1
|
Teijeiro JM. Unveiling the role of protein kinase A (PKA) activity in bovine oviductal epithelial cells: implications on apoptotic signaling pathways during the estrous cycle. Cell Tissue Res 2024; 397:275-285. [PMID: 39105776 DOI: 10.1007/s00441-024-03911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
The complex interactome crucial for successful pregnancy is constituted by the intricate network of endocrine and paracrine signaling pathways, involving gametes, embryos, and the female reproductive tract. Specifically, the oviduct exhibits distinct responses to gametes and early embryos during particular phases of the estrus cycle, a process tightly regulated by reproductive hormones. Moreover, these hormones play a pivotal role in orchestrating cyclical changes within oviductal epithelial cells. To unravel the molecular mechanisms underlying these dynamic changes, our study aimed to investigate the involvement of protein kinase A (PKA) in oviductal epithelial cells throughout the estrus cycle and in advanced pregnancy, extending our studies to oviductal epithelial cell in primary culture. By a combination of 2D-gel electrophoresis, Western blotting, and mass spectrometry, we identified 17 proteins exhibiting differential phosphorylation status mediated by PKA. Among these proteins, we successfully validated the phosphorylation status of heat shock 70 kDa protein (HSP70), aconitase 2 (ACO2), and lamin B1 (LMNB1). Our findings unequivocally demonstrate the dynamic regulation of PKA throughout the estrus cycle in oviductal epithelial cells. Also, analysis by bioinformatics tools suggest its pivotal role in mediating cyclical changes possibly through modulation of apoptotic pathways. This research sheds light on the intricate molecular mechanisms underlying reproductive processes, with implications for understanding fertility and reproductive health.
Collapse
Affiliation(s)
- Juan Manuel Teijeiro
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531. S2002LRK, Rosario, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina.
| |
Collapse
|
2
|
Abdul Halim MS, Dyson JM, Gong MM, O'Bryan MK, Nosrati R. Fallopian tube rheology regulates epithelial cell differentiation and function to enhance cilia formation and coordination. Nat Commun 2024; 15:7411. [PMID: 39198453 PMCID: PMC11358425 DOI: 10.1038/s41467-024-51481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
The rheological properties of the extracellular fluid in the female reproductive tract vary spatiotemporally, however, the effect on the behaviour of epithelial cells that line the tract is unexplored. Here, we reveal that epithelial cells respond to the elevated viscosity of culture media by modulating their development and functionality to enhance cilia formation and coordination. Specifically, ciliation increases by 4-fold and cilia beating frequency decreases by 30% when cells are cultured at 100 mPa·s. Further, cilia manifest a coordinated beating pattern that can facilitate the formation of metachronal waves. At the cellular level, viscous loading activates the TRPV4 channel in the epithelial cells to increase intracellular Ca2+, subsequently decreasing the mitochondrial membrane potential level for ATP production to maintain cell viability and function. Our findings provide additional insights into the role of elevated tubal fluid viscosity in promoting ciliation and coordinating their beating-a potential mechanism to facilitate the transport of egg and embryo, suggesting possible therapeutic opportunities for infertility treatment.
Collapse
Affiliation(s)
- Melati S Abdul Halim
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
| | - Jennifer M Dyson
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Max M Gong
- Department of Biomedical Engineering, Trine University, Angola, IN, USA
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Molecular Science and Biotechnology Institute, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Reza Nosrati
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
3
|
Zgórecka W, Kranc W, Blatkiewicz M, Kamiński K, Farzaneh M, Bryja A, Mozdziak P, Antosik P, Zabel M, Podhorska-Okołów M, Dzięgiel P, Kempisty B, Bukowska D. Long-Term In Vitro Culture Alters Gene Expression Pattern of Genes Involved in Ontological Groups Representing Cellular Processes. Int J Mol Sci 2024; 25:7109. [PMID: 39000215 PMCID: PMC11241590 DOI: 10.3390/ijms25137109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
The oviduct provides an optimal environment for the final preparation, transport, and survival of gametes, the fertilization process, and early embryonic development. Most of the studies on reproduction are based on in vitro cell culture models because of the cell's accessibility. It creates opportunities to explore the complexity of directly linked processes between cells. Previous studies showed a significant expression of genes responsible for cell differentiation, maturation, and development during long-term porcine oviduct epithelial cells (POECs) in vitro culture. This study aimed at establishing the transcriptomic profile and comprehensive characteristics of porcine oviduct epithelial cell in vitro cultures, to compare changes in gene expression over time and deliver information about the expression pattern of genes highlighted in specific GO groups. The oviduct cells were collected after 7, 15, and 30 days of in vitro cultivation. The transcriptomic profile of gene expression was compared to the control group (cells collected after the first day). The expression of COL1A2 and LOX was enhanced, while FGFBP1, SERPINB2, and OVGP1 were downregulated at all selected intervals of cell culture in comparison to the 24-h control (p-value < 0.05). Adding new detailed information to the reproductive biology field about the diversified transcriptome profile in POECs may create new future possibilities in infertility treatments, including assisted reproductive technique (ART) programmes, and may be a valuable tool to investigate the potential role of oviduct cells in post-ovulation events.
Collapse
Affiliation(s)
- Wiktoria Zgórecka
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Małgorzata Blatkiewicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Kacper Kamiński
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Paweł Antosik
- Department of Veterinary Surgery, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, 65-417 Zielona Góra, Poland
- Division of Histology and Embryology, Department of Human Morphology and Embryology Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Department of Veterinary Surgery, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| |
Collapse
|
4
|
Mahé C, de la Riviere MEL, Lasserre O, Tsikis G, Tomas D, Labas V, Elis S, Saint-Dizier M. Oral exposure to bisphenol S is associated with alterations in the oviduct proteome of an ovine model, with aggravated effects in overfed females. BMC Genomics 2024; 25:589. [PMID: 38867150 PMCID: PMC11167748 DOI: 10.1186/s12864-024-10510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Bisphenol S (BPS) is a substitute for bisphenol A in plastic manufacturing and, as a potential endocrine disruptor, may alter the physiology of the oviduct, in which fertilization and early embryo development take place in mammals. The objective of this study was to assess the effect of a daily dietary exposure to BPS combined with a contrasted diet on the oviduct fluid proteome using an ovine model. RESULTS Eighty adult cyclic ewes were allotted to four groups (20/group): overfed (OF) consuming 50 µg/kg/day of BPS in their diet, underfed (UF) consuming 50 µg/kg/day of BPS, and non-exposed controls in each diet group. After three months, the mean body condition score, plasma levels of glucose and non-esterified fatty acids were significantly higher in OF than in UF females. The proteins in collected OF samples (50 µg) were analyzed by nanoliquid chromatography coupled with tandem mass spectrometry (nanoLC-MS/MS). Overall, 1563 proteins were identified, among which 848 were quantified. Principal component analysis of the data revealed a clear discrimination of samples according to the diet and a segregation between BPS-exposed and non-exposed females in overfed ewes. Hierarchical clustering of differentially abundant proteins (DAPs) identified two clusters of 101 and 78 DAPs according to the diet. Pairwise comparisons between groups revealed a stronger effect of BPS in OF than in UF females (70 vs. 24 DAPs) and a stronger effect of the diet in BPS-exposed than non-exposed females (56 vs. 36 DAPs). Functional analysis of DAPs showed an enrichment in metabolic processes, immune system, cell response to stress, and reproductive processes. CONCLUSIONS This work highlights for the first time the important impact of BPS on the oviduct proteome, with larger effects seen in OF than UF females. These results, together with previous ones, raise health concerns for everyone and call for a greater regulation of BPS in the food industry.
