achieve unique sensitivity to structures at the microscopic level, and new sequences employing generalized diffusion encoding provide structural information which are sensitive to intravoxel features. In this observational study, a total of 32 persons were investigated: 16 patients previously hospitalized for COVID-19 with persisting symptoms of post-COVID condition (mean age 60 years: range 41-79, all male) at 7-month follow-up and 16 matched controls, not previously hospitalized for COVID-19, with no post-COVID symptoms (mean age 58 years, range 46-69, 11 males). Standard MRI and generalized diffusion encoding MRI were employed to examine the brain white matter of the subjects. To detect possible group differences, several tissue microstructure descriptors obtainable with the employed diffusion sequence, the fractional anisotropy, mean diffusivity, axial diffusivity, radial diffusivity, microscopic anisotropy, orientational coherence (Cc) and variance in compartment's size (CMD) were analysed using the tract-based spatial statistics framework. The tract-based spatial statistics analysis showed widespread statistically significant differences (P < 0.05, corrected for multiple comparisons using the familywise error rate) in all the considered metrics in the white matter of the patients compared to the controls. Fractional anisotropy, microscopic anisotropy and Cc were lower in the patient group, while axial diffusivity, radial diffusivity, mean diffusivity and CMD were higher. Significant changes in fractional anisotropy, microscopic anisotropy and CMD affected approximately half of the analysed white matter voxels located across all brain lobes, while changes in Cc were mainly found in the occipital parts of the brain. Given the predominant alteration in microscopic anisotropy compared to Cc, the observed changes in diffusion anisotropy are mostly due to loss of local anisotropy, possibly connected to axonal damage, rather than white matter fibre coherence disruption. The increase in radial diffusivity is indicative of demyelination, while the changes in mean diffusivity and CMD are compatible with vasogenic oedema. In summary, these widespread alterations of white matter microstructure are indicative of vasogenic oedema, demyelination and axonal damage. These changes might be a contributing factor to the diversity of central nervous system symptoms that many patients experience after COVID-19.
Collapse
Affiliation(s)
- Deneb Boito
- Department of Biomedical Engineering, Linköping University, S-58183 Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
| | - Anders Eklund
- Department of Biomedical Engineering, Linköping University, S-58183 Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
- Division of Statistics and Machine learning, Department of Computer and Information Science, Linköping University, S-58183 Linköping, Sweden
| | - Anders Tisell
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
- Department of Radiation Physics, Linköping University, S-58185 Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, S58183 Linköping, Sweden
| | - Richard Levi
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, S58183 Linköping, Sweden
- Department of Rehabilitation Medicine in Linköping, Linköping University, S-58185 Linköping, Sweden
| | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, S-58183 Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
| | - Ida Blystad
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, S58183 Linköping, Sweden
- Department of Radiology in Linköping, Linköping University, S-58185 Linköping, Sweden
| |
Collapse
|
12
|
Wang L, Zhou C, Zhang W, Zhang M, Cheng W, Feng J. Association of Cortical and Subcortical Microstructure With Clinical Progression and Fluid Biomarkers in Patients With Parkinson Disease. Neurology 2023; 101:e300-e310. [PMID: 37202161 PMCID: PMC10382272 DOI: 10.1212/wnl.0000000000207408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/28/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Mean diffusivity (MD) of diffusion MRI (dMRI) has been used to measure cortical and subcortical microstructural properties. This study investigated relationships of cortical and subcortical MD, clinical progression, and fluid biomarkers in Parkinson disease (PD). METHODS This longitudinal study using data from the Parkinson's Progression Markers Initiative was collected from April 2011 to July 2022. Clinical symptoms were assessed with Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (UPDRS) and Montreal Cognitive Assessment (MoCA) scores. Clinical assessments were followed up to 5 years. Linear mixed-effects (LME) models were performed to examine associations of MD and the annual rate of changes in clinical scores. Partial correlation analysis was conducted to examine the associations of MD and fluid biomarker levels. RESULTS A total of 174 patients with PD (age 61.9 ± 9.7 years, 63% male) with baseline dMRI and at least 2 years of clinical follow-up were included. Results of LME models revealed a significant association between MD values, predominantly in subcortical regions, temporal lobe, occipital lobe, and frontal lobe, and annual rate of changes in clinical scores (UPDRS-Part-I, standardized β > 2.35; UPDRS-Part-II, standardized β > 2.34; postural instability and gait disorder score, standardized β > 2.47; MoCA, standardized β < -2.42; all p < 0.05, false discovery rate [FDR] corrected). In addition, MD was associated with the levels of neurofilament light chain in serum (r > 0.22) and α-synuclein (right putamen r = 0.31), β-amyloid 1-42 (left hippocampus r = -0.30), phosphorylated tau at 181 threonine position (r > 0.26), and total tau (r > 0.23) in CSF at baseline (all p < 0.05, FDR corrected). Furthermore, the β coefficients derived from MD and annual rate of changes in the clinical score recapitulated the spatial distribution of dopamine (DAT, D1, and D2), glutamate (mGluR5 and NMDA), serotonin (5-HT1a and 5-HT2a), cannabinoid (CB1), and γ-amino butyric acid A receptor neurotransmitter receptors/transporters (p < 0.05, FDR corrected) derived from PET scans in the brain of healthy volunteers. DISCUSSION In this cohort study, cortical and subcortical MD values at baseline were associated with clinical progression and baseline fluid biomarkers, suggesting that microstructural properties could be useful for stratification of patients with fast clinical progression.
Collapse
Affiliation(s)
- Linbo Wang
- From the Institute of Science and Technology for Brain-Inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; MOE Frontiers Center for Brain Science (L.W., W.Z., W.C., J.F.), Fudan University; Zhangjiang Fudan International Innovation Center (L.W., W.Z., W.C., J.F.), Shanghai; Department of Radiology (C.Z., M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C.), Zhejiang Normal University, Jinhua, China; and Department of Computer Science (J.F.), University of Warwick, Coventry, United Kingdom
| | - Cheng Zhou
- From the Institute of Science and Technology for Brain-Inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; MOE Frontiers Center for Brain Science (L.W., W.Z., W.C., J.F.), Fudan University; Zhangjiang Fudan International Innovation Center (L.W., W.Z., W.C., J.F.), Shanghai; Department of Radiology (C.Z., M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C.), Zhejiang Normal University, Jinhua, China; and Department of Computer Science (J.F.), University of Warwick, Coventry, United Kingdom
| | - Wei Zhang
- From the Institute of Science and Technology for Brain-Inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; MOE Frontiers Center for Brain Science (L.W., W.Z., W.C., J.F.), Fudan University; Zhangjiang Fudan International Innovation Center (L.W., W.Z., W.C., J.F.), Shanghai; Department of Radiology (C.Z., M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C.), Zhejiang Normal University, Jinhua, China; and Department of Computer Science (J.F.), University of Warwick, Coventry, United Kingdom
| | - Minming Zhang
- From the Institute of Science and Technology for Brain-Inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; MOE Frontiers Center for Brain Science (L.W., W.Z., W.C., J.F.), Fudan University; Zhangjiang Fudan International Innovation Center (L.W., W.Z., W.C., J.F.), Shanghai; Department of Radiology (C.Z., M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C.), Zhejiang Normal University, Jinhua, China; and Department of Computer Science (J.F.), University of Warwick, Coventry, United Kingdom
| | - Wei Cheng
- From the Institute of Science and Technology for Brain-Inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; MOE Frontiers Center for Brain Science (L.W., W.Z., W.C., J.F.), Fudan University; Zhangjiang Fudan International Innovation Center (L.W., W.Z., W.C., J.F.), Shanghai; Department of Radiology (C.Z., M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C.), Zhejiang Normal University, Jinhua, China; and Department of Computer Science (J.F.), University of Warwick, Coventry, United Kingdom
| | - Jianfeng Feng
- From the Institute of Science and Technology for Brain-Inspired Intelligence (L.W., W.Z., W.C., J.F.), Fudan University; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University) (L.W., W.Z., W.C., J.F.), Ministry of Education; MOE Frontiers Center for Brain Science (L.W., W.Z., W.C., J.F.), Fudan University; Zhangjiang Fudan International Innovation Center (L.W., W.Z., W.C., J.F.), Shanghai; Department of Radiology (C.Z., M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence (W.C.), Zhejiang Normal University, Jinhua, China; and Department of Computer Science (J.F.), University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
13
|
Dey A, Luk CC, Ishaque A, Ta D, Srivastava O, Krebs D, Seres P, Hanstock C, Beaulieu C, Korngut L, Frayne R, Zinman L, Graham S, Genge A, Briemberg H, Kalra S. Motor cortex functional connectivity is associated with underlying neurochemistry in ALS. J Neurol Neurosurg Psychiatry 2023; 94:193-200. [PMID: 36379713 PMCID: PMC9985743 DOI: 10.1136/jnnp-2022-329993] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To identify structural and neurochemical properties that underlie functional connectivity impairments of the primary motor cortex (PMC) and how these relate to clinical findings in amyotrophic lateral sclerosis (ALS). METHODS 52 patients with ALS and 52 healthy controls, matched for age and sex, were enrolled from 5 centres across Canada for the Canadian ALS Neuroimaging Consortium study. Resting-state functional MRI, diffusion tensor imaging and magnetic resonance spectroscopy data were acquired. Functional connectivity maps, diffusion metrics and neurometabolite ratios were obtained from the analyses of the acquired multimodal data. A clinical assessment of foot tapping (frequency) was performed to examine upper motor neuron function in all participants. RESULTS Compared with healthy controls, the primary motor cortex in ALS showed reduced functional connectivity with sensory (T=5.21), frontal (T=3.70), temporal (T=3.80), putaminal (T=4.03) and adjacent motor (T=4.60) regions. In the primary motor cortex, N-acetyl aspartate (NAA, a neuronal marker) ratios and diffusion metrics (mean, axial and radial diffusivity, fractional anisotropy (FA)) were altered. Within the ALS cohort, foot tapping frequency correlated with NAA (r=0.347) and white matter FA (r=0.537). NAA levels showed associations with disturbed functional connectivity of the motor cortex. CONCLUSION In vivo neurochemistry may represent an effective imaging marker of impaired motor cortex functional connectivity in ALS.
Collapse
Affiliation(s)
- Avyarthana Dey
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Collin C Luk
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Abdullah Ishaque
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel Ta
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ojas Srivastava
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Dennell Krebs
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Chris Hanstock
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Lawrence Korngut
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Richard Frayne
- Seaman Family Magnetic Resonance Research Centre, Foothills Medical Centre, Alberta Health Services, Calgary, Alberta, Canada.,Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Lorne Zinman
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Simon Graham
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Angela Genge
- The Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Hannah Briemberg
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sanjay Kalra
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada .,Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
14
|
Lucas-Jiménez O, Ibarretxe-Bilbao N, Diez I, Peña J, Tijero B, Galdós M, Murueta-Goyena A, Del Pino R, Acera M, Gómez-Esteban JC, Gabilondo I, Ojeda N. Brain Degeneration in Synucleinopathies Based on Analysis of Cognition and Other Nonmotor Features: A Multimodal Imaging Study. Biomedicines 2023; 11:573. [PMID: 36831109 PMCID: PMC9953265 DOI: 10.3390/biomedicines11020573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND We aimed to characterize subtypes of synucleinopathies using a clustering approach based on cognitive and other nonmotor data and to explore structural and functional magnetic resonance imaging (MRI) brain differences between identified clusters. METHODS Sixty-two patients (n = 6 E46K-SNCA, n = 8 dementia with Lewy bodies (DLB) and n = 48 idiopathic Parkinson's disease (PD)) and 37 normal controls underwent nonmotor evaluation with extensive cognitive assessment. Hierarchical cluster analysis (HCA) was performed on patients' samples based on nonmotor variables. T1, diffusion-weighted, and resting-state functional MRI data were acquired. Whole-brain comparisons were performed. RESULTS HCA revealed two subtypes, the mild subtype (n = 29) and the severe subtype (n = 33). The mild subtype patients were slightly impaired in some nonmotor domains (fatigue, depression, olfaction, and orthostatic hypotension) with no detectable cognitive impairment; the severe subtype patients (PD patients, all DLB, and the symptomatic E46K-SNCA carriers) were severely impaired in motor and nonmotor domains with marked cognitive, visual and bradykinesia alterations. Multimodal MRI analyses suggested that the severe subtype exhibits widespread brain alterations in both structure and function, whereas the mild subtype shows relatively mild disruptions in occipital brain structure and function. CONCLUSIONS These findings support the potential value of incorporating an extensive nonmotor evaluation to characterize specific clinical patterns and brain degeneration patterns of synucleinopathies.