Collapse
Affiliation(s)
- Coline Mahé
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, 37380, France.
| | | | | | | | - Daniel Tomas
- INRAE, Université de Tours, CHU de Tours, Plateforme de Phénotypage Par Imagerie in/eX Vivo de L'ANImal À La Molécule (PIXANIM), Nouzilly, 37380, France
| | - Valérie Labas
- INRAE, Université de Tours, CHU de Tours, Plateforme de Phénotypage Par Imagerie in/eX Vivo de L'ANImal À La Molécule (PIXANIM), Nouzilly, 37380, France
| | - Sébastien Elis
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, 37380, France
| | | |
Collapse
|
5
|
McGlade EA, Mao J, Stephens KK, Kelleher AM, Maddison LA, Bernhardt ML, DeMayo FJ, Lydon JP, Winuthayanon W. Generation of Oviductal Glycoprotein 1 Cre Mouse Model for the Study of Secretory Epithelial Cells of the Oviduct. Endocrinology 2024; 165:bqae070. [PMID: 38916490 PMCID: PMC11210311 DOI: 10.1210/endocr/bqae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024]
Abstract
The epithelial cell lining of the oviduct plays an important role in oocyte pickup, sperm migration, preimplantation embryo development, and embryo transport. The oviduct epithelial cell layer comprises ciliated and nonciliated secretory cells. The ciliary function has been shown to support gamete and embryo movement in the oviduct, yet secretory cell function has not been well characterized. Therefore, our goal was to generate a secretory cell-specific Cre recombinase mouse model to study the role of the oviductal secretory cells. A knock-in mouse model, Ovgp1Cre:eGFP, was created by expressing Cre from the endogenous Ovgp1 (oviductal glycoprotein 1) locus, with enhanced green fluorescent protein (eGFP) as a reporter. EGFP signals were strongly detected in the secretory epithelial cells of the oviducts at estrus in adult Ovgp1Cre:eGFP mice. Signals were also detected in the ovarian stroma, uterine stroma, vaginal epithelial cells, epididymal epithelial cells, and elongated spermatids. To validate recombinase activity, progesterone receptor (PGR) expression was ablated using the Ovgp1Cre:eGFP; Pgrf/f mouse model. Surprisingly, the deletion was restricted to the epithelial cells of the uterotubal junction (UTJ) region of Ovgp1Cre:eGFP; Pgrf/f oviducts. Deletion of Pgr in the epithelial cells of the UTJ region had no effect on female fecundity. In summary, we found that eGFP signals were likely specific to secretory epithelial cells in all regions of the oviduct. However, due to a potential target-specific Cre activity, validation of appropriate recombination and expression of the gene(s) of interest is absolutely required to confirm efficient deletion when generating conditional knockout mice using the Ovgp1Cre:eGFP line.
Collapse
Affiliation(s)
- Emily A McGlade
- Obstetrics, Gynecology and Women's Health, University of Missouri–Columbia, Columbia, MO 65211, USA
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jiude Mao
- Obstetrics, Gynecology and Women's Health, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Kalli K Stephens
- Obstetrics, Gynecology and Women's Health, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Andrew M Kelleher
- Obstetrics, Gynecology and Women's Health, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Lisette A Maddison
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Miranda L Bernhardt
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wipawee Winuthayanon
- Obstetrics, Gynecology and Women's Health, University of Missouri–Columbia, Columbia, MO 65211, USA
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
6
|
Schalich KM, Koganti PP, Castillo JM, Reiff OM, Cheong SH, Selvaraj V. The uterine secretory cycle: recurring physiology of endometrial outputs that setup the uterine luminal microenvironment. Physiol Genomics 2024; 56:74-97. [PMID: 37694291 DOI: 10.1152/physiolgenomics.00035.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023] Open
Abstract
Conserved in female reproduction across all mammalian species is the estrous cycle and its regulation by the hypothalamic-pituitary-gonadal (HPG) axis, a collective of intersected hormonal events that are crucial for ensuring uterine fertility. Nonetheless, knowledge of the direct mediators that synchronously shape the uterine microenvironment for successive yet distinct events, such as the transit of sperm and support for progressive stages of preimplantation embryo development, remain principally deficient. Toward understanding the timed endometrial outputs that permit luminal events as directed by the estrous cycle, we used Bovidae as a model system to uniquely surface sample and study temporal shifts to in vivo endometrial transcripts that encode for proteins destined to be secreted. The results revealed the full quantitative profile of endometrial components that shape the uterine luminal microenvironment at distinct phases of the estrous cycle (estrus, metestrus, diestrus, and proestrus). In interpreting this comprehensive log of stage-specific endometrial secretions, we define the "uterine secretory cycle" and extract a predictive understanding of recurring physiological actions regulated within the uterine lumen in anticipation of sperm and preimplantation embryonic stages. This repetitive microenvironmental preparedness to sequentially provide operative support was a stable intrinsic framework, with only limited responses to sperm or embryos if encountered in the lumen within the cyclic time period. In uncovering the secretory cycle and unraveling realistic biological processes, we present novel foundational knowledge of terminal effectors controlled by the HPG axis to direct a recurring sequence of vital functions within the uterine lumen.NEW & NOTEWORTHY This study unravels the recurring sequence of changes within the uterus that supports vital functions (sperm transit and development of preimplantation embryonic stages) during the reproductive cycle in female Ruminantia. These data present new systems knowledge in uterine reproductive physiology crucial for setting up in vitro biomimicry and artificial environments for assisted reproduction technologies for a range of mammalian species.
Collapse
Affiliation(s)
- Kasey M Schalich
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| | - Prasanthi P Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| | - Juan M Castillo
- Department of Clinical Sciences, Veterinary College, Cornell University, Ithaca, New York, United States
| | - Olivia M Reiff
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| | - Soon Hon Cheong
- Department of Clinical Sciences, Veterinary College, Cornell University, Ithaca, New York, United States
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| |
Collapse
|
7
|
Jamwal S, Jena MK, Tyagi N, Kancharla S, Kolli P, Mandadapu G, Kumar S, Mohanty AK. Proteomic Approaches to Unravel the Molecular Dynamics of Early Pregnancy in Farm Animals: An In-Depth Review. J Dev Biol 2023; 12:2. [PMID: 38248867 PMCID: PMC10801625 DOI: 10.3390/jdb12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Infertility is a major problem in farm animals, which has a negative economic effect on farm industries. Infertility can be defined as the inability of animals to achieve a successful pregnancy. Early pregnancy is crucial to establish a successful pregnancy, and it is reported that 70-80% and 20-30% of total embryonic loss occur in cattle and pigs, respectively, during the first month of pregnancy. The advanced high-throughput proteomics techniques provide valuable tools for in-depth understanding of the implantation process in farm animals. In the present review, our goal was to compile, assess, and integrate the latest proteomic research on farm animals, specifically focused on female reproduction, which involves endometrial tissues, uterine fluids, oviductal fluids, and microRNAs. The series of studies has provided in-depth insights into the events of the implantation process by unfolding the molecular landscape of the uterine tract. The discussed data are related to pregnant vs. non-pregnant animals, pregnancy vs. oestrous cycle, different days of the early pregnancy phase, and animals with uterine infections affecting reproduction health. Some of the studies have utilized non-invasive methods and in vitro models to decipher the molecular events of embryo-maternal interaction. The proteomics data are valuable sources for discovering biomarkers for infertility in ruminants and new regulatory pathways governing embryo-uterine interaction, endometrium receptivity, and embryonic development. Here, we envisage that the identified protein signatures can serve as potential therapeutic targets and biomarkers to develop new therapeutics against pregnancy diseases.
Collapse
Affiliation(s)
- Shradha Jamwal
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India; (S.J.); (N.T.); (S.K.)
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Nikunj Tyagi
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India; (S.J.); (N.T.); (S.K.)
| | - Sudhakar Kancharla
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Prachetha Kolli
- Microgen Health Inc., 14225 Sullyfield Cir Suite E, Chantilly, VA 20151, USA;
| | - Gowtham Mandadapu
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Sudarshan Kumar
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India; (S.J.); (N.T.); (S.K.)
| | - Ashok Kumar Mohanty
- ICAR–Central Institute for Research on Cattle, Meerut Cantt 250001, Uttar Pradesh, India
| |
Collapse
|
8
|
Taraschi A, Cimini C, Colosimo A, Ramal-Sanchez M, Valbonetti L, Bernabò N, Barboni B. An interactive analysis of the mouse oviductal miRNA profiles. Front Cell Dev Biol 2022; 10:1015360. [PMID: 36340025 PMCID: PMC9627480 DOI: 10.3389/fcell.2022.1015360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/06/2022] [Indexed: 11/15/2022] Open
Abstract
MicroRNAs are small non-coding molecules that control several cellular functions and act as negative post-transcriptional regulators of the mRNA. While their implication in several biological functions is already known, an important role as regulators of different physiological and pathological processes in fertilization and embryo development is currently emerging. Indeed, miRNAs have been found in the oviductal fluid packaged within the extracellular vesicles, which might act as natural nanoshuttles by transporting lipids, proteins, RNA molecules and miRNAs from the oviduct to the gametes or embryos. Here, an exhaustive bibliography search was carried out, followed by the construction of a computational model based on the networks theory in an attempt to recreate and elucidate the pathways potentially activated by the oviductal miRNA. The omics data published to date were gathered to create the Oviductal MiRNome, in which the miRNA target genes and their interactions are represented by using stringApp and the Network analyzer from Cytoscape 3.7.2. Then, the hyperlinked nodes were identified to investigate the pathways in which they are involved using the gene ontology enrichment analysis. To study the phenotypical effects after the removal of key genes on the reproductive system and embryo, knockout mouse lines for every protein-coding gene were investigated by using the International Mouse Phenotyping Consortium database. The creation of the Oviductal MiRNome revealed the presence of important genes and their interactions within the network. The functional enrichment analysis revealed that the hyperlinked nodes are involved in fundamental cellular functions, both structural and regulatory/signaling, suggesting their implication in fertilization and early embryo development. This fact was as well evidenced by the effects of the gene deletion in KO mice on the reproductive system and embryo development. The present study highlights the importance of studying the miRNA profiles and their enormous potential as tools to improve the assisted reproductive techniques currently used in human and animal reproduction.
Collapse
Affiliation(s)
- Angela Taraschi
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Istituto Zooprofilattico Sperimentale Dell’Abruzzo e Del Molise “G. Caporale”, Teramo, Italy
| | - Costanza Cimini
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Alessia Colosimo
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Marina Ramal-Sanchez
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Luca Valbonetti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Nicola Bernabò
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
- *Correspondence: Nicola Bernabò,
| | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
9
|
Lopera-Vásquez R, Uribe-García F, Rondón-Barragán I. Effect of estrous cycle phases on gene expression in bovine oviduct epithelial cells. Vet World 2022; 15:1665-1675. [PMID: 36185535 PMCID: PMC9394134 DOI: 10.14202/vetworld.2022.1665-1675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: The oviduct environment is of particular importance because it is the site of fertilization and early embryo development. The oviduct, as a component of the reproductive system, responds to ovarian hormone (estradiol [E2] and progesterone [P4]) stimuli depending on the estrous cycle phase. This study aimed to elucidate the effect of estrous cycle phases (follicular and early and late luteal phases) on gene expression patterns in bovine oviduct epithelial cells (BOECs).
Materials and Methods: Oviducts were obtained from healthy slaughterhouse animals, corresponding to ipsilateral ovaries with dominant follicles or corpus luteum during early and late luteal phases. BOECs were recovered from the isthmus (IST) and ampulla (AMP), and the expression patterns of genes related to cytokinesis and mitosis mechanisms (rho-associated coiled-coil containing protein kinase and cellular communication network factor 2 [CCN2]), growth factors (insulin-like growth factor-binding protein 3, epidermal growth factor receptor [EGFR], vascular endothelial growth factor A, and EGFR), antioxidant mechanisms (glutathione peroxidase 4 [GPX4]), apoptosis (B-cell lymphoma 2), complement component (C3), energy metabolism (aldose reductase gene family 1-member b1 [AKRIB1] and solute carrier family 2), hormone receptors (estrogen receptor 1 and luteinizing hormone/choriogonadotropin receptor), and specific glycoproteins (oviductal glycoprotein 1) were analyzed.
Results: High P4 levels (late luteal phase) affected the expression of important genes related to antioxidant mechanisms (GPX4), energy metabolism (AKRIB1), growth factors (IGBP3 and EGFR), and cell growth regulation (CCN2) in the AMP. Low P4 levels (early luteal phase) affected the expression of AKR1B1, IGBP3, and CCN2. In addition, estrogen likely had an effect on OVPGP expression in the cattle oviduct.
Conclusion: Differential gene expression patterns of BOECs in the AMP during the luteal phase (antioxidant mechanisms, energy metabolism, growth factors, and immunological regulators) and in the IST during the follicular phase (glycoproteins) may influence their renewal and population proportions, modulating the oviduct environment as well as gamete and embryo physiology.
Collapse
Affiliation(s)
- Ricaurte Lopera-Vásquez
- Impronta Research Group, Faculty of Veterinary Medicine and Zootechnics. Universidad Cooperativa de Colombia, Ibagué-Tolima, Colombia
| | - Fabián Uribe-García
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, Postal Code 730006299, Ibagué-Tolima, Colombia
| | - Iang Rondón-Barragán
- Research Group in Immunobiology and Pathogenesis, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Santa Helena Highs, Postal Code 730006299, Ibagué-Tolima, Colombia
| |
Collapse
|
10
|
Spatiotemporal profiling of the bovine oviduct fluid proteome around the time of ovulation. Sci Rep 2022; 12:4135. [PMID: 35264682 PMCID: PMC8907256 DOI: 10.1038/s41598-022-07929-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Understanding the composition of the oviduct fluid (OF) is crucial to better comprehend the microenvironment in which sperm capacitation, fertilization and early embryo development take place. Therefore, our aim was to determine the spatiotemporal changes in the OF proteome according to the anatomical region of the oviduct (ampulla vs. isthmus), the proximity of the ovulating ovary (ipsilateral vs. contralateral side) and the peri-ovulatory stage (pre-ovulatory or Pre-ov vs. post-ovulatory or Post-ov). Oviducts from adult cyclic cows were collected at a local slaughterhouse and pools of OF were analyzed by nanoLC-MS/MS and label-free protein quantification (n = 32 OF pools for all region × stage × side conditions). A total of 3760 proteins were identified in the OF, of which 65% were predicted to be potentially secreted. The oviduct region was the major source of variation in protein abundance, followed by the proximity of the ovulating ovary and finally the peri-ovulatory stage. Differentially abundant proteins between regions, stages and sides were involved in a broad variety of biological functions, including protein binding, response to stress, cell-to-cell adhesion, calcium homeostasis and the immune system. This work highlights the dynamic regulation of oviduct secretions and provides new protein candidates for interactions between the maternal environment, the gametes and the early embryo.
Collapse
|
11
|
Chi X, Xiang D, Sha Y, Liang S, Wang C. Inhibition of human sperm function by an antibody against apolipoprotein A1: A protein located in human spermatozoa. Andrologia 2022; 54:e14365. [DOI: 10.1111/and.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/12/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Xiuping Chi
- Department of Laboratory Medicine the First Medical Centre, Chinese PLA General Hospita Beijing China
| | - Daijun Xiang
- Department of Laboratory Medicine the First Medical Centre, Chinese PLA General Hospita Beijing China
| | - Yingjiao Sha
- Department of Laboratory Medicine the First Medical Centre, Chinese PLA General Hospita Beijing China
| | - Shuang Liang
- Department of Medical Laboratory Maternal and Child Health Hospital Tangshan China
| | - Chengbin Wang
- Department of Laboratory Medicine the First Medical Centre, Chinese PLA General Hospita Beijing China
| |
Collapse
|
12
|
Cajas YN, Cañón-Beltrán K, de la Blanca MGM, Sánchez JM, Fernandez-Fuertes B, González EM, Rizos D. Role of reproductive fluids and extracellular vesicles in embryo–maternal interaction during early pregnancy in cattle. Reprod Fertil Dev 2021; 34:117-138. [PMID: 35231231 DOI: 10.1071/rd21275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The coordinated interaction between the developing embryo and the maternal reproductive tract is essential for the establishment and maintenance of pregnancy in mammals. An early cross-talk is established between the oviduct/uterus and the gametes and embryo. This dialogue will shape the microenvironment in which gamete transport, fertilisation, and early embryonic development occur. Due to the small size of the gametes and the early embryo relative to the volume of the oviductal and uterine lumina, collection of tissue and fluid adjacent to these cells is challenging in cattle. Thus, the combination of in vivo and in vitro models seems to be the most appropriate approach to better understand this fine dialogue. In this respect, the aim of this review is to summarise the recent findings in relation to gamete/embryo-maternal interaction during the pre-elongation period.