Collapse
Affiliation(s)
- Olaia Lucas-Jiménez
- Department of Psychology, Faculty of Health Sciences, University of Deusto, 48007 Bilbao, Spain
| | - Naroa Ibarretxe-Bilbao
- Department of Psychology, Faculty of Health Sciences, University of Deusto, 48007 Bilbao, Spain
| | - Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114-1107, USA
| | - Javier Peña
- Department of Psychology, Faculty of Health Sciences, University of Deusto, 48007 Bilbao, Spain
| | - Beatriz Tijero
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Neurology, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Marta Galdós
- Ophthalmology Department, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Ane Murueta-Goyena
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Rocío Del Pino
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Marian Acera
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Juan Carlos Gómez-Esteban
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Neurology, Cruces University Hospital, 48903 Barakaldo, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Iñigo Gabilondo
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Neurology, Cruces University Hospital, 48903 Barakaldo, Spain
- IKERBASQUE, The Basque Foundation for Science, 48009 Bilbao, Spain
| | - Natalia Ojeda
- Department of Psychology, Faculty of Health Sciences, University of Deusto, 48007 Bilbao, Spain
| |
Collapse
|
15
|
Salehi MA, Mohammadi S, Gouravani M, Javidi A, Dager SR. Brain microstructural alterations of depression in Parkinson's disease: A systematic review of diffusion tensor imaging studies. Hum Brain Mapp 2022; 43:5658-5680. [PMID: 35855597 PMCID: PMC9704780 DOI: 10.1002/hbm.26015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 01/15/2023] Open
Abstract
Depression, a leading cause of disability worldwide, is also the most prevalent psychiatric problem among Parkinson disease patients. Both depression and Parkinson disease are associated with microstructural anomalies in the brain. Diffusion tensor imaging techniques have been developed to characterize the abnormalities in cerebral tissue. We included 11 studies investigating brain microstructural abnormalities in depressed Parkinson's disease patients. The included studies found alterations to essential brain structural networks, including impaired network integrity for specific cortical regions, such as the temporal and frontal cortices. Additionally, findings indicate that microstructural changes in specific limbic structures, such as the prefronto-temporal regions and connecting white matter pathways, are altered in depressed Parkinson's disease compared to non-depressed Parkinson's disease and healthy controls. There remain inconsistencies between studies reporting DTI measures and depression severity in Parkinson disease participants. Additional research evaluating underlying neurobiological relationships between major depression, depressed Parkinson's disease, and non-depressed Parkinson's disease is required to disentangle further mechanisms that underlie depression and related somatic symptoms, in Parkinson disease.
Collapse
Affiliation(s)
| | - Soheil Mohammadi
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Mahdi Gouravani
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Arian Javidi
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Stephen R. Dager
- Department of RadiologyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
16
|
Tan B, Shishegar R, Oldham S, Fornito A, Poudel G, Georgiou-Karistianis N. Investigating longitudinal changes to frontal cortico-striatal tracts in Huntington's disease: the IMAGE-HD study. Brain Imaging Behav 2022; 16:2457-2466. [PMID: 35768755 PMCID: PMC9712302 DOI: 10.1007/s11682-022-00699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
The striatum is the principal site of disease pathology in Huntington's disease and contains neural connections to numerous cortical brain regions. Studies examining abnormalities to neural connections find that white matter integrity is compromised in HD; however, further regional, and longitudinal investigation is required. This paper is the first longitudinal investigation into region-based white-matter integrity changes in Huntington's Disease. The aim of this study was to better understand how disease progression impacts white matter tracts connecting the striatum to the prefrontal and motor cortical regions in HD. We used existing neuroimaging data from IMAGE-HD, comprised of 25 pre-symptomatic, 27 symptomatic, and 25 healthy controls at three separate time points (baseline, 18-months, 30-months). Fractional anisotropy, axial diffusivity and radial diffusivity were derived as measures of white matter microstructure. The anatomical regions of interest were identified using the Desikan-Killiany brain atlas. A Group by Time repeated measures ANCOVA was conducted for each tract of interest and for each measure. We found significantly lower fractional anisotropy and significantly higher radial diffusivity in the symptomatic group, compared to both the pre-symptomatic group and controls (the latter two groups did not differ from each other), in the rostral middle frontal and superior frontal tracts; as well as significantly higher axial diffusivity in the rostral middle tracts only. We did not find a Group by Time interaction for any of the white matter integrity measures. These findings demonstrate that whilst the microstructure of white matter tracts, extending from the striatum to these regions of interest, are compromised during the symptomatic stages of Huntington's disease, 36-month follow-up did not show progressive changes in these measures. Additionally, no correlations were found between clinical measures and tractography changes, indicating further investigations into the relationship between tractography changes and clinical symptoms in Huntington's disease are required.
Collapse
Affiliation(s)
- Brendan Tan
- School of Psychological Sciences and The Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, 3800, Australia
| | - Rosita Shishegar
- School of Psychological Sciences and The Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, 3800, Australia
- The Australian E-Health Research Centre, CSIRO, Melbourne, Australia
- Monash Biomedical Imaging, 770 Blackburn Road, Melbourne, Victoria, 3800, Australia
| | - Stuart Oldham
- Monash Biomedical Imaging, 770 Blackburn Road, Melbourne, Victoria, 3800, Australia
- Developmental Imaging, Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Alex Fornito
- School of Psychological Sciences and The Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, 3800, Australia
- Monash Biomedical Imaging, 770 Blackburn Road, Melbourne, Victoria, 3800, Australia
| | - Govinda Poudel
- School of Psychological Sciences and The Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, 3800, Australia
- Sydney Imaging, Brain and Mind Centre, the University of Sydney, Sydney, New South Wales, 2050, Australia
- The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, 3000, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and The Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton Campus, Melbourne, Victoria, 3800, Australia.
| |
Collapse
|
17
|
Morphological basis of Parkinson disease-associated cognitive impairment: an update. J Neural Transm (Vienna) 2022; 129:977-999. [PMID: 35726096 DOI: 10.1007/s00702-022-02522-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Cognitive impairment is one of the most salient non-motor symptoms of Parkinson disease (PD) that poses a significant burden on the patients and carers as well as being a risk factor for early mortality. People with PD show a wide spectrum of cognitive dysfunctions ranging from subjective cognitive decline and mild cognitive impairment (MCI) to frank dementia. The mean frequency of PD with MCI (PD-MCI) is 25.8% and the pooled dementia frequency is 26.3% increasing up to 83% 20 years after diagnosis. A better understanding of the underlying pathological processes will aid in directing disease-specific treatment. Modern neuroimaging studies revealed considerable changes in gray and white matter in PD patients with cognitive impairment, cortical atrophy, hypometabolism, dopamine/cholinergic or other neurotransmitter dysfunction and increased amyloid burden, but multiple mechanism are likely involved. Combined analysis of imaging and fluid markers is the most promising method for identifying PD-MCI and Parkinson disease dementia (PDD). Morphological substrates are a combination of Lewy- and Alzheimer-associated and other concomitant pathologies with aggregation of α-synuclein, amyloid, tau and other pathological proteins in cortical and subcortical regions causing destruction of essential neuronal networks. Significant pathological heterogeneity within PD-MCI reflects deficits in various cognitive domains. This review highlights the essential neuroimaging data and neuropathological changes in PD with cognitive impairment, the amount and topographical distribution of pathological protein aggregates and their pathophysiological relevance. Large-scale clinicopathological correlative studies are warranted to further elucidate the exact neuropathological correlates of cognitive impairment in PD and related synucleinopathies as a basis for early diagnosis and future disease-modifying therapies.
Collapse
|
18
|
Owens-Walton C, Adamson C, Walterfang M, Hall S, van Westen D, Hansson O, Shaw M, Looi JCL. Midsagittal corpus callosal thickness and cognitive impairment in Parkinson's disease. Eur J Neurosci 2022; 55:1859-1872. [PMID: 35274408 PMCID: PMC9314988 DOI: 10.1111/ejn.15640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/27/2022]
Abstract
People diagnosed with Parkinson's disease (PD) can experience significant neuropsychiatric symptoms, including cognitive impairment and dementia, the neuroanatomical substrates of which are not fully characterised. Symptoms associated with cognitive impairment and dementia in PD may relate to direct structural changes to the corpus callosum via primary white matter pathology, or as a secondary outcome due to the degeneration of cortical regions. Using magnetic resonance imaging, the corpus callosum can be investigated at the midsagittal plane, where it converges to a contiguous mass and is not intertwined with other tracts. The objective of this project was thus twofold; first, we investigated possible changes in the thickness of the midsagittal callosum and cortex in patients with PD with varying levels of cognitive impairment; and secondly, we investigated the relationship between the thickness of the midsagittal corpus callosum and the thickness of the cortex. Study participants included cognitively unimpaired PD participants (n = 35), PD participants with mild cognitive impairment (n = 22), PD participants with dementia (n = 17) and healthy controls (n = 27). We found thinning of the callosum in PD-related dementia compared to PD-related mild cognitive impairment and cognitively unimpaired PD participants. Regression analyses found thickness of the left medial orbitofrontal cortex to be positively correlated with thickness of the anterior callosum in PD-related mild cognitive impairment. This study suggests that a midsagittal thickness model can uncover changes to the corpus callosum in PD-related dementia, which occur in line with changes to the cortex in this advanced disease stage.
Collapse
Affiliation(s)
- Conor Owens-Walton
- Research Centre for the Neurosciences of Ageing, Academic Unit of Psychiatry and Addiction Medicine, School of Clinical Medicine, Medical School, Australian National University, Canberra, Australia.,Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Neuroinformatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States of America
| | - Chris Adamson
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia.,Florey Institute of Neurosciences and Mental Health, University of Melbourne, Melbourne, Australia
| | - Sara Hall
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.,Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Danielle van Westen
- Centre for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden.,Diagnostic Radiology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Oskar Hansson
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.,Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Marnie Shaw
- College of Engineering and Computer Science, The Australian National University, Canberra, Australia
| | - Jeffrey C L Looi
- Research Centre for the Neurosciences of Ageing, Academic Unit of Psychiatry and Addiction Medicine, School of Clinical Medicine, Medical School, Australian National University, Canberra, Australia
| |
Collapse
|
19
|
Jünemann K, Marie D, Worschech F, Scholz DS, Grouiller F, Kliegel M, Van De Ville D, James CE, Krüger THC, Altenmüller E, Sinke C. Six Months of Piano Training in Healthy Elderly Stabilizes White Matter Microstructure in the Fornix, Compared to an Active Control Group. Front Aging Neurosci 2022; 14:817889. [PMID: 35242025 PMCID: PMC8886041 DOI: 10.3389/fnagi.2022.817889] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/06/2022] [Indexed: 12/31/2022] Open
Abstract
While aging is characterized by neurodegeneration, musical training is associated with experience-driven brain plasticity and protection against age-related cognitive decline. However, evidence for the positive effects of musical training mostly comes from cross-sectional studies while randomized controlled trials with larger sample sizes are rare. The current study compares the influence of six months of piano training with music listening/musical culture lessons in 121 musically naïve healthy elderly individuals with regard to white matter properties using fixel-based analysis. Analyses revealed a significant fiber density decline in the music listening/musical culture group (but not in the piano group), after six months, in the fornix, which is a white matter tract that naturally declines with age. In addition, these changes in fiber density positively correlated to episodic memory task performances and the amount of weekly piano training. These findings not only provide further evidence for the involvement of the fornix in episodic memory encoding but also more importantly show that learning to play the piano at an advanced age may stabilize white matter microstructure of the fornix.