Collapse
Affiliation(s)
- Yulia N Cajas
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain; and Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca (UC), EC010205 Cuenca, Ecuador
| | - Karina Cañón-Beltrán
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain; and Facultad de Ciencias Agrarias y Ambientales, Programa de Medicina Veterinaria, Fundación Universitaria Juan de Castellanos (JdC), 150001 Tunja, Colombia
| | - María Gemma Millán de la Blanca
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain
| | - José M Sánchez
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain
| | - Beatriz Fernandez-Fuertes
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain
| | - Encina M González
- Department of Anatomy and Embryology, Veterinary Faculty, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Dimitrios Rizos
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain
| |
Collapse
|
13
|
Wrenzycki C. Parameters to identify good quality oocytes and embryos in cattle. Reprod Fertil Dev 2021; 34:190-202. [PMID: 35231232 DOI: 10.1071/rd21283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oocyte/embryo selection methodologies are either invasive or noninvasive and can be applied at various stages of development from the oocyte to cleaved embryos and up to the blastocyst stage. Morphology and the proportion of embryos developing to the blastocyst stage are important criteria to assess developmental competence. Evaluation of morphology remains the method of choice for selecting viable oocytes for IVP or embryos prior to transfer. Although non-invasive approaches are improving, invasive ones have been extremely helpful in finding candidate genes to determine oocyte/embryo quality. There is still a strong need for further refinement of existing oocyte and embryo selection methods and quality parameters. The development of novel, robust and non-invasive procedures will ensure that only embryos with the highest developmental potential are chosen for transfer. In the present review, various methods for assessing the quality of oocytes and preimplantation embryos, particularly in cattle, are considered. These methods include assessment of morphology including different staining procedures, transcriptomic and proteomic analyses, metabolic profiling, as well as the use of artificial intelligence technologies.
Collapse
Affiliation(s)
- Christine Wrenzycki
- Chair for Molecular Reproductive Medicine, Clinic for Veterinary Obstetrics, Gynecology and Andrology of Large and Small Animals, Justus-Liebig-University Giessen, Frankfurter Straße 106, Giessen 35392, Germany
| |
Collapse
|
14
|
Circadian regulation of apolipoprotein gene expression affects testosterone production in mouse testis. Theriogenology 2021; 174:9-19. [PMID: 34416563 DOI: 10.1016/j.theriogenology.2021.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 01/02/2023]
Abstract
The circadian clock system plays an important role in regulating testosterone synthesis in mammals. Male Bmal1-/- mice are infertile with low serum testosterone levels and decreased expression of testicular steroidogenic genes, suggesting that circadian clock genes regulate testosterone biosynthesis by activating steroidogenic gene transcription. However, whether the circadian clock regulates testosterone production via other genes remains unknown. Using Bmal1-/- mice and their wild-type (WT) siblings, we aimed to identify additional genes by which the circadian clock regulates testosterone synthesis. WT and Bmal1-/- mouse testes sections had similar normal morphologies, although there was a decrease in testicular spermatozoa in the Bmal1-/- mice. Low serum testosterone levels were detected in the Bmal1-/- mice. RNA sequencing identified 37 and 48 genes that were differentially expressed between WT and Bmal1-/- mouse testes at circadian time (CT2 and CT14), respectively. The cholesterol metabolism pathway was significantly enriched in the KEGG pathway analysis, and there was lower expression of three apolipoprotein genes (Apoa1, Apoa2, and Apoc3) at CT2 in the testes of Bmal1-/- mice than in those of WT mice. These decreases in Apoa1, Apoa2, and Apoc3 expression were verified by quantitative polymerase chain reaction analysis, which also revealed downregulation of the expression of the circadian clock (Per2, Dbp, and Nr1d1) and steroidogenic (StAR, Cyp11a1, and Hsd17b3) genes. The expression of circadian clock genes was relatively stable in WT mice over a 20-h period, whereas there was clear circadian rhythmic expression of Apoa1, Apoa2, Apoc3, StAR, Cyp11a1, Hsd3b2, and Hsd17b3. Bmal1-/- mice showed severely reduced expression of testicular circadian clock genes at three time points (CT4, CT12, and CT20), and a reduction in mRNA expression levels of Apo (Apoa1, Apoa2, and Apoc3) and steroidogenic (StAR, Cyp11a1, Hsd3b2, and Hsd17b3) genes. Oil Red O staining showed decreased lipid aggregation in the Leydig cells of Bmal1-/- mouse testes. Considering the vital role of Apo genes in high-density lipoprotein formation and cholesterol transport, the present data suggest that the circadian clock system regulates testosterone production by orchestrating the rhythmic expression of Apo genes. These data extend our understanding of the role of the circadian clock in regulating testosterone production in mammals.
Collapse
|
15
|
Aranciaga N, Morton JD, Maes E, Gathercole JL, Berg DK. Proteomic determinants of uterine receptivity for pregnancy in early and mid-postpartum dairy cows†. Biol Reprod 2021; 105:1458-1473. [PMID: 34647570 DOI: 10.1093/biolre/ioab190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/03/2021] [Accepted: 10/13/2021] [Indexed: 11/14/2022] Open
Abstract
Dairy cow subfertility is a worldwide issue arising from multiple factors. It manifests in >30% early pregnancy losses in seasonal pasture-grazed herds, especially when cows are inseminated in the early post-partum period. Most losses occur before implantation, when embryo growth depends on factors present in maternal tract fluids. Here we examined the proteomic composition of early and mid-postpartum uterine luminal fluid in crossbred lactating dairy cows to identify molecular determinants of fertility. We also explored changes in uterine luminal fluid from first to third estrus cycles postpartum in individual cows, linking those changes with divergent embryo development. For this, we flushed uteri of 87 cows at day 7 of pregnancy at first and third estrus postpartum, recovering and grading their embryos. Out of 1563 proteins detected, 472 had not been previously reported in this fluid, and 408 were predicted to be actively secreted by bioinformatic analysis. The abundance of 18 proteins with roles in immune regulation and metabolic function (e.g. cystatin B, pyruvate kinase M2) was associated with contrasting embryo quality. Matched-paired pathway analysis indicated that, from first to third estrus postpartum, upregulation of metabolic (e.g. creatine and carbohydrate) and immune (e.g. complement regulation, antiviral defense) processes were related to poorer quality embryos in the third estrus cycle postpartum. Conversely, upregulated signal transduction and protein trafficking appeared related to improved embryo quality in third estrus. These results advance the characterization of the molecular environment of bovine uterine luminal fluid and may aid understanding fertility issues in other mammals, including humans.
Collapse
Affiliation(s)
- Nicolas Aranciaga
- Proteins and Metabolites Team, Agresearch, Christchurch, New Zealand.,Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand.,Animal Biotechnology Team, Agresearch, Hamilton, New Zealand
| | - James D Morton
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Evelyne Maes
- Proteins and Metabolites Team, Agresearch, Christchurch, New Zealand
| | | | - Debra K Berg
- Animal Biotechnology Team, Agresearch, Hamilton, New Zealand
| |
Collapse
|
16
|
McDonough-Goldstein CE, Whittington E, McCullough EL, Buel SM, Erdman S, Pitnick S, Dorus S. Pronounced Postmating Response in the Drosophila Female Reproductive Tract Fluid Proteome. Mol Cell Proteomics 2021; 20:100156. [PMID: 34597791 PMCID: PMC9357439 DOI: 10.1016/j.mcpro.2021.100156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022] Open
Abstract
Fertility depends on the progression of complex and coordinated postmating processes within the extracellular environment of the female reproductive tract (FRT). Molecular interactions between ejaculate and FRT proteins regulate many of these processes, including sperm motility, migration, storage, and modification, along with concurrent changes in the female. Although extensive progress has been made in the proteomic characterization of the male-derived components of sperm and seminal fluid, investigations into the FRT have remained more limited. To achieve a comparable level of knowledge regarding female-derived proteins that comprise the reproductive environment, we utilized semiquantitative MS-based proteomics to study the composition of the FRT tissue and, separately, the luminal fluid, before and after mating in Drosophila melanogaster. Our approach leveraged whole-fly isotopic labeling to delineate female proteins from transferred male ejaculate proteins. Our results revealed several characteristics that distinguish the FRT fluid proteome from the FRT tissue proteome: (1) the fluid proteome is encoded by genes with higher overall levels of FRT gene expression and tissue specificity, including many genes with enriched expression in the fat body, (2) fluid-biased proteins are enriched for metabolic functions, and (3) the fluid exhibits pronounced postmating compositional changes. The dynamic mating-induced proteomic changes in the FRT fluid inform our understanding of secretory mechanisms of the FRT, serve as a foundation for establishing female contributions to the ejaculate-female interactions that regulate fertility, and highlight the importance of applying proteomic approaches to characterize the composition and dynamics of the FRT environment.
Collapse
Affiliation(s)
| | - Emma Whittington
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Erin L McCullough
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Sharleen M Buel
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Scott Erdman
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Scott Pitnick
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, New York, USA.
| |
Collapse
|
17
|
Peroxiredoxin 6 Plays Essential Role in Mediating Fertilization and Early Embryonic Development in Rabbit Oviduct. Reprod Sci 2021; 29:1560-1576. [PMID: 34424529 DOI: 10.1007/s43032-021-00689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
The oviduct is a site for early reproductive events including gamete maturation, fertilization, and early embryo development. Secretory cells lining the oviduct lumen synthesize and secrete proteins that interact with gametes and developing embryos. Although previous studies have identified some of the secretory proteins in the oviduct, however, knowledge and their precise specific functions in the oviduct are poorly understood. In this study, by using proteomic approach, we identified a secretory protein, Peroxiredoxin 6 (PRDX6), and evaluated its role in mediating early pregnancy events, fertilization, and embryo development in rabbit oviduct. The expression of PRDX6 was significantly higher in ampulla and isthmus sections of the oviduct in mated animal groups compared to non-mated controls. Furthermore, significant reduction in number of embryos recovered from PRDX6 siRNA-transfected oviductal horn was observed compared to the control contralateral horn. Moreover, in animals receiving PRDX6 siRNA in their oviductal horn, the number of implanted blastocysts was significantly less in the uterus as observed on day 9 post-coital (p.c.). Further, during embryo-rabbit oviduct epithelial cell (ROEC) co-culture, siRNA-mediated PRDX6 silencing attenuated the early embryonic development. Mechanistically, increased levels of ROS and expression of oxidative stress- and inflammation-related proteins were found in PRDX6 siRNA-treated ROEC cells as compared to control cells, implicating that ablation of PRDX6 in the oviduct creates a stress-induced micro-environment detrimental to early embryonic development in oviduct. Taken together, our data suggest that PRDX6 maintains an optimal micro-environment conducive to successful embryo development and can be considered as a candidate to evaluate its therapeutic potential in IVF strategies.
Collapse
|
18
|
García-Vázquez FA, Moros-Nicolás C, López-Úbeda R, Rodríguez-Tobón E, Guillén-Martínez A, Ross JW, Luongo C, Matás C, Hernández-Caravaca I, Avilés M, Izquierdo-Rico MJ. Evidence of haptoglobin in the porcine female genital tract during oestrous cycle and its effect on in vitro embryo production. Sci Rep 2021; 11:12041. [PMID: 34103548 PMCID: PMC8187724 DOI: 10.1038/s41598-021-90810-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
Recent evidence supports involvement of the acute phase protein haptoglobin in numerous events during mammalian reproduction. The present study represents an in-depth investigation of haptoglobin expression and secretion in the porcine oviduct and uterus, and assesses its effect on porcine in vitro embryo production. A systematic study was made of sows in different oestrous stages: late follicular, early luteal and late luteal stages. Relative haptoglobin mRNA abundance was quantified by RT-qPCR. In addition, expression of the protein was analysed by immunohistochemistry and the results were complemented by Western-blot and proteomic analyses of the oviductal and uterine fluids. In vitro porcine fertilization and embryo culture were carried out in the presence of haptoglobin. The results indicate that haptoglobin mRNA expression in the porcine oviduct and uterus is most abundant during the late luteal stage of the oestrous cycle. By means of Western blot and proteomic analyses haptoglobin presence was demonstrated in the oviduct epithelium and in the oviductal and uterine fluids in different stages of the oestrous cycle. The addition of haptoglobin during gamete co-incubation had no effect on sperm penetration, monospermy or efficiency rates; however, compared with the control group, blastocyst development was significantly improved when haptoglobin was present (haptoglobin: 64.50% vs. control: 37.83%; p < 0.05). In conclusion, the presence of haptoglobin in the oviduct and uterus of sows at different stages of the oestrous cycle suggests that it plays an important role in the reproduction process. The addition of haptoglobin during in vitro embryo production improved the blastocyst rates.
Collapse
Affiliation(s)
- Francisco A. García-Vázquez
- grid.10586.3a0000 0001 2287 8496Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Carla Moros-Nicolás
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Rebeca López-Úbeda
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Ernesto Rodríguez-Tobón
- grid.10586.3a0000 0001 2287 8496Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Ascensión Guillén-Martínez
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Jason W. Ross
- grid.34421.300000 0004 1936 7312Department of Animal Science, Iowa State University, Ames, IA USA
| | - Chiara Luongo
- grid.10586.3a0000 0001 2287 8496Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Carmen Matás
- grid.10586.3a0000 0001 2287 8496Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Iván Hernández-Caravaca
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Manuel Avilés
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Mª José Izquierdo-Rico
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| |
Collapse
|
19
|
McGlade EA, Herrera GG, Stephens KK, Olsen SLW, Winuthayanon S, Guner J, Hewitt SC, Korach KS, DeMayo FJ, Lydon JP, Monsivais D, Winuthayanon W. Cell-type specific analysis of physiological action of estrogen in mouse oviducts. FASEB J 2021; 35:e21563. [PMID: 33818810 PMCID: PMC8189321 DOI: 10.1096/fj.202002747r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 02/04/2023]
Abstract
One of the endogenous estrogens, 17β-estradiol (E2 ) is a female steroid hormone secreted from the ovary. It is well established that E2 causes biochemical and histological changes in the uterus. However, it is not completely understood how E2 regulates the oviductal environment in vivo. In this study, we assessed the effect of E2 on each oviductal cell type, using an ovariectomized-hormone-replacement mouse model, single-cell RNA-sequencing (scRNA-seq), in situ hybridization, and cell-type-specific deletion in mice. We found that each cell type in the oviduct responded to E2 distinctively, especially ciliated and secretory epithelial cells. The treatment of exogenous E2 did not drastically alter the transcriptomic profile from that of endogenous E2 produced during estrus. Moreover, we have identified and validated genes of interest in our datasets that may be used as cell- and region-specific markers in the oviduct. Insulin-like growth factor 1 (Igf1) was characterized as an E2 -target gene in the mouse oviduct and was also expressed in human fallopian tubes. Deletion of Igf1 in progesterone receptor (Pgr)-expressing cells resulted in female subfertility, partially due to an embryo developmental defect and embryo retention within the oviduct. In summary, we have shown that oviductal cell types, including epithelial, stromal, and muscle cells, are differentially regulated by E2 and support gene expression changes, such as growth factors that are required for normal embryo development and transport in mouse models. Furthermore, we have identified cell-specific and region-specific gene markers for targeted studies and functional analysis in vivo.