Collapse
Affiliation(s)
- Kristin Jünemann
- Division of Clinical Psychology & Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Damien Marie
- Geneva Musical Minds Lab, Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland.,Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Florian Worschech
- Center for Systems Neuroscience, Hanover, Germany.,Institute of Music Physiology and Musicians' Medicine, Hanover University of Music, Drama and Media, Hanover, Germany
| | - Daniel S Scholz
- Center for Systems Neuroscience, Hanover, Germany.,Institute of Music Physiology and Musicians' Medicine, Hanover University of Music, Drama and Media, Hanover, Germany
| | - Frédéric Grouiller
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Matthias Kliegel
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland.,Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Ecole Polytechnique Fédérale de Lausanne, Campus Biotech, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Campus Biotech, Geneva, Switzerland
| | - Clara E James
- Geneva Musical Minds Lab, Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland.,Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Tillmann H C Krüger
- Division of Clinical Psychology & Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Eckart Altenmüller
- Center for Systems Neuroscience, Hanover, Germany.,Institute of Music Physiology and Musicians' Medicine, Hanover University of Music, Drama and Media, Hanover, Germany
| | - Christopher Sinke
- Division of Clinical Psychology & Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| |
Collapse
|
20
|
Kan H, Uchida Y, Ueki Y, Arai N, Tsubokura S, Kunitomo H, Kasai H, Aoyama K, Matsukawa N, Shibamoto Y. R2* relaxometry analysis for mapping of white matter alteration in Parkinson's disease with mild cognitive impairment. Neuroimage Clin 2022; 33:102938. [PMID: 34998126 PMCID: PMC8741619 DOI: 10.1016/j.nicl.2022.102938] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 12/01/2022]
Abstract
R2* relaxometry analysis combined with QSM revealed detail of WM alteration in PD-MCI. R2* relaxometry analysis can detect slight demyelination in PD-MCI. R2* value shows potential for early evaluation of cognitive decline in PD.
Background R2* relaxometry analysis combined with quantitative susceptibility mapping (QSM), which has high sensitivity to iron deposition, can distinguish microstructural changes of the white matter (WM) and iron deposition, thereby providing a sensitive and biologically specific measure of the WM owing to the changes in myelin and its surrounding environment. This study aimed to explore the microstructural WM alterations associated with cognitive impairment in patients with Parkinson’s disease (PD) using R2* relaxometry analysis combined with QSM. Materials and methods We enrolled 24 patients with PD and mild cognitive impairment (PD-MCI), 22 patients with PD and normal cognition (PD-CN), and 19 age- and sex-matched healthy controls (HC). All participants underwent Montreal Cognitive Assessment (MoCA) and brain magnetic resonance imaging, including structural three-dimensional T1-weighted images and multiple spoiled gradient echo sequence (mGRE). The R2* and susceptibility maps were estimated from the multiple magnitude images of mGRE. The susceptibility maps were used for verifying iron deposition in the WM. The voxel-based R2* of the entire WM and its correlation with cognitive performance were analyzed. Results In the voxel-based group comparisons, the R2* in the PD-MCI group was lower in some WM regions, including the corpus callosum, than R2* in the PD-CN and HC groups. The mean susceptibility values in almost all brain regions were negative and close-to-zero values, indicating no detectable paramagnetic iron deposition in the WM of all subjects. There was a significant positive correlation between R2* and MoCA in some regions of the WM, mainly the corpus callosum and left hemisphere. Conclusion R2* relaxometry analysis for WM microstructural changes provided further biologic insights on demyelination and changes in the surrounding environment, supported by the QSM results demonstrating no iron existence. This analysis highlighted the potential for the early evaluation of cognitive decline in patients with PD.
Collapse
Affiliation(s)
- Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan; Department of Radiology, Nagoya City University, Graduate School of Medical Sciences, Japan.
| | - Yuto Uchida
- Department of Neurology, Nagoya City University, Graduate School of Medical Sciences, Japan; Department of Neurology, Toyokawa City Hospital, Japan.
| | - Yoshino Ueki
- Department of Rehabilitation Medicine, Nagoya City University, Graduate School of Medical Sciences, Japan.
| | - Nobuyuki Arai
- Department of Radiology, Suzuka University of Medical Science, Japan.
| | | | - Hiroshi Kunitomo
- Department of Radiology, Nagoya City University Hospital, Japan.
| | - Harumasa Kasai
- Department of Radiology, Nagoya City University Hospital, Japan
| | - Kiminori Aoyama
- Department of Rehabilitation Medicine, Nagoya City University, Graduate School of Medical Sciences, Japan
| | - Noriyuki Matsukawa
- Department of Neurology, Nagoya City University, Graduate School of Medical Sciences, Japan.
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University, Graduate School of Medical Sciences, Japan.
| |
Collapse
|
21
|
Pamphlett R, Bishop DP. Mercury is present in neurons and oligodendrocytes in regions of the brain affected by Parkinson's disease and co-localises with Lewy bodies. PLoS One 2022; 17:e0262464. [PMID: 35015796 PMCID: PMC8752015 DOI: 10.1371/journal.pone.0262464] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Environmental toxicants are suspected to play a part in the pathogenesis of idiopathic Parkinson's disease (PD) and may underlie its increasing incidence. Mercury exposure in humans is common and is increasing due to accelerating levels of atmospheric mercury, and mercury damages cells via oxidative stress, cell membrane damage, and autoimmunity, mechanisms suspected in the pathogenesis of PD. We therefore compared the cellular distribution of mercury in the tissues of people with and without PD who had evidence of previous mercury exposure by mercury being present in their locus ceruleus neurons. MATERIALS AND METHODS Paraffin sections from the brain and general organs of two people with PD, two people without PD with a history of mercury exposure, and ten people without PD or known mercury exposure, were stained for inorganic mercury using autometallography, combined with immunostaining for a-synuclein and glial cells. All had mercury-containing neurons in locus ceruleus neurons. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to confirm the presence of mercury and to look for other potentially toxic elements. Autometallography-stained locus ceruleus paraffin sections were examined to compare the frequency of previous mercury exposure between 20 PD and 40 non-PD individuals. RESULTS In PD brains, autometallography-detected mercury was seen in neurons affected by the disease, such as those in the substantia nigra, motor cortex, striatum, thalamus, and cerebellum. Mercury was seen in oligodendrocytes in white and grey matter. Mercury often co-localised with Lewy bodies and neurites. A more restricted distribution of brain mercury was seen in people without PD (both with or without known mercury exposure), with no mercury present in the substantia nigra, striatum, or thalamus. The presence of autometallography-detected mercury in PD was confirmed with LA-ICP-MS, which demonstrated other potentially toxic metals in the locus ceruleus and high iron levels in white matter. Autometallography-detected mercury was found in locus ceruleus neurons in a similar proportion of PD (65%) and non-PD (63%) individuals. CONCLUSIONS In people with PD, mercury was found in neurons and oligodendrocytes in regions of the brain that are affected by the disease, and often co-localised with aggregated a-synuclein. Mercury in the motor cortex, thalamus and striatum could result in bradykinesia and rigidity, and mercury in the cerebellum could cause tremor. People without PD had a restricted uptake of mercury into the brain. The similar frequency of mercury in the locus ceruleus of people with and without PD suggests these two groups have had comparable previous mercury exposures but that PD brains have a greater predisposition to take up circulating mercury. While this post mortem study does not provide a direct link between mercury and idiopathic PD, it adds to the body of evidence that metal toxicants such as mercury play a role in the disease. A precautionary approach would be to reduce rising mercury levels in the atmosphere by limiting the burning of fossil fuels, which may be contributing to the increasing incidence of PD.
Collapse
Affiliation(s)
- Roger Pamphlett
- Sydney Medical School, Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- * E-mail:
| | - David P. Bishop
- Elemental Bio-Imaging Facility, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Helmy A, Hamid E, Salama M, Gaber A, El-Belkimy M, Shalash A. Baseline predictors of progression of Parkinson's disease in a sample of Egyptian patients: clinical and biochemical. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022; 58:9. [PMID: 35068922 PMCID: PMC8760567 DOI: 10.1186/s41983-022-00445-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/01/2022] [Indexed: 01/21/2023] Open
Abstract
Background Clinical progression of Parkinson’s disease (PD) is highly heterogeneous, and its predictors are generally lacking. Identifying predictors of early disease progression is important for patients’ management and follow-up. The current study aims to identify clinical, neuroimaging and biochemical baseline predictors of motor progression in patients with PD. Forty-five PD patients were assessed at baseline, 6 months and 1 year using MDS-UPDRS total and subscores, Hoehn and Yahr (H&Y), Schwab and England (S&E), International Physical Activity Questionnaire (IPAQ). Baseline New Freezing of Gait Questionnaire (NFOG-Q), Berg Balance Scale (BBS), Ten-Meter Walking Test (10-MWT), and Time Up and Go Test (TUG), Non-Motor Symptoms Scale (NMSS), Beck Depression Inventory (BDI), PD questionnaire 39 (PDQ-39), MRI brain, uric acid, lipid profile and glycated hemoglobin were performed. Results Significant worsening of MDS-UPDRS total, part III scores, H&Y, S&E and IPAQ (p < 0.001) was detected. One-year progression of H&Y and S&E were significantly correlated to disease duration (p = 0.014, p = 0.025, respectively). Progression of H&Y was correlated to baseline TUG (p = 0.035). S&E progression was correlated to baseline MDS-UPDRS total score (rho = 0.478, p = 0.001) and part III (rho = 0.350, p = 0.020), H&Y (rho = 0.401, p = 0.007), PIGD (rho = 0.591, p < 0.001), NFOG-Q (rho = 0.498, p = 0.001), and TUG (rho = 0.565, p = 0.001). Using linear regression, there was no predictors of clinical progression among the used baseline variables. Conclusion Despite the significant motor and physical activity progression over 1 year that was correlated to baseline motor and gait severity, but without predictive value, further similar and longitudinal studies are warranted to detect predictors of early progression and confirm findings. Supplementary Information The online version contains supplementary material available at 10.1186/s41983-022-00445-1.
Collapse
Affiliation(s)
- Asmaa Helmy
- Department of Neurology, Faculty of Medicine, Ain Shams University, 168 Elnozha St, Saint Fatima Square, Heliopolis, Cairo, Egypt
| | - Eman Hamid
- Department of Neurology, Faculty of Medicine, Ain Shams University, 168 Elnozha St, Saint Fatima Square, Heliopolis, Cairo, Egypt
| | - Mohamed Salama
- Institute of Global Health and Human Ecology (I-GHHE), The American University in Cairo, Cairo, Egypt.,Faculty of Medicine, Al-Mansoura University, Mansoura, Egypt
| | - Ahmed Gaber
- Department of Neurology, Faculty of Medicine, Ain Shams University, 168 Elnozha St, Saint Fatima Square, Heliopolis, Cairo, Egypt
| | - Mahmoud El-Belkimy
- Department of Neurology, Faculty of Medicine, Ain Shams University, 168 Elnozha St, Saint Fatima Square, Heliopolis, Cairo, Egypt
| | - Ali Shalash
- Department of Neurology, Faculty of Medicine, Ain Shams University, 168 Elnozha St, Saint Fatima Square, Heliopolis, Cairo, Egypt
| |
Collapse
|
23
|
Coundouris SP, Henry JD, Lehn AC. Moving beyond emotions in Parkinson's disease. BRITISH JOURNAL OF CLINICAL PSYCHOLOGY 2022; 61:647-665. [PMID: 35048398 DOI: 10.1111/bjc.12354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Emotion recognition is a fundamental neurocognitive capacity that is a critical predictor of interpersonal function and, in turn, mental health. Although people with Parkinson's disease (PD) often exhibit difficulties recognizing emotions, almost all studies to date have focused on basic emotions (happiness, sadness, anger, surprise, fear, and disgust), with little consideration of how more cognitively complex self-conscious emotions such as contempt, embarrassment, and pride might also be affected. Further, the few studies that have considered self-conscious emotions have relied on high intensity, static stimuli. The aim of the present study was to therefore provide the first examination of how self-conscious emotion recognition is affected by PD using a dynamic, dual-intensity measure that more closely captures how emotion recognition judgements are made in daily life. METHOD People with PD (n = 42) and neurotypical controls (n = 42) completed a validated measure of self-conscious facial emotion recognition. For comparative purposes, in addition to a broader clinical test battery, both groups also completed a traditional static emotion recognition measure and a measure of self-conscious emotional experience. RESULTS Relative to controls, the PD group did not differ in their capacity to recognize basic emotions but were impaired in their recognition of self-conscious emotions. These difficulties were associated with elevated negative affect and poorer subjective well-being. CONCLUSIONS Difficulties recognizing self-conscious emotions may be more problematic for people with PD than difficulties recognizing basic ones, with implications for interventions focused on helping people with this disorder develop and maintain strong social networks. PRACTITIONER POINTS This is the first direct investigation into how the recognition of self-conscious emotion is affected in Parkinson's disease using dynamic, dual-intensity stimuli, thus providing an important extension to prior literature that has focused solely on basic emotion recognition and/or relied on static, high-intensity stimuli. Results revealed preserved basic facial emotional recognition coexisting with impairment in all three self-conscious emotions assessed, therefore suggesting that the latter stimuli type may function as a more sensitive indicator of Parkinson's disease-related social cognitive impairment. Problems with self-conscious emotion recognition in people with Parkinson's disease were associated with poorer broader subjective well-being and increased negative affect. This aligns with the broader literature linking interpersonal difficulties with poorer clinical outcomes in this cohort.
Collapse
Affiliation(s)
- Sarah P Coundouris
- School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Julie D Henry
- School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Alexander C Lehn
- Department of Neurology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia.,The University of Queensland Princess Alexandra Hospital Clinical School, Woolloongabba, Queensland, Australia
| |
Collapse
|
24
|
Lee A, Kwon OW, Jung KR, Song GJ, Yang HJ. The effects of Korean Red Ginseng-derived components on oligodendrocyte lineage cells: Distinct facilitatory roles of the non-saponin and saponin fractions, and Rb1, in proliferation, differentiation and myelination. J Ginseng Res 2022; 46:104-114. [PMID: 35035243 PMCID: PMC8753459 DOI: 10.1016/j.jgr.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/21/2021] [Accepted: 04/21/2021] [Indexed: 12/05/2022] Open
Abstract
Background Abnormalities of myelin, which increases the efficiency of action potential conduction, are found in neurological disorders. Korean Red Ginseng (KRG) demonstrates therapeutic efficacy against some of these conditions, however effects on oligodendrocyte (OL)s are not well known. Here, we examined the effects of KRG-derived components on development and protection of OL-lineage cells. Methods Primary OL precursor cell (OPC) cultures were prepared from neonatal mouse cortex. The protective efficacies of the KRG components were examined against inhibitors of mitochondrial respiratory chain activity. For in vivo function of Rb1 on myelination, after 10 days of oral gavage into adult male mice, forebrains were collected. OPC proliferation were assessed by BrdU incorporation, and differentiation and myelination were examined by qPCR, western blot and immunocytochemistry. Results The non-saponin promoted OPC proliferation, while the saponin promoted differentiation. Both processes were mediated by AKT and extracellular regulated kinase (ERK) signaling. KRG extract, the saponin and non-saponin protected OPCs against oxidative stress, and both KRG extract and the saponin significantly increased the expression of the antioxidant enzyme. Among 11 major ginsenosides tested, Rb1 significantly increased OL membrane size in vitro. Moreover, Rb1 significantly increased myelin formation in adult mouse brain. Conclusion All KRG components prevented OPC deaths under oxidative stress. While non-saponin promoted proliferation, saponin fraction increased differentiation and OL membrane size. Furthermore, among all the tested ginsenosides, Rb1 showed the biggest increase in the membrane size and significantly enhanced myelination in vivo. These results imply therapeutic potentials of KRG and Rb1 for myelin-related disorders.
Collapse
Affiliation(s)
- Ahreum Lee
- Korea Institute of Brain Science, Seoul, Republic of Korea.,Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| | - Oh Wook Kwon
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| | - Kwi Ryun Jung
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| | - Gyun Jee Song
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| | - Hyun-Jeong Yang
- Korea Institute of Brain Science, Seoul, Republic of Korea.,Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| |
Collapse
|
25
|
Song C, Zhao W, Jiang H, Liu X, Duan Y, Yu X, Yu X, Zhang J, Kui J, Liu C, Tang Y. Stability Evaluation of Brain Changes in Parkinson's Disease Based on Machine Learning. Front Comput Neurosci 2021; 15:735991. [PMID: 34795570 PMCID: PMC8594429 DOI: 10.3389/fncom.2021.735991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/24/2021] [Indexed: 02/05/2023] Open
Abstract
Structural MRI (sMRI) has been widely used to examine the cerebral changes that occur in Parkinson's disease (PD). However, previous studies have aimed for brain changes at the group level rather than at the individual level. Additionally, previous studies have been inconsistent regarding the changes they identified. It is difficult to identify which brain regions are the true biomarkers of PD. To overcome these two issues, we employed four different feature selection methods [ReliefF, graph-theory, recursive feature elimination (RFE), and stability selection] to obtain a minimal set of relevant features and nonredundant features from gray matter (GM) and white matter (WM). Then, a support vector machine (SVM) was utilized to learn decision models from selected features. Based on machine learning technique, this study has not only extended group level statistical analysis with identifying group difference to individual level with predicting patients with PD from healthy controls (HCs), but also identified most informative brain regions with feature selection methods. Furthermore, we conducted horizontal and vertical analyses to investigate the stability of the identified brain regions. On the one hand, we compared the brain changes found by different feature selection methods and considered these brain regions found by feature selection methods commonly as the potential biomarkers related to PD. On the other hand, we compared these brain changes with previous findings reported by conventional statistical analysis to evaluate their stability. Our experiments have demonstrated that the proposed machine learning techniques achieve satisfactory and robust classification performance. The highest classification performance was 92.24% (specificity), 92.42% (sensitivity), 89.58% (accuracy), and 89.77% (AUC) for GM and 71.93% (specificity), 74.87% (sensitivity), 71.18% (accuracy), and 71.82% (AUC) for WM. Moreover, most brain regions identified by machine learning were consistent with previous findings, which means that these brain regions are related to the pathological brain changes characteristic of PD and can be regarded as potential biomarkers of PD. Besides, we also found the brain abnormality of superior frontal gyrus (dorsolateral, SFGdor) and lingual gyrus (LING), which have been confirmed in other studies of PD. This further demonstrates that machine learning models are beneficial for clinicians as a decision support system in diagnosing PD.
Collapse
Affiliation(s)
- Chenggang Song
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, Chengdu, China
- College of Computer, Chengdu University, Chengdu, China
| | - Weidong Zhao
- College of Computer, Chengdu University, Chengdu, China
| | - Hong Jiang
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoju Liu
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yumei Duan
- Department of Computer and Software, Chengdu Jincheng College, Chengdu, China
| | - Xiaodong Yu
- College of Computer, Chengdu University, Chengdu, China
| | - Xi Yu
- College of Computer, Chengdu University, Chengdu, China
| | - Jian Zhang
- School of Physics and Electronic Engineering, Sichuan Normal University, Chengdu, China
| | - Jingyue Kui
- Department of Urology, Tonghai County People's Hospital, Yuxi, China
| | - Chang Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, Chengdu, China
- College of Computer, Chengdu University, Chengdu, China
| | - Yiqian Tang
- College of Computer, Chengdu University, Chengdu, China
| |
Collapse
|
26
|
Dan X, Hu Y, Sun J, Gao L, Zhou Y, Ma J, Doyon J, Wu T, Chan P. Altered Cerebellar Resting-State Functional Connectivity in Early-Stage Parkinson's Disease Patients With Cognitive Impairment. Front Neurol 2021; 12:678013. [PMID: 34512503 PMCID: PMC8425347 DOI: 10.3389/fneur.2021.678013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/30/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Cognitive impairment is one of the most prominent non-motor symptoms in Parkinson's disease (PD), due in part to known cerebellar dysfunctions. Furthermore, previous studies have reported altered cerebellar functional connectivity (FC) in PD patients. Yet whether these changes are also due to the cognitive deficits in PD remain unclear. Methods: A total of 122 non-dementia participants, including 64 patients with early PD and 58 age- and gender-matched elderly controls were stratified into four groups based on their cognitive status (normal cognition vs. cognitive impairment). Cerebellar volumetry and FC were investigated by analyzing, respectively, structural and resting-state functional MRI data among groups using quality control and quantitative measures. Correlation analysis between MRI metrics and clinical features (motor and cognitive scores) were performed. Results: Compared to healthy control subjects with no cognitive deficits, altered cerebellar FC were observed in early PD participants with both motor and cognitive deficits, but not in PD patients with normal cognition, nor elderly subjects showing signs of a cognitive impairment. Moreover, connectivity between the "motor" cerebellum and SMA was positively correlated with motor scores, while intracerebellar connectivity was positively correlated with cognitive scores in PD patients with cognitive impairment. No cerebellar volumetric difference was observed between groups. Conclusions: These findings show that altered cerebellar FC during resting state in early PD patients may be driven not solely by the motor deficits, but by cognitive deficits as well, hence highlighting the interplay between motor and cognitive functioning, and possibly reflecting compensatory mechanisms, in the early PD.
Collapse
Affiliation(s)
- Xiaojuan Dan
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Key Laboratory on Parkinson's Disease of Beijing, Beijing, China
| | - Yang Hu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyan Sun
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Linlin Gao
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yongtao Zhou
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jinghong Ma
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Julien Doyon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Tao Wu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Key Laboratory on Parkinson's Disease of Beijing, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders Parkinson's Disease Center, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Zhu Y, Yang B, Wang F, Liu B, Li K, Yin K, Yin WF, Zhou C, Tian S, Ren H, Pang A, Yang X. Association between plasma neurofilament light chain levels and cognitive function in patients with Parkinson's disease. J Neuroimmunol 2021; 358:577662. [PMID: 34311152 DOI: 10.1016/j.jneuroim.2021.577662] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/03/2021] [Accepted: 07/10/2021] [Indexed: 02/08/2023]
Abstract
This study investigated the potential association between levels of plasma neurofilament light chain (NfL) and cognitive function in patients suffering from Parkinson's disease (PD) in P.R. China.We collected a total of 168 participants (130 PD patients and 38 healthy controls),and evaluated the relationship of plasma NfL levels with cognitive dysfunction in PD patients. Our results shown that plasma NfL levels increased with an increase in cognitive impairment across the three groups of PD patients: PD with normal cognition (PD-NC), 17.9 ± 8.9 pg/ml; PD with mild cognitive impairment (PD-MCI),21.9 ± 10.3 pg/ml; and PD dementia (PDD), 35.7 ± 21.7 pg/ml. Higher MMSE scores were associated with lower plasma NfL levels (r = -0.49, 95% CI -0.61 to -0.34, p < 0.0001). Our results associating plasma NfL levels with cognitive dysfunction in PD are consistent with previous studies carried out in several countries/district, based on our meta-analysis.