Collapse
Affiliation(s)
- Emily A. McGlade
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Gerardo G. Herrera
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Kalli K. Stephens
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Sierra L. W. Olsen
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Sarayut Winuthayanon
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Joie Guner
- Department of Pathology and Immunology, Center for Drug Discovery, Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sylvia C. Hewitt
- Department of Health and Human Services, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), NC, USA
| | - Kenneth S. Korach
- Department of Health and Human Services, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), NC, USA
| | - Francesco J. DeMayo
- Department of Health and Human Services, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), NC, USA
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Diana Monsivais
- Department of Pathology and Immunology, Center for Drug Discovery, Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Wipawee Winuthayanon
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
20
|
Naranjo-Gómez JS, Uribe-García HF, Herrera-Sánchez MP, Lozano-Villegas KJ, Rodríguez-Hernández R, Rondón-Barragán IS. Heat stress on cattle embryo: gene regulation and adaptation. Heliyon 2021; 7:e06570. [PMID: 33869831 PMCID: PMC8035499 DOI: 10.1016/j.heliyon.2021.e06570] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/29/2021] [Accepted: 03/18/2021] [Indexed: 12/26/2022] Open
Abstract
Global warming has been affecting animal husbandry and farming production worldwide via changes in organisms and their habitats. In the tropics, these conditions are adverse for agriculture and animal production in some areas, due to high temperatures and relative humidity, affecting competitiveness related to economic activities. These environments have deteriorated livestock production, due to periods of drought, reduction in forage quality and heat stress, eliciting negative effects on reproduction, weight gain, and reduced meat and milk production. However, the use of animals adapted to tropics such as breeds derived from subspecies Bos primigenius indicus and native breeds from tropical countries or their crossings, is an alternative to improve production under high-temperature conditions. Therefore, physiological adaptation including gene expression induced by heat stress have been studied to understand the response of animals and to improve cross-breeding between cattle breeds to maintain high productivity in adverse weather conditions. Heat stress has been associated with lower reproductive performance in cows, due to the impact on blastocyst production, decreased implantation and increased embryonic death. Thus, for decades, in vitro fertilization and embryo transfer techniques have focused on studying the optimal conditions for production of high-quality embryos to transfer. The aim of this review is to discuss the effects of heat stress in bovine embryos, and their physiological and genetic modulation, focusing on the genes that are related with major adaptability to heat stress conditions and their relationship with different embryonic stages.
Collapse
Affiliation(s)
- Juan Sebastian Naranjo-Gómez
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos of Santa Helena, A.A 546, Ibagué, Colombia
| | - Heinner Fabián Uribe-García
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos of Santa Helena, A.A 546, Ibagué, Colombia
| | - María Paula Herrera-Sánchez
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos of Santa Helena, A.A 546, Ibagué, Colombia
| | - Kelly Johanna Lozano-Villegas
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos of Santa Helena, A.A 546, Ibagué, Colombia
| | - Roy Rodríguez-Hernández
- Poultry Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos of Santa Helena, A.A 546, Ibagué, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos of Santa Helena, A.A 546, Ibagué, Colombia
- Poultry Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos of Santa Helena, A.A 546, Ibagué, Colombia
| |
Collapse
|
21
|
Lee SH, Lira-Albarrán S, Saadeldin IM. Comprehensive Proteomics Analysis of In Vitro Canine Oviductal Cell-Derived Extracellular Vesicles. Animals (Basel) 2021; 11:ani11020573. [PMID: 33672125 PMCID: PMC7926305 DOI: 10.3390/ani11020573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary As the dog shows unique and peculiar reproductive characteristics, assisted reproductive techniques such as in vitro maturation and in vitro fertilization have not been well-established compared with those of other mammals. Our recent work demonstrated the interplay between in vitro oviductal cell-derived extracellular vesicles (OC-EVs) and cumulus-oocyte complexes in dogs. Here, we provided for the first time a comprehensive proteomic analysis of OC-EVs. A total of 398 proteins were identified in all OC-EVs samples. A functional enrichment analysis indicated that these core proteins were involved in the key cellular metabolic process related to oocyte maturation and embryonic development. The current comprehensive description of the canine OC-EVs proteome would provide a fundamental resource for further understanding canine reproductive physiology, the interaction of sperms with female counterparts during fertilization, early pregnancy, and establishing an efficient system of in vitro embryo production. Abstract Dogs (Canis lupus familiaris) have unique and peculiar reproductive characteristics. While the interplay between in vitro oviductal cell-derived extracellular vesicles (OC-EVs) and cumulus-oocyte complexes in dogs has begun to be elucidated, no study has yet provided extensive information on the biological content and physiological function of OC-EVs and their role in canine oocyte development. Here, we aimed to provide the first comprehensive proteomic analysis of OC-EVs. We identified 398 proteins as present in all OC-EVs samples. The functional enrichment analysis using Gene Ontology terms and an Ingenuity Pathway Analysis revealed that the identified proteins were involved in several cellular metabolic processes, including translation, synthesis, expression, and protein metabolism. Notably, the proteins were also involved in critical canonical pathways with essential functions in oocyte and embryo development, such as ERK/MAPK, EIF2, PI3K/AKT, and mTOR signaling. These data would be an important resource for studying canine reproductive physiology and establishing a successful in vitro embryo production system in dogs.
Collapse
Affiliation(s)
- Seok Hee Lee
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA;
- Correspondence: (S.H.L.); (I.M.S.); Tel.: +1-4154760932 (S.H.L.); +966-530910740 (I.M.S.)
| | - Saúl Lira-Albarrán
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA;
| | - Islam M Saadeldin
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- King Faisal Specialist Hospital & Research Centre, Department of Comparative Medicine, Riyadh 11211, Saudi Arabia
- Correspondence: (S.H.L.); (I.M.S.); Tel.: +1-4154760932 (S.H.L.); +966-530910740 (I.M.S.)
| |
Collapse
|
22
|
Natural Herbal Estrogen-Mimetics (Phytoestrogens) Promote the Differentiation of Fallopian Tube Epithelium into Multi-Ciliated Cells via Estrogen Receptor Beta. Molecules 2021; 26:molecules26030722. [PMID: 33573260 PMCID: PMC7866512 DOI: 10.3390/molecules26030722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/18/2022] Open
Abstract
Phytoestrogens are herbal polyphenolic compounds that exert various estrogen-like effects in animals and can be taken in easily from a foodstuff in daily life. The fallopian tube lumen, where transportation of the oocyte occurs, is lined with secretory cells and multi-ciliated epithelial cells. Recently, we showed that estrogen induces multi-ciliogenesis in the porcine fallopian tube epithelial cells (FTECs) through the activation of the estrogen receptor beta (ERβ) pathway and simultaneous inhibition of the Notch pathway. Thus, ingested phytoestrogens may induce FTEC ciliogenesis and thereby affect the fecundity. To address this issue, we added isoflavones (genistein, daidzein, or glycitin) and coumestan (coumestrol) to primary culture FTECs under air–liquid interface conditions and assessed the effects of each compound. All phytoestrogens except glycitin induced multi-ciliated cell differentiation, which followed Notch signal downregulation. On the contrary, the differentiation of secretory cells decreased slightly. Furthermore, genistein and daidzein had a slight effect on the proportion of proliferating cells exhibited by Ki67 expression. Ciliated-cell differentiation is inhibited by the ERβ antagonist, PHTPP. Thus, this study suggests that phytoestrogens can improve the fallopian tube epithelial sheet homeostasis by facilitating the genesis of multi-ciliated cells and this effect depends on the ERβ-mediated pathway.
Collapse
|
23
|
González-Brusi L, Algarra B, Moros-Nicolás C, Izquierdo-Rico MJ, Avilés M, Jiménez-Movilla M. A Comparative View on the Oviductal Environment during the Periconception Period. Biomolecules 2020; 10:E1690. [PMID: 33348856 PMCID: PMC7766821 DOI: 10.3390/biom10121690] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
The oviduct plays important roles in reproductive events: sperm reservoir formation, final gamete maturation, fertilization and early embryo development. It is well known that the oviductal environment affects gametes and embryos and, ultimately, the health of offspring, so that in vivo embryos are better in terms of morphology, cryotolerance, pregnancy rates or epigenetic profile than those obtained in vitro. The deciphering of embryo-maternal interaction in the oviduct may provide a better understanding of the embryo needs during the periconception period to improve reproductive efficiency. Here, we perform a comparative analysis among species of oviductal gene expression related to embryonic development during its journey through the oviduct, as described to date. Cross-talk communication between the oviduct environment and embryo will be studied by analyses of the secreted or exosomal proteins of the oviduct and the presence of receptors in the membrane of the embryo blastomeres. Finally, we review the data that are available to date on the expression and characterization of the most abundant protein in the oviduct, oviductin (OVGP1), highlighting its fundamental role in fertilization and embryonic development.