Collapse
Affiliation(s)
- Yongyun Zhu
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, PR China
| | - Baiyuan Yang
- Department of Neurology, Seventh People's Hospital of Chengdu, Chengdu, Sichuan Province 690041, PR China
| | - Fang Wang
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, PR China
| | - Bin Liu
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, PR China
| | - Kelu Li
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, PR China
| | - Kangfu Yin
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, PR China
| | - Wei Fang Yin
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, PR China
| | - Chuanbin Zhou
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, PR China
| | - Sijia Tian
- Department of Neurology, West China Hospital, Sichuan University, PR China
| | - Hui Ren
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, PR China
| | - Ailan Pang
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, PR China.
| | - Xinglong Yang
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, PR China.
| |
Collapse
|
28
|
Yang Y, Ye C, Sun J, Liang L, Lv H, Gao L, Fang J, Ma T, Wu T. Alteration of brain structural connectivity in progression of Parkinson's disease: A connectome-wide network analysis. Neuroimage Clin 2021; 31:102715. [PMID: 34130192 PMCID: PMC8209844 DOI: 10.1016/j.nicl.2021.102715] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/08/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Pinpointing the brain dysconnectivity in idiopathic rapid eye movement sleep behaviour disorder (iRBD) can facilitate preventing the conversion of Parkinson's disease (PD) from prodromal phase. Recent neuroimage investigations reported disruptive brain white matter connectivity in both iRBD and PD, respectively. However, the intrinsic process of the human brain structural network evolving from iRBD to PD still remains largely unknown. To address this issue, 151 participants including iRBD, PD and age-matched normal controls were recruited to receive diffusion MRI scans and neuropsychological examinations. The connectome-wide association analysis was performed to detect reorganization of brain structural network along with PD progression. Eight brain seed regions in both cortical and subcortical areas demonstrated significant structural pattern changes along with the progression of PD. Applying machine learning on the key connectivity related to these seed regions demonstrated better classification accuracy compared to conventional network-based statistic. Our study shows that connectome-wide association analysis reveals the underlying structural connectivity patterns related to the progression of PD, and provide a promising distinct capability to predict prodromal PD patients.
Collapse
Affiliation(s)
- Yanwu Yang
- Department of Electronic and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen, China
| | | | - Junyan Sun
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disease, Beijing, China
| | - Li Liang
- Department of Electronic and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen, China
| | - Haiyan Lv
- MindsGo Shenzhen Life Science Co. Ltd, Shenzhen, China
| | - Linlin Gao
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disease, Beijing, China
| | - Jiliang Fang
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting Ma
- Department of Electronic and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen, China; Peng Cheng Laboratory, Shenzhen, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China.
| | - Tao Wu
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disease, Beijing, China.
| |
Collapse
|
29
|
Wang E, Jia Y, Ya Y, Xu J, Mao C, Luo W, Fan G, Jiang Z. Patterns of Sulcal depth and cortical thickness in Parkinson's disease. Brain Imaging Behav 2021; 15:2340-2346. [PMID: 34018166 DOI: 10.1007/s11682-020-00428-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 10/21/2022]
Abstract
Previous voxel-based morphometry (VBM) and cortical thickness (CT) studies on Parkinson's disease (PD) have mainly reported the gray matter size reduction, whereas the shape of cortical surface can also change in PD patients. For the first time, we analyzed sulcal depth (SD) patterns in PD patients by using whole brain region of interest (ROI)-based approach. In a cross-sectional study, high-resolution brain structural MRI images were collected from 60 PD patients without dementia and 56 age-and sex-matched healthy controls (HC). SD and CT were estimated using the Computational Anatomy Toolbox (CAT12) and statistically compared between groups on whole brain ROI-based level using statistical parametric mapping 12 (SPM12). Additionally, correlations between regional brain changes and clinical variables were also examined. Compared to HC, PD patients showed lower SD in widespread regions, including temporal (the bilateral transverse temporal, the left inferior temporal, the right middle temporal and the right superior temporal), insular (the left insula), frontal (the left pars triangularis, the left pars opercularis and the left precentral), parietal (the bilateral superior parietal) and occipital (the right cuneus) regions. For CT, only the left pars opercularis showed lower CT in PD patients compared to HC. No regions showed higher SD or CT in PD patients compared to HC. In PD patients, a significant positive correlation was found between SD of the left pars opercularis and MMSE scores, such that lower MMSE scores were related to lower SD of the left pars opercularis. Our results of widespread lower SD, but relatively localized lower CT, indicate that SD seems to be more sensitive to brain changes than CT and may be mainly affected by white matter damage. Hence, SD may be a more promising indicator to investigate the surface shape changes in PD patients. The significant positive correlation between SD of the left pars opercularis and MMSE scores suggests that SD may be prognostic of future cognitive decline.
Collapse
Affiliation(s)
- Erlei Wang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yujing Jia
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Ya
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Xu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chengjie Mao
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weifeng Luo
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Guohua Fan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Zhen Jiang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
30
|
Devignes Q, Viard R, Betrouni N, Carey G, Kuchcinski G, Defebvre L, Leentjens AFG, Lopes R, Dujardin K. Posterior Cortical Cognitive Deficits Are Associated With Structural Brain Alterations in Mild Cognitive Impairment in Parkinson's Disease. Front Aging Neurosci 2021; 13:668559. [PMID: 34054507 PMCID: PMC8155279 DOI: 10.3389/fnagi.2021.668559] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Context: Cognitive impairments are common in patients with Parkinson's disease (PD) and are heterogeneous in their presentation. The "dual syndrome hypothesis" suggests the existence of two distinct subtypes of mild cognitive impairment (MCI) in PD: a frontostriatal subtype with predominant attentional and/or executive deficits and a posterior cortical subtype with predominant visuospatial, memory, and/or language deficits. The latter subtype has been associated with a higher risk of developing dementia. Objective: The objective of this study was to identify structural modifications in cortical and subcortical regions associated with each PD-MCI subtype. Methods: One-hundred and fourteen non-demented PD patients underwent a comprehensive neuropsychological assessment as well as a 3T magnetic resonance imaging scan. Patients were categorized as having no cognitive impairment (n = 41) or as having a frontostriatal (n = 16), posterior cortical (n = 25), or a mixed (n = 32) MCI subtype. Cortical regions were analyzed using a surface-based Cortical thickness (CTh) method. In addition, the volumes, shapes, and textures of the caudate nuclei, hippocampi, and thalami were studied. Tractometric analyses were performed on associative and commissural white matter (WM) tracts. Results: There were no between-group differences in volumetric measurements and cortical thickness. Shape analyses revealed more abundant and more extensive deformations fields in the caudate nuclei, hippocampi, and thalami in patients with posterior cortical deficits compared to patients with no cognitive impairment. Decreased fractional anisotropy (FA) and increased mean diffusivity (MD) were also observed in the superior longitudinal fascicle, the inferior fronto-occipital fascicle, the striato-parietal tract, and the anterior and posterior commissural tracts. Texture analyses showed a significant difference in the right hippocampus of patients with a mixed MCI subtype. Conclusion: PD-MCI patients with posterior cortical deficits have more abundant and more extensive structural alterations independently of age, disease duration, and severity, which may explain why they have an increased risk of dementia.
Collapse
Affiliation(s)
- Quentin Devignes
- Lille Neuroscience and Cognition, Lille University, Inserm, Lille University Medical Centre, Lille, France
| | - Romain Viard
- US 41—UMS 2014—PLBS, Lille University, CNRS, Inserm, Lille University Medical Centre, Pasteur Institute, Lille, France
- Department of Neuroradiology, Lille University Medical Centre, Lille, France
| | - Nacim Betrouni
- Lille Neuroscience and Cognition, Lille University, Inserm, Lille University Medical Centre, Lille, France
| | - Guillaume Carey
- Lille Neuroscience and Cognition, Lille University, Inserm, Lille University Medical Centre, Lille, France
- Neurology and Movement Disorders Department, Lille University Medical Centre, Lille, France
| | - Gregory Kuchcinski
- Lille Neuroscience and Cognition, Lille University, Inserm, Lille University Medical Centre, Lille, France
- US 41—UMS 2014—PLBS, Lille University, CNRS, Inserm, Lille University Medical Centre, Pasteur Institute, Lille, France
- Department of Neuroradiology, Lille University Medical Centre, Lille, France
| | - Luc Defebvre
- Lille Neuroscience and Cognition, Lille University, Inserm, Lille University Medical Centre, Lille, France
- Neurology and Movement Disorders Department, Lille University Medical Centre, Lille, France
| | | | - Renaud Lopes
- Lille Neuroscience and Cognition, Lille University, Inserm, Lille University Medical Centre, Lille, France
- US 41—UMS 2014—PLBS, Lille University, CNRS, Inserm, Lille University Medical Centre, Pasteur Institute, Lille, France
- Department of Neuroradiology, Lille University Medical Centre, Lille, France
| | - Kathy Dujardin
- Lille Neuroscience and Cognition, Lille University, Inserm, Lille University Medical Centre, Lille, France
- Neurology and Movement Disorders Department, Lille University Medical Centre, Lille, France
| |
Collapse
|
31
|
Wilson J, Yarnall AJ, Craig CE, Galna B, Lord S, Morris R, Lawson RA, Alcock L, Duncan GW, Khoo TK, O'Brien JT, Burn DJ, Taylor J, Ray NJ, Rochester L. Cholinergic Basal Forebrain Volumes Predict Gait Decline in Parkinson's Disease. Mov Disord 2021; 36:611-621. [PMID: 33382126 PMCID: PMC8048433 DOI: 10.1002/mds.28453] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Gait disturbance is an early, disabling feature of Parkinson's disease (PD) that is typically refractory to dopaminergic medication. The cortical cholinergic system, originating in the nucleus basalis of Meynert of the basal forebrain, has been implicated. However, it is not known if degeneration in this region relates to a worsening of disease-specific gait impairment. OBJECTIVE To evaluate associations between sub-regional cholinergic basal forebrain volumes and longitudinal progression of gait impairment in PD. METHODS 99 PD participants and 47 control participants completed gait assessments via an instrumented walkway during 2 minutes of continuous walking, at baseline and for up to 3 years, from which 16 spatiotemporal characteristics were derived. Sub-regional cholinergic basal forebrain volumes were measured at baseline via MRI and a regional map derived from post-mortem histology. Univariate analyses evaluated cross-sectional associations between sub-regional volumes and gait. Linear mixed-effects models assessed whether volumes predicted longitudinal gait changes. RESULTS There were no cross-sectional, age-independent relationships between sub-regional volumes and gait. However, nucleus basalis of Meynert volumes predicted longitudinal gait changes unique to PD. Specifically, smaller nucleus basalis of Meynert volume predicted increasing step time variability (P = 0.019) and shortening swing time (P = 0.015); smaller posterior nucleus portions predicted shortening step length (P = 0.007) and increasing step time variability (P = 0.041). CONCLUSIONS This is the first study to demonstrate that degeneration of the cortical cholinergic system predicts longitudinal progression of gait impairments in PD. Measures of this degeneration may therefore provide a novel biomarker for identifying future mobility loss and falls. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Joanna Wilson
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Alison J. Yarnall
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
- The Newcastle upon Tyne NHS Foundation TrustNewcastle upon TyneUnited Kingdom
| | - Chesney E. Craig
- Health, Psychology and Communities Research Centre, Department of PsychologyManchester Metropolitan UniversityManchesterUnited Kingdom
| | - Brook Galna
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
- School of Biomedical, Nutritional and Sport SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Sue Lord
- Auckland University of TechnologyAucklandNew Zealand
| | - Rosie Morris
- Department of Sport, Exercise, and RehabilitationNorthumbria UniversityNewcastle upon TyneUnited Kingdom
| | - Rachael A. Lawson
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Lisa Alcock
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Gordon W. Duncan
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- NHS LothianEdinburghUnited Kingdom
| | - Tien K. Khoo
- School of Medicine & Menzies Health Institute QueenslandGriffith UniversityGold CoastQueenslandAustralia
- School of Medicine, University of WollongongAustralia
| | - John T. O'Brien
- Department of PsychiatryUniversity of CambridgeCambridgeUnited Kingdom
| | - David J. Burn
- Population Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - John‐Paul Taylor
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Nicola J. Ray
- Health, Psychology and Communities Research Centre, Department of PsychologyManchester Metropolitan UniversityManchesterUnited Kingdom
| | - Lynn Rochester
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| |
Collapse
|
32
|
Tremblay C, Abbasi N, Zeighami Y, Yau Y, Dadar M, Rahayel S, Dagher A. Sex effects on brain structure in de novo Parkinson's disease: a multimodal neuroimaging study. Brain 2021; 143:3052-3066. [PMID: 32980872 DOI: 10.1093/brain/awaa234] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/06/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease varies in severity and age of onset. One source of this variability is sex. Males are twice as likely as females to develop Parkinson's disease, and tend to have more severe symptoms and greater speed of progression. However, to date, there is little information in large cohorts on sex differences in the patterns of neurodegeneration. Here we used MRI and clinical information from the Parkinson Progression Markers Initiative to measure structural brain differences between sexes in Parkinson's disease after regressing out the expected effect of age and sex. We derived atrophy maps from deformation-based morphometry of T1-weighted MRI and connectivity from diffusion-weighted MRI in de novo Parkinson's disease patients (149 males: 83 females) with comparable clinical severity, and healthy control participants (78 males: 39 females). Overall, even though the two patient groups were matched for disease duration and severity, males demonstrated generally greater brain atrophy and disrupted connectivity. Males with Parkinson's disease had significantly greater tissue loss than females in 11 cortical regions including bilateral frontal and left insular lobe, right postcentral gyrus, left inferior temporal and cingulate gyrus and left thalamus, while females had greater atrophy in six cortical regions, including regions in the left frontal lobe, right parietal lobe, left insular gyrus and right occipital cortex. Local efficiency of white matter connectivity showed greater disruption in males in multiple regions such as basal ganglia, hippocampus, amygdala and thalamus. These findings support the idea that development of Parkinson's disease may involve different pathological mechanisms and yield distinct prognosis in males and females, which may have implications for research into neuroprotection, and stratification for clinical trials.
Collapse
Affiliation(s)
- Christina Tremblay
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Nooshin Abbasi
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yashar Zeighami
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yvonne Yau
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mahsa Dadar
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Shady Rahayel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
33
|
Crowley SJ, Banan G, Amin M, Tanner JJ, Hizel L, Nguyen P, Brumback B, Rodriguez K, McFarland N, Bowers D, Ding M, Mareci TA, Price CC. Statistically Defined Parkinson's Disease Executive and Memory Cognitive Phenotypes: Demographic, Behavioral, and Structural Neuroimaging Comparisons. JOURNAL OF PARKINSONS DISEASE 2021; 11:283-297. [PMID: 33216042 DOI: 10.3233/jpd-202166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Some individuals with Parkinson's disease (PD) experience working memory and inhibitory difficulties, others learning and memory difficulties, while some only minimal to no cognitive deficits for many years. OBJECTIVE To statistically derive PD executive and memory phenotypes, and compare PD phenotypes on disease and demographic variables, vascular risk factors, and specific neuroimaging variables with known associations to executive and memory function relative to non-PD peers. METHODS Non-demented individuals with PD (n = 116) and non-PD peers (n = 62) were recruited to complete neuropsychology measures, blood draw, and structural magnetic resonance imaging. Tests representing the cognitive domains of interest (4 executive function, 3 memory) were included in a k-means cluster analysis comprised of the PD participants. Resulting clusters were compared demographic and disease-related variables, vascular risk markers, gray/white regions of interest, and white matter connectivity between known regions involved in executive and memory functions (dorsolateral prefrontal cortices to caudate nuclei; entorhinal cortices to hippocampi). RESULTS Clusters showed: 1) PD Executive, n = 25; 2) PD Memory, n = 35; 3) PD Cognitively Well; n = 56. Even after disease variable corrections, PD Executive had less subcortical gray matter, white matter, and fewer bilateral dorsolateral-prefrontal cortex to caudate nucleus connections; PD Memory showed bilaterally reduced entorhinal-hippocampal connections. PD Cognitively Well showed only reduced putamen volume and right entorhinal cortex to hippocampi connections relative to non-PD peers. Groups did not statistically differ on cortical integrity measures or cerebrovascular disease markers. CONCLUSION PD cognitive phenotypes showed different structural gray and white matter patterns. We discuss data relative to phenotype demographics, cognitive patterns, and structural brain profiles.
Collapse
Affiliation(s)
- Samuel J Crowley
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Guita Banan
- Department of Biochemistry and Molecular Biology, Gainesville, FL, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Manish Amin
- Department of Biochemistry and Molecular Biology, Gainesville, FL, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jared J Tanner
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Loren Hizel
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Peter Nguyen
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Babette Brumback
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Katie Rodriguez
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Nikolaus McFarland
- Department of Neurology, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Dawn Bowers
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Mingzhou Ding
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.,Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Thomas A Mareci
- Department of Biochemistry and Molecular Biology, Gainesville, FL, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Catherine C Price
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
34
|
Wei X, Luo C, Li Q, Hu N, Xiao Y, Liu N, Lui S, Gong Q. White Matter Abnormalities in Patients With Parkinson's Disease: A Meta-Analysis of Diffusion Tensor Imaging Using Tract-Based Spatial Statistics. Front Aging Neurosci 2021; 12:610962. [PMID: 33584244 PMCID: PMC7876070 DOI: 10.3389/fnagi.2020.610962] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Tract-based spatial statistics (TBSS) studies based on diffusion tensor imaging (DTI) have revealed extensive abnormalities in white matter (WM) fibers of Parkinson's disease (PD); however, the results were inconsistent. Therefore, a meta-analytical approach was used in this study to find the most prominent and replicable WM abnormalities of PD. Methods: Online databases were systematically searched for all TBSS studies comparing fractional anisotropy (FA) between patients with PD and controls. Subsequently, we performed the meta-analysis using a coordinate-based meta-analytic software called seed-based d mapping. Meanwhile, meta-regression was performed to explore the potential correlation between the alteration of FA and the clinical characteristics of PD. Results: Out of a total of 1,701 studies that were identified, 23 studies were included. Thirty datasets, including 915 patients (543 men) with PD and 836 healthy controls (449 men), were included in the current study. FA reduction was identified in the body of the corpus callosum (CC; 245 voxels; z = -1.739; p < 0.001) and the left inferior fronto-occipital fasciculus (IFOF) 118 voxels; z = -1.182; p < 0.001). Both CC and IFOF maintained significance in the sensitivity analysis. No increase in FA was identified, but the percentage of male patients with PD was positively associated with the value of FA in the body of the CC. Conclusions: Although some limitations exist, DTI is regarded as a valid way to identify the pathophysiology of PD. It could be more beneficial to integrate DTI parameters with other MRI techniques to explore brain degeneration in PD.
Collapse
Affiliation(s)
- Xia Wei
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyan Luo
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Li
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Na Hu
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Xiao
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Nian Liu
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Su Lui
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Shu Z, Pang P, Wu X, Cui S, Xu Y, Zhang M. An Integrative Nomogram for Identifying Early-Stage Parkinson's Disease Using Non-motor Symptoms and White Matter-Based Radiomics Biomarkers From Whole-Brain MRI. Front Aging Neurosci 2021; 12:548616. [PMID: 33390927 PMCID: PMC7773758 DOI: 10.3389/fnagi.2020.548616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose: To develop and validate an integrative nomogram based on white matter (WM) radiomics biomarkers and nonmotor symptoms for the identification of early-stage Parkinson's disease (PD). Methods: The brain magnetic resonance imaging (MRI) and clinical characteristics of 336 subjects, including 168 patients with PD, were collected from the Parkinson's Progress Markers Initiative (PPMI) database. All subjects were randomly divided into training and test sets. According to the baseline MRI scans of patients in the training set, the WM was segmented to extract the radiomic features of each patient and develop radiomics biomarkers, which were then combined with nonmotor symptoms to build an integrative nomogram using machine learning. Finally, the diagnostic accuracy and reliability of the nomogram were evaluated using a receiver operating characteristic curve and test data, respectively. In addition, we investigated 58 patients with atypical PD who had imaging scans without evidence of dopaminergic deficit (SWEDD) to verify whether the nomogram was able to distinguish patients with typical PD from patients with SWEDD. A decision curve analysis was also performed to validate the clinical practicality of the nomogram. Results: The area under the curve values of the integrative nomogram for the training, testing and verification sets were 0.937, 0.922, and 0.836, respectively; the specificity values were 83.8, 88.2, and 91.38%, respectively; and the sensitivity values were 84.6, 82.4, and 70.69%, respectively. A significant difference in the number of patients with PD was observed between the high-risk group and the low-risk group based on the nomogram (P < 0.05). Conclusion: This integrative nomogram is a new potential method to identify patients with early-stage PD.
Collapse
Affiliation(s)
- Zhenyu Shu
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | | | - Xiao Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sijia Cui
- Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuyun Xu
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Kamiya K, Kamagata K, Ogaki K, Hatano T, Ogawa T, Takeshige-Amano H, Murata S, Andica C, Murata K, Feiweier T, Hori M, Hattori N, Aoki S. Brain White-Matter Degeneration Due to Aging and Parkinson Disease as Revealed by Double Diffusion Encoding. Front Neurosci 2020; 14:584510. [PMID: 33177985 PMCID: PMC7594529 DOI: 10.3389/fnins.2020.584510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022] Open
Abstract
Microstructure imaging by means of multidimensional diffusion encoding is increasingly applied in clinical research, with expectations that it yields a parameter that better correlates with clinical disability than current methods based on single diffusion encoding. Under the assumption that diffusion within a voxel can be well described by a collection of diffusion tensors, several parameters of this diffusion tensor distribution can be derived, including mean size, variance of sizes, orientational dispersion, and microscopic anisotropy. The information provided by multidimensional diffusion encoding also enables us to decompose the sources of the conventional fractional anisotropy and mean kurtosis. In this study, we explored the utility of the diffusion tensor distribution approach for characterizing white-matter degeneration in aging and in Parkinson disease by using double diffusion encoding. Data from 23 healthy older subjects and 27 patients with Parkinson disease were analyzed. Advanced age was associated with greater mean size and size variances, as well as smaller microscopic anisotropy. By analyzing the parameters underlying diffusion kurtosis, we found that the reductions of kurtosis in aging and Parkinson disease reported in the literature are likely driven by the reduction in microscopic anisotropy. Furthermore, microscopic anisotropy correlated with the severity of motor impairment in the patients with Parkinson disease. The present results support the use of multidimensional diffusion encoding in clinical studies and are encouraging for its future clinical implementation.
Collapse
Affiliation(s)
- Kouhei Kamiya
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Radiology, Toho University, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kotaro Ogaki
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Ogawa
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Syo Murata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Radiology, Toho University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
37
|
Shu ZY, Cui SJ, Wu X, Xu Y, Huang P, Pang PP, Zhang M. Predicting the progression of Parkinson's disease using conventional MRI and machine learning: An application of radiomic biomarkers in whole-brain white matter. Magn Reson Med 2020; 85:1611-1624. [PMID: 33017475 DOI: 10.1002/mrm.28522] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE This study aimed to develop and validate a radiomics model based on whole-brain white matter and clinical features to predict the progression of Parkinson disease (PD). METHODS PD patient data from the Parkinson's Progress Markers Initiative (PPMI) database was evaluated. Seventy-two PD patients with disease progression, as measured by the Hoehn-Yahr Scale (HYS) (stage 1-5), and 72 PD patients with stable PD were matched by sex, age, and category of HYS and included in the current study. Each individual's T1 -weighted MRI scans at the baseline timepoint were segmented to isolate whole-brain white matter for radiomics feature extraction. The total dataset was divided into a training and test set according to subject serial number. The size of the training dataset was reduced using the maximum relevance minimum redundancy (mRMR) algorithm to construct a radiomics signature using machine learning. Finally, a joint model was constructed by incorporating the radiomics signature and clinical progression scores. The test data were then used to validate the prediction models, which were evaluated based on discrimination, calibration, and clinical utility. RESULTS Based on the overall data, the areas under curve (AUCs) of the joint model, signature and Unified Parkinson Disease Rating Scale III PD rating score were 0.836, 0.795, and 0.550, respectively. Furthermore, the sensitivities were 0.805, 0.875, and 0.292, respectively, and the specificities were 0.722, 0.697, and 0.861, respectively. In addition, the predictive accuracy of the model was 0.827, the sensitivity was 0.829 and the specificity was 0.702 for stage-1 PD. For stage-2 PD, the predictive accuracy of the model was 0.854, the sensitivity was 0.960, and the specificity was 0.600. CONCLUSION Our results provide evidence that conventional structural MRI can predict the progression of PD. This work also supports the use of a simple radiomics signature built from whole-brain white matter features as a useful tool for the assessment and monitoring of PD progression.