Collapse
Affiliation(s)
| | | | | | | | - Manuel Avilés
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, 30100 Murcia, Spain; (L.G.-B.); (B.A.); (C.M.-N.); (M.J.I.-R.)
| | - Maria Jiménez-Movilla
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, 30100 Murcia, Spain; (L.G.-B.); (B.A.); (C.M.-N.); (M.J.I.-R.)
| |
Collapse
|
24
|
Gegenfurtner K, Fröhlich T, Kösters M, Mermillod P, Locatelli Y, Fritz S, Salvetti P, Forde N, Lonergan P, Wolf E, Arnold GJ. Influence of metabolic status and genetic merit for fertility on proteomic composition of bovine oviduct fluid†. Biol Reprod 2020; 101:893-905. [PMID: 31347661 DOI: 10.1093/biolre/ioz142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/03/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
The oviduct plays a crucial role in fertilization and early embryo development providing the microenvironment for oocyte, spermatozoa, and early embryo. Since dairy cow fertility declined steadily over the last decades, reasons for early embryonic loss have gained increasing interest. Analyzing two animal models, this study aimed to investigate the impact of genetic predisposition for fertility and of metabolic stress on the protein composition of oviduct fluid. A metabolic model comprised maiden Holstein heifers and postpartum lactating (Lact) and non-lactating (Dry) cows, while a genetic model consisted of heifers from the Montbéliarde breed and Holstein heifers with low- and high-fertility index. In a holistic proteomic analysis of oviduct fluid from all groups using nano-liquid chromatography tandem-mass spectrometry analysis and label-free quantification, we were able to identify 1976 proteins, among which 143 showed abundance alterations in the pairwise comparisons within both models. Most differentially abundant proteins were revealed between low fertility Holstein and Montbéliarde (52) in the genetic model and between lactating and maiden Holstein (19) in the metabolic model, demonstrating a substantial effect of genetic predisposition for fertility and metabolic stress on the oviduct fluid proteome. Functional classification of affected proteins revealed actin binding, translation, and immune system processes as prominent gene ontology (GO) clusters. Notably, Actin-related protein 2/3 complex subunit 1B and the three immune system-related proteins SERPIND1 protein, immunoglobulin kappa locus protein, and Alpha-1-acid glycoprotein were affected in both models, suggesting that abundance changes of immune-related proteins in oviduct fluid play an important role for early embryonic loss.
Collapse
Affiliation(s)
- Katrin Gegenfurtner
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Miwako Kösters
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Pascal Mermillod
- Institut National de Recherche Agronomique (INRA), UMR7247, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Yann Locatelli
- Institut National de Recherche Agronomique (INRA), UMR7247, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | - P Salvetti
- Allice, Station de Phénotypage, Nouzilly, France
| | - Niamh Forde
- Division of Reproduction and Early Development, School of Medicine, University of Leeds, Leeds, UK
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany.,Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| |
Collapse
|
25
|
Bovine sperm-oviduct interactions are characterized by specific sperm behaviour, ultrastructure and tubal reactions which are impacted by sex sorting. Sci Rep 2020; 10:16522. [PMID: 33020549 PMCID: PMC7536416 DOI: 10.1038/s41598-020-73592-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
To date sperm-oviduct interactions have largely been investigated under in vitro conditions. Therefore we set out to characterize the behaviour of bovine spermatozoa within the sperm reservoir under near in vivo conditions and in real-time using a novel live cell imaging technology and a newly established fluorescent sperm binding assay. Sperm structure and tubal reactions after sperm binding were analysed using scanning and transmission electron microscopy and histochemistry. As a model to specify the impact of stress on sperm-oviduct interactions, frozen-thawed conventional and sex-sorted spermatozoa from the same bulls (n = 7) were co-incubated with oviducts obtained from cows immediately after slaughter. Our studies revealed that within the oviductal sperm reservoir agile (bound at a tangential angle of about 30°, actively beating undulating tail), lagging (bound at a lower angle, reduced tail movement), immotile (absence of tail movement) and hyperactivated (whip-like movement of tail) spermatozoa occur, the prevalence of which changes in a time-dependent pattern. After formation of the sperm reservoir, tubal ciliary beat frequency is significantly increased (p = 0.022) and the epithelial cells show increased activity of endoplasmic reticula. After sex sorting, spermatozoa occasionally display abnormal movement patterns characterized by a 360° rotating head and tail. Sperm binding in the oviduct is significantly reduced (p = 0.008) following sexing. Sex-sorted spermatozoa reveal deformations in the head, sharp bends in the tail and a significantly increased prevalence of damaged mitochondria (p < 0.001). Our results imply that the oviductal cells specifically react to the binding of spermatozoa, maintaining sperm survival within the tubal reservoir. The sex-sorting process, which is associated with mechanical, chemical and time stress, impacts sperm binding to the oviduct and mitochondrial integrity affecting sperm motility and function.
Collapse
|
26
|
Vitamin D Effects on the Immune System from Periconception through Pregnancy. Nutrients 2020; 12:nu12051432. [PMID: 32429162 PMCID: PMC7284509 DOI: 10.3390/nu12051432] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
Vitamin D is a well-known secosteroid and guardian of bone health and calcium homeostasis. Studies on its role in immunomodulatory functions have expanded its field in recent years. In addition to its impact on human physiology, vitamin D influences the differentiation and proliferation of immune system modulators, interleukin expression and antimicrobial responses. Furthermore, it has been shown that vitamin D is synthesized in female reproductive tissues and, by modulating the immune system, affects the periconception period and reproductive outcomes. B cells, T cells, macrophages and dendritic cells can all synthesize active vitamin D and are involved in processes which occur from fertilization, implantation and maintenance of pregnancy. Components of vitamin D synthesis are expressed in the ovary, decidua, endometrium and placenta. An inadequate vitamin D level has been associated with recurrent implantation failure and pregnancy loss and is associated with pregnancy-related disorders like preeclampsia. This paper reviews the most important data on immunomodulatory vitamin D effects in relation to the immune system from periconception to pregnancy and provides an insight into the possible consequences of vitamin D deficiency before and during pregnancy.
Collapse
|
27
|
piggyBac-Based Non-Viral In Vivo Gene Delivery Useful for Production of Genetically Modified Animals and Organs. Pharmaceutics 2020; 12:pharmaceutics12030277. [PMID: 32204422 PMCID: PMC7151002 DOI: 10.3390/pharmaceutics12030277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/17/2022] Open
Abstract
In vivo gene delivery involves direct injection of nucleic acids (NAs) into tissues, organs, or tail-veins. It has been recognized as a useful tool for evaluating the function of a gene of interest (GOI), creating models for human disease and basic research targeting gene therapy. Cargo frequently used for gene delivery are largely divided into viral and non-viral vectors. Viral vectors have strong infectious activity and do not require the use of instruments or reagents helpful for gene delivery but bear immunological and tumorigenic problems. In contrast, non-viral vectors strictly require instruments (i.e., electroporator) or reagents (i.e., liposomes) for enhanced uptake of NAs by cells and are often accompanied by weak transfection activity, with less immunological and tumorigenic problems. Chromosomal integration of GOI-bearing transgenes would be ideal for achieving long-term expression of GOI. piggyBac (PB), one of three transposons (PB, Sleeping Beauty (SB), and Tol2) found thus far, has been used for efficient transfection of GOI in various mammalian cells in vitro and in vivo. In this review, we outline recent achievements of PB-based production of genetically modified animals and organs and will provide some experimental concepts using this system.
Collapse
|
28
|
Teijeiro JM, Marini PE. Hormone-regulated PKA activity in porcine oviductal epithelial cells. Cell Tissue Res 2020; 380:657-667. [PMID: 32112257 DOI: 10.1007/s00441-020-03180-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/28/2020] [Indexed: 11/24/2022]
Abstract
The oviduct is a dynamic organ that suffers changes during the oestrous cycle and modulates gamete and embryo physiology. We analyse the possible existence of Protein kinase A (PKA)-dependent hormone-regulated pathways in porcine ampulla and primary cell cultures by 2D-electrophoresis/Western blot using anti-phospho PKA substrate antibodies. Differential phosphorylation was observed for ten proteins that were identified by mass spectrometry. The results were validated for five of the proteins: Annexin A5, Calumenin, Glyoxalase I and II and Enolase I. Immunofluorescence analyses show that Calumenin, Glyoxalase II and Enolase I change their localisation in the oviductal epithelium through the oestrus cycle. The results demonstrate the existence of PKA hormone-regulated pathways in the ampulla epithelium during the oestrus cycle.