Collapse
Affiliation(s)
- Zhen-Yu Shu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.,Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Si-Jia Cui
- Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiao Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yuyun Xu
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | | | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
38
|
Zhang Y, Burock MA. Diffusion Tensor Imaging in Parkinson's Disease and Parkinsonian Syndrome: A Systematic Review. Front Neurol 2020; 11:531993. [PMID: 33101169 PMCID: PMC7546271 DOI: 10.3389/fneur.2020.531993] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Diffusion tensor imaging (DTI) allows measuring fractional anisotropy and similar microstructural indices of the brain white matter. Lower than normal fractional anisotropy as well as higher than normal diffusivity is associated with loss of microstructural integrity and neurodegeneration. Previous DTI studies in Parkinson's disease (PD) have demonstrated abnormal fractional anisotropy in multiple white matter regions, particularly in the dopaminergic nuclei and dopaminergic pathways. However, DTI is not considered a diagnostic marker for the earliest Parkinson's disease since anisotropic alterations present a temporally divergent pattern during the earliest Parkinson's course. This article reviews a majority of clinically employed DTI studies in PD, and it aims to prove the utilities of DTI as a marker of diagnosing PD, correlating clinical symptomatology, tracking disease progression, and treatment effects. To address the challenge of DTI being a diagnostic marker for early PD, this article also provides a comparison of the results from a longitudinal, early stage, multicenter clinical cohort of Parkinson's research with previous publications. This review provides evidences of DTI as a promising marker for monitoring PD progression and classifying atypical PD types, and it also interprets the possible pathophysiologic processes under the complex pattern of fractional anisotropic changes in the first few years of PD. Recent technical advantages, limitations, and further research strategies of clinical DTI in PD are additionally discussed.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Psychiatry, War Related Illness and Injury Study Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Marc A Burock
- Department of Psychiatry, Mainline Health, Bryn Mawr Hospital, Bryn Mawr, PA, United States
| |
Collapse
|
39
|
Vascular Inflammation Is a Risk Factor Associated with Brain Atrophy and Disease Severity in Parkinson's Disease: A Case-Control Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2591248. [PMID: 32733633 PMCID: PMC7376437 DOI: 10.1155/2020/2591248] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/04/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Abstract
Introduction Systemic inflammation with elevated oxidative stress causing neuroinflammation is considered a major factor in the pathogenesis of Parkinson's disease (PD). The interface between systemic circulation and the brain parenchyma is the blood-brain barrier (BBB), which also plays a role in maintaining neurovascular homeostasis. Vascular cell adhesion molecule-1 (VCAM-1) and microRNAs (miRNAs) regulate brain vessel endothelial function, neoangiogenesis, and, in turn, neuronal homeostasis regulation, such that their dysregulation can result in neurodegeneration, such as gray matter atrophy, in PD. Objective Our aim was to evaluate the associations among specific levels of gray matter atrophy, peripheral vascular adhesion molecules, miRNAs, and clinical disease severity in order to achieve a clearer understanding of PD pathogenesis. Methods Blood samples were collected from 33 patients with PD and 27 healthy volunteers, and the levels of VCAM-1 and several miRNAs in those samples were measured. Voxel-based morphometry (VBM) analysis was performed using 3 T magnetic resonance imaging (MRI) and SPM (Statistical Parametric Mapping software program). The associations among the vascular parameter, miRNAs, gray matter volume, and clinical disease severity measurements were evaluated by partial correlation analysis. Results The levels of VCAM-1, miRNA-22, and miRNA-29a expression were significantly elevated in the PD patients. The gray matter volume atrophy in the left parahippocampus, bilateral posterior cingulate gyrus, fusiform gyrus, left temporal gyrus, and cerebellum was significantly correlated with increased clinical disease severity, the upregulation of miRNA levels, and increased vascular inflammation. Conclusion Patients with PD seem to have abnormal levels of vascular inflammatory markers and miRNAs in the peripheral circulation, and these levels are correlated with specific brain volume changes. This study reinforces the associations among peripheral inflammation, the BBB interface, and gray matter atrophy in PD and further demonstrates that BBB dysfunction with neurovascular impairment may play an important role in PD progression.
Collapse
|
40
|
Altered white matter microarchitecture in Parkinson's disease: a voxel-based meta-analysis of diffusion tensor imaging studies. Front Med 2020; 15:125-138. [PMID: 32458190 DOI: 10.1007/s11684-019-0725-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 10/12/2019] [Indexed: 02/05/2023]
Abstract
This study aimed to define the most consistent white matter microarchitecture pattern in Parkinson's disease (PD) reflected by fractional anisotropy (FA), addressing clinical profiles and methodology-related heterogeneity. Web-based publication databases were searched to conduct a meta-analysis of whole-brain diffusion tensor imaging studies comparing PD with healthy controls (HC) using the anisotropic effect size-signed differential mapping. A total of 808 patients with PD and 760 HC coming from 27 databases were finally included. Subgroup analyses were conducted considering heterogeneity with respect to medication status, disease stage, analysis methods, and the number of diffusion directions in acquisition. Compared with HC, patients with PD had decreased FA in the left middle cerebellar peduncle, corpus callosum (CC), left inferior fronto-occipital fasciculus, and right inferior longitudinal fasciculus. Most of the main results remained unchanged in subgroup meta-analyses of medicated patients, early stage patients, voxel-based analysis, and acquisition with 30 diffusion directions. The subgroup meta-analysis of medication-free patients showed FA decrease in the right olfactory cortex. The cerebellum and CC, associated with typical motor impairment, showed the most consistent FA decreases in PD. Medication status, analysis approaches, and the number of diffusion directions have an important impact on the findings, needing careful evaluation in future meta-analyses.
Collapse
|
41
|
Papuć E, Rejdak K. Increased CSF NFL in Non-demented Parkinson's Disease Subjects Reflects Early White Matter Damage. Front Aging Neurosci 2020; 12:128. [PMID: 32477099 PMCID: PMC7240127 DOI: 10.3389/fnagi.2020.00128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/15/2020] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disorder with various underlying pathological processes. Until now, no fluid biomarkers have been established for PD. Given recent biochemical and neuroimaging evidence for the presence of white matter damage in PD, which may even precede neuronal loss, we investigated whether neurofilament light (NFL) was increased in the cerebrospinal fluid (CSF) of PD patients in comparison to controls. NFL is located mainly in large myelinated axons, and increased CSF levels of this protein reflect axonal injury. CSF levels of NFL in 58 early PD patients and 28 controls were quantified by ELISA (Uman Diagnostics). Measures of PD severity included disease duration, UPDRS-III, and Hoehn-Yahr stage. Statistically significant differences in CSF NFL levels were found between PD patients and controls [median with interquartile range 524.82 (393.28-678.34) vs. 271.84 (198.09-335.24) ng/l; p < 0.05)]. In PD patients, there were no correlations between CSF NFL level and the measures of disease severity. The CSF NFL turned out to have a high discriminatory value (AUC 0.850) for differentiating between PD subjects and healthy controls, with 84% sensitivity and 85.2% specificity. The study indirectly demonstrates that axonal damage is present in early PD in addition to neuronal loss. Interestingly, white matter damage was observed in non-demented PD patients. In the light of the results of recent MRI studies which confirm early white matter damage in PD, our data may turn out to be potentially useful in the diagnosis of early, or even preclinical, stages of the disease.
Collapse
Affiliation(s)
- Ewa Papuć
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
42
|
Bergamino M, Keeling EG, Mishra VR, Stokes AM, Walsh RR. Assessing White Matter Pathology in Early-Stage Parkinson Disease Using Diffusion MRI: A Systematic Review. Front Neurol 2020; 11:314. [PMID: 32477235 PMCID: PMC7240075 DOI: 10.3389/fneur.2020.00314] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Structural brain white matter (WM) changes such as axonal caliber, density, myelination, and orientation, along with WM-dependent structural connectivity, may be impacted early in Parkinson disease (PD). Diffusion magnetic resonance imaging (dMRI) has been used extensively to understand such pathological WM changes, and the focus of this systematic review is to understand both the methods utilized and their corresponding results in the context of early-stage PD. Diffusion tensor imaging (DTI) is the most commonly utilized method to probe WM pathological changes. Previous studies have suggested that DTI metrics are sensitive in capturing early disease-associated WM changes in preclinical symptomatic regions such as olfactory regions and the substantia nigra, which is considered to be a hallmark of PD pathology and progression. Postprocessing analytic approaches include region of interest-based analysis, voxel-based analysis, skeletonized approaches, and connectome analysis, each with unique advantages and challenges. While DTI has been used extensively to study WM disorganization in early-stage PD, it has several limitations, including an inability to resolve multiple fiber orientations within each voxel and sensitivity to partial volume effects. Given the subtle changes associated with early-stage PD, these limitations result in inaccuracies that severely impact the reliability of DTI-based metrics as potential biomarkers. To overcome these limitations, advanced dMRI acquisition and analysis methods have been employed, including diffusion kurtosis imaging and q-space diffeomorphic reconstruction. The combination of improved acquisition and analysis in DTI may yield novel and accurate information related to WM-associated changes in early-stage PD. In the current article, we present a systematic and critical review of dMRI studies in early-stage PD, with a focus on recent advances in DTI methodology. Yielding novel metrics, these advanced methods have been shown to detect diffuse WM changes in early-stage PD. These findings support the notion of early axonal damage in PD and suggest that WM pathology may go unrecognized until symptoms appear. Finally, the advantages and disadvantages of different dMRI techniques, analysis methods, and software employed are discussed in the context of PD-related pathology.
Collapse
Affiliation(s)
- Maurizio Bergamino
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Elizabeth G. Keeling
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Virendra R. Mishra
- Imaging Research, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
| | - Ashley M. Stokes
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Ryan R. Walsh
- Muhammad Ali Parkinson Center, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
43
|
Kim AY, Oh C, Im HJ, Baek HM. Enhanced Bidirectional Connectivity of the Subthalamo-pallidal Pathway in 6-OHDA-mouse Model of Parkinson's Disease Revealed by Probabilistic Tractography of Diffusion-weighted MRI at 9.4T. Exp Neurobiol 2020; 29:80-92. [PMID: 32122110 PMCID: PMC7075660 DOI: 10.5607/en.2020.29.1.80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 12/12/2022] Open
Abstract
An important challenge in Parkinson’s disease (PD) based neuroscience and neuroimaging is mapping the neuronal connectivity of the basal ganglia to understand how the disease affects brain circuitry. However, a majority of diffusion tractography studies have shown difficulties in revealing connections between distant anatomic brain regions and visualizing basal ganglia connectome. In this current study, we investigated the differences in basal ganglia connectivity between 6-OHDA induced ex-vivo PD mouse model and normal ex-vivo mouse model by using diffusion tensor imaging tractography from diffusion-weighted images obtained with a high resolution 9.4 T MR scanner. Connectivity pattern of the basal ganglia were compared between five 6-OHDA and five control ex-vivo mouse brains using results of probabilistic tractography generated with PROBTRACKX. When compared with control mouse, 6-OHDA mouse showed significant enhancements to motor territory-related subthalamo-pallidal and pallido-subthalamic connectivity. Multi-fiber tractography combined with diffusion MRI data has the potential to help recognize the abnormalities found in connectivity of psychiatric and neurologic disease models.
Collapse
Affiliation(s)
- A-Yoon Kim
- Department of Health Science and Technology, GAIHST, Gachon University, Incheon 21936, Korea
| | - Chiwoo Oh
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Korea
| | - Hyung-Jun Im
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Korea
| | - Hyeon-Man Baek
- Department of Health Science and Technology, GAIHST, Gachon University, Incheon 21936, Korea.,Lee Gil Ya Cancer & Diabetes Institute, Gachon University, Incheon 21999, Korea
| |
Collapse
|
44
|
White matter alterations in early Parkinson's disease: role of motor symptom lateralization. Neurol Sci 2019; 41:357-364. [PMID: 31650438 DOI: 10.1007/s10072-019-04084-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/19/2019] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Parkinson's disease (PD) is a motor disorder that initially presents with unilateral symptoms. Widespread white matter (WM) alterations have been reported since the early stages of the disease. The aim of this study was to investigate WM alterations in right-dominant and left-dominant symptom PD patients (RPD and LPD, respectively) with respect to healthy controls (HC) by diffusion-weighted magnetic resonance imaging (MRI). METHODS Thirty-eight subjects participated in this study: 12 RPD (median H&Y [IQR] = 1.5 [1.1-2], median UPDRS III [IQR] = 23 [7.8-25]), 9 LPD (median H&Y [IQR] = 1.5 [1-2.5], median UPDRS III [IQR] = 17 [12-22]), and 17 HC. All the participants were scanned on a 1.5-T MRI scanner. Maps of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were computed for all the subjects. Tract-based spatial statistics (TBSS) was performed for each diffusion parameter, to test WM differences between RPD, LPD, and HC (ANCOVA design). Family-wise error (FWE) correction was performed and p values lower than 0.05 were considered significant. RESULTS No significant FA and RD differences were observed between RPD, LPD, and HC. Significantly increased MD and AD were observed in RPD with respect to HC within widespread WM regions, bilaterally. Conversely, no significant WM alterations were detected in LPD. CONCLUSION WM integrity was found to be significantly altered in RPD but not in LPD, suggesting that LPD profile may be associated to more favorable prognosis. Since clinical laterality onset may affect the extent of WM integrity changes, it should be taken into account in neuroimaging studies investigating PD.
Collapse
|
45
|
Alexandris AS, Walker L, Liu AKL, McAleese KE, Johnson M, Pearce RKB, Gentleman SM, Attems J. Cholinergic deficits and galaninergic hyperinnervation of the nucleus basalis of Meynert in Alzheimer's disease and Lewy body disorders. Neuropathol Appl Neurobiol 2019; 46:264-278. [PMID: 31454423 DOI: 10.1111/nan.12577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/17/2019] [Indexed: 12/27/2022]
Abstract
AIMS Galanin is a highly inducible neuroprotective neuropeptide and in Alzheimer's disease (AD), a network of galaninergic fibres has been reported to hypertrophy and hyperinnervate the surviving cholinergic neurons in the basal forebrain. We aimed to determine (i) the extent of galanin hyperinnervation in patients with AD and Lewy body disease and (ii) whether galanin expression relates to the neuropathological burden and cholinergic losses. METHODS Galanin immunohistochemistry was carried out in the anterior nucleus basalis of Meynert of 27 Parkinson's disease (PD) cases without cognitive impairment (mild cognitive impairment [MCI]), 15 with PD with MCI, 42 with Parkinson's disease dementia (PDD), 12 with Dementia with Lewy bodies (DLB), 19 with AD, 12 mixed AD/DLB and 16 controls. Galaninergic innervation of cholinergic neurons was scored semiquantitatively. For a subgroup of cases (n = 60), cholinergic losses were determined from maximum densities of choline acetyltransferase positive (ChAT+ve) neurons and their projection fibres. Quantitative data for α-synuclein, amyloid beta and tau pathology were obtained from tissue microarrays covering cortical/subcortical regions. RESULTS Significant losses of cholinergic neurons and their projection fibres were observed across all diseases. Galaninergic hyperinnervation was infrequent and particularly uncommon in established AD and DLB. We found that hyperinnervation frequencies are significantly higher in the transition between PD without MCI to PDD and that higher burdens of co-existent AD pathology impair this galaninergic response. CONCLUSIONS Our results suggest that galanin upregulation represents an intrinsic response early in Lewy body diseases but which fails with increasing burdens of AD related pathology.
Collapse
Affiliation(s)
- A S Alexandris
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Neuropathology Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK.,Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - L Walker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - A K L Liu
- Neuropathology Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - K E McAleese
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - M Johnson
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - R K B Pearce
- Neuropathology Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - S M Gentleman
- Neuropathology Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - J Attems
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
46
|
Marcori AJ, Okazaki VHA. Motor repertoire and gray matter plasticity: Is there a link? Med Hypotheses 2019; 130:109261. [PMID: 31383345 DOI: 10.1016/j.mehy.2019.109261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/28/2019] [Accepted: 06/07/2019] [Indexed: 01/25/2023]
Abstract
There is a considerable amount of evidence sustaining that aerobic exercise causes positive modifications in gray matter density (GMD), especially in the hippocampus and anterior cingulate cortex. However, recent experimental researches with motor learning paradigms are consistently showing that increasing cardiorespiratory capacity is not the only mechanism able to promote positive outcomes in GMD with exercise. In the present study, we present a theoretical suggestion that expanding one's motor repertoire is another primary mechanism related to the increases in GMD. Motor repertoire can be understood as the number of movement possibilities and motor skills that can be performed by a person. Supporting our suggestion, professional athletes present higher GMD than controls, and experimental protocols repeatedly observes positive changes in GMD following motor learning. The relationship between physical inactivity, amputation, and lower GMD values also gives further support for the hypothesis. Follow-up studies monitoring GMD before and after training programs that stimulate new motor skill learning are essential to confirm this proposition. The brain regions related to sensory processing of the motor tasks and the cortical areas related to motor control (e.g., primary motor cortex, supplementary motor area) are probably the ones most affected by plastic changes. If the hypothesis turns out to be reliable, dancing, gymnastics, and other movement-rich activities are thoroughly encouraged for this purpose. Therefore, this approach might be used to attenuate GMD loss related to aging or another condition, such as Parkinson's and Alzheimer's.
Collapse
Affiliation(s)
- Alexandre Jehan Marcori
- Motor Neuroscience Research Group, Londrina State University, Rodovia Celso Garcia Cid, PR445, Km 380, Brazil.
| | - Victor Hugo Alves Okazaki
- Motor Neuroscience Research Group, Londrina State University, Rodovia Celso Garcia Cid, PR445, Km 380, Brazil
| |
Collapse
|
47
|
Andica C, Kamagata K, Hatano T, Saito A, Uchida W, Ogawa T, Takeshige-Amano H, Zalesky A, Wada A, Suzuki M, Hagiwara A, Irie R, Hori M, Kumamaru KK, Oyama G, Shimo Y, Umemura A, Pantelis C, Hattori N, Aoki S. Free-Water Imaging in White and Gray Matter in Parkinson's Disease. Cells 2019; 8:cells8080839. [PMID: 31387313 PMCID: PMC6721691 DOI: 10.3390/cells8080839] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 11/16/2022] Open
Abstract
This study aimed to discriminate between neuroinflammation and neuronal degeneration in the white matter (WM) and gray matter (GM) of patients with Parkinson’s disease (PD) using free-water (FW) imaging. Analysis using tract-based spatial statistics (TBSS) of 20 patients with PD and 20 healthy individuals revealed changes in FW imaging indices (i.e., reduced FW-corrected fractional anisotropy (FAT), increased FW-corrected mean, axial, and radial diffusivities (MDT, ADT, and RDT, respectively) and fractional volume of FW (FW) in somewhat more specific WM areas compared with the changes of DTI indices. The region-of-interest (ROI) analysis further supported these findings, whereby those with PD showed significantly lower FAT and higher MDT, ADT, and RDT (indices of neuronal degeneration) in anterior WM areas as well as higher FW (index of neuroinflammation) in posterior WM areas compared with the controls. Results of GM-based spatial statistics (GBSS) analysis revealed that patients with PD had significantly higher MDT, ADT, and FW than the controls, whereas ROI analysis showed significantly increased MDT and FW and a trend toward increased ADT in GM areas, corresponding to Braak stage IV. These findings support the hypothesis that neuroinflammation precedes neuronal degeneration in PD, whereas WM microstructural alterations precede changes in GM.
Collapse
Affiliation(s)
- Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Taku Hatano
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Asami Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Radiological Sciences, Tokyo Metropolitan University, Graduate School of Human Health Sciences, Tokyo 116-8551, Japan
| | - Takashi Ogawa
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | | | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC 3053, Australia
- Melbourne School of Engineering, The University of Melbourne, VIC 3010, Australia
| | - Akihiko Wada
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Michimasa Suzuki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Ryusuke Irie
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Radiology, The University of Tokyo Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Radiology, Toho University Omori Medical Center, Tokyo 143-8541, Japan
| | - Kanako K Kumamaru
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Genko Oyama
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Yashushi Shimo
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Atsushi Umemura
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC 3053, Australia
- Melbourne School of Engineering, The University of Melbourne, VIC 3010, Australia
- Florey Institute for Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
48
|
Salsone M, Caligiuri ME, Vescio V, Arabia G, Cherubini A, Nicoletti G, Morelli M, Quattrone A, Vescio B, Nisticò R, Novellino F, Cascini GL, Sabatini U, Montilla M, Rektor I, Quattrone A. Microstructural changes of normal-appearing white matter in Vascular Parkinsonism. Parkinsonism Relat Disord 2019; 63:60-65. [DOI: 10.1016/j.parkreldis.2019.02.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/24/2019] [Accepted: 02/27/2019] [Indexed: 11/25/2022]
|
49
|
Jia X, Li Y, Li K, Liang P, Fu X. Precuneus Dysfunction in Parkinson's Disease With Mild Cognitive Impairment. Front Aging Neurosci 2019; 10:427. [PMID: 30687078 PMCID: PMC6338059 DOI: 10.3389/fnagi.2018.00427] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 12/10/2018] [Indexed: 12/15/2022] Open
Abstract
Background: Mild cognitive impairment (MCI) frequently occurs in Parkinson’s disease (PD). Neurovascular changes interact with neurodegenerative processes in PD. However, the deficits of cerebral blood flow (CBF) perfusion and the associated functional connectivity (FC) in PD patients with MCI (PD-MCI) remain unclear. Purpose: This study aimed to explore the specific neurovascular perfusion alterations in PD-MCI compared to PD with normal cognition (PD-NC) and healthy controls (HCs), and to further examine the resultant whole brain FC changes in the abnormal perfusion regions. Methods: Relative CBF (rCBF) was calculated using arterial spin labeling (ASL) in 54 patients with PD (27 patients with PD-NC and 27 patients with PD-MCI) and 25 HCs matched for age and gender ratio, who also underwent the structural MRI, resting-state functional MRI (rs-fMRI) and neuropsychological examinations. The gray matter (GM) changes in PD patients were analyzed using voxel-based morphometry (VBM). The alterations in rCBF perfusion and FC among groups were then analyzed respectively. Additionally, correlations between these alterations and neuropsychological performances were further examined. Results: Compared to HC, left caudate atrophy was detected in patients with PD. In comparison to both PD-NC and HC, patients with PD-MCI specifically exhibited hypoperfusion in the parietal memory network (PMN) in the precuneus (PCu) and decreased PCu-FC in the right striatum. Moreover, PCu perfusion and PCu-FC strengths in the right striatum were positively associated with memory performance in PD-MCI. Conclusions: These findings suggest that the posterior PMN dysfunction underlies memory deficits in PD-MCI.
Collapse
Affiliation(s)
- Xiuqin Jia
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ying Li
- Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Kuncheng Li
- Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Key Lab of MRI and Brain Informatics, Beijing, China
| | - Peipeng Liang
- School of Psychology, Capital Normal University, Beijing, China
| | - Xiaolan Fu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Neural Correlates of Cognitive Impairment in Parkinson's Disease: A Review of Structural MRI Findings. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 144:1-28. [DOI: 10.1016/bs.irn.2018.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|