Collapse
Affiliation(s)
- Juan Manuel Teijeiro
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina.
| | - Patricia Estela Marini
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.,Consejo de Investigaciones de la Universidad Nacional de Rosario (CIUNR), Rosario, Argentina.,Instituto de Biología Molecular y Celular de Rosario, IBR-CONICET, Rosario, Argentina
| |
Collapse
|
29
|
Rodríguez-Alonso B, Maillo V, Acuña OS, López-Úbeda R, Torrecillas A, Simintiras CA, Sturmey R, Avilés M, Lonergan P, Rizos D. Spatial and Pregnancy-Related Changes in the Protein, Amino Acid, and Carbohydrate Composition of Bovine Oviduct Fluid. Int J Mol Sci 2020; 21:E1681. [PMID: 32121434 PMCID: PMC7084926 DOI: 10.3390/ijms21051681] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Knowledge of how the biochemical composition of the bovine oviduct is altered due to the oviduct anatomy or the presence of an embryo is lacking. Thus, the aim of this study was to assess the effect of (І) oviduct anatomy and (ІІ) embryo presence on oviductal fluid (OF) protein, amino acid, and carbohydrate composition. Cross-bred beef heifers (n = 19) were synchronized and those in standing estrus were randomly allocated to a cyclic (non-bred) or pregnant (artificially inseminated) group. All heifers were slaughtered on Day 3 after estrus. The oviducts ipsilateral to the corpus luteum from each animal were isolated, straightened and cut, separating ampulla and isthmus. Each portion was flushed with 500 µl of PBS enabling recovery of the oocyte/embryo. Recovered unfertilized oocytes (cyclic group) and embryos (8-cell embryos; pregnant group) were located in the isthmus of the oviduct. Samples of flushing medium from the isthmus and ampulla were used for proteomic (n = 2 per group), amino acid (n = 5), and carbohydrate (n = 5) analysis. For proteomic analysis, total protein from cyclic and pregnant samples were labelled with different cyanine fluorescent probes and separated according to the isoelectric point using immobilized pH gradient strips (pH 3-10, 17 cm, Protean® IEF cell system, Bio Rad). Second dimension was performed in a polyacrylamide gel (12%) in the presence of SDS using a Protean II XL system (Bio Rad). Images were obtained with a Typhoon 9410 scanner and analyzed with Progenesis SameSpots software v 4.0. Amino acid content in the OF was determined by high performance liquid chromatography (HPLC). Glucose, lactate, and pyruvate were quantified using microfluorometric enzyme-linked assays. For the proteomic assessment, the results of the image analysis were compared by ANOVA. For both amino acid and carbohydrate analyses, statistical analysis was carried out by 2-way ANOVA with the Holm-Sidak nonparametric post hoc analysis. On Day 3 post-estrus, OF composition varied based on (І) anatomical region, where isthmic metabolites were present in lower (i.e., lactate, glycine, and alanine) or higher (i.e., arginine) concentrations compared to the ampulla; and (ІІ) embryo presence, which was correlated with greater, arginine, phosphoglycerate kinase 1, serum albumin, α-1-antiproteinase and IGL@ protein concentrations. In conclusion, data indicate that the composition of bovine OF is anatomically dynamic and influenced by the presence of an early embryo.
Collapse
Affiliation(s)
- Beatriz Rodríguez-Alonso
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (INIA), Ctra. de la Coruña KM 5.9, 28040 Madrid, Spain; (B.R.-A.); (V.M.)
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (C.A.S.); (P.L.)
| | - Veronica Maillo
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (INIA), Ctra. de la Coruña KM 5.9, 28040 Madrid, Spain; (B.R.-A.); (V.M.)
| | - Omar Salvador Acuña
- Department of Cell Biology and Histology, Faculty of Medicine, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), University of Murcia, 30100 Murcia, Spain; (O.S.A.); (R.L.-Ú.); (M.A.)
- Faculty of Veterinary and Zootechnics, Autonomous University of Sinaloa, Culiacan 80246, Mexico
- Department of Research, Animal Reproduction Biotechnology (ARBiotech), Culiacan 80015, Mexico
| | - Rebeca López-Úbeda
- Department of Cell Biology and Histology, Faculty of Medicine, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), University of Murcia, 30100 Murcia, Spain; (O.S.A.); (R.L.-Ú.); (M.A.)
| | | | - Constantine A. Simintiras
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (C.A.S.); (P.L.)
- Center for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK;
| | - Roger Sturmey
- Center for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK;
| | - Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), University of Murcia, 30100 Murcia, Spain; (O.S.A.); (R.L.-Ú.); (M.A.)
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (C.A.S.); (P.L.)
| | - Dimitrios Rizos
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology (INIA), Ctra. de la Coruña KM 5.9, 28040 Madrid, Spain; (B.R.-A.); (V.M.)
| |
Collapse
|
30
|
Banliat C, Tsikis G, Labas V, Teixeira-Gomes AP, Com E, Lavigne R, Pineau C, Guyonnet B, Mermillod P, Saint-Dizier M. Identification of 56 Proteins Involved in Embryo-Maternal Interactions in the Bovine Oviduct. Int J Mol Sci 2020; 21:ijms21020466. [PMID: 31940782 PMCID: PMC7013689 DOI: 10.3390/ijms21020466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 01/18/2023] Open
Abstract
The bovine embryo develops in contact with the oviductal fluid (OF) during the first 4–5 days of pregnancy. The aim of this study was to decipher the protein interactions occurring between the developing embryo and surrounding OF. In-vitro produced 4–6 cell and morula embryos were incubated or not (controls) in post-ovulatory OF (OF-treated embryos) and proteins were then analyzed and quantified by high resolution mass spectrometry (MS) in both embryo groups and in OF. A comparative analysis of MS data allowed the identification and quantification of 56 embryo-interacting proteins originated from the OF, including oviductin (OVGP1) and several annexins (ANXA1, ANXA2, ANXA4) as the most abundant ones. Some embryo-interacting proteins were developmental stage-specific, showing a modulating role of the embryo in protein interactions. Three interacting proteins (OVGP1, ANXA1 and PYGL) were immunolocalized in the perivitelline space and in blastomeres, showing that OF proteins were able to cross the zona pellucida and be taken up by the embryo. Interacting proteins were involved in a wide range of functions, among which metabolism and cellular processes were predominant. This study identified for the first time a high number of oviductal embryo-interacting proteins, paving the way for further targeted studies of proteins potentially involved in the establishment of pregnancy in cattle.
Collapse
Affiliation(s)
- Charles Banliat
- INRAE, CNRS, Université de Tours, IFCE, UMR PRC, 37380 Nouzilly, France; (C.B.); (G.T.); (V.L.); (P.M.)
- Union Evolution, 35530 Noyal-sur-Vilaine, France;
| | - Guillaume Tsikis
- INRAE, CNRS, Université de Tours, IFCE, UMR PRC, 37380 Nouzilly, France; (C.B.); (G.T.); (V.L.); (P.M.)
| | - Valérie Labas
- INRAE, CNRS, Université de Tours, IFCE, UMR PRC, 37380 Nouzilly, France; (C.B.); (G.T.); (V.L.); (P.M.)
- INRAE, Université de Tours, CHU de Tours, Plate-forme CIRE, PAIB, 37380 Nouzilly, France;
| | - Ana-Paula Teixeira-Gomes
- INRAE, Université de Tours, CHU de Tours, Plate-forme CIRE, PAIB, 37380 Nouzilly, France;
- INRAE, UMR 1282 ISP, 37380 Nouzilly, France
| | - Emmanuelle Com
- Inserm, University of Rennes, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, 35000 Rennes, France; (E.C.); (R.L.); (C.P.)
- Protim, Inserm U1085, Irset, Campus de Beaulieu, University of Rennes 1, Proteomics Core Facility, 35000 Rennes, France
| | - Régis Lavigne
- Inserm, University of Rennes, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, 35000 Rennes, France; (E.C.); (R.L.); (C.P.)
- Protim, Inserm U1085, Irset, Campus de Beaulieu, University of Rennes 1, Proteomics Core Facility, 35000 Rennes, France
| | - Charles Pineau
- Inserm, University of Rennes, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, 35000 Rennes, France; (E.C.); (R.L.); (C.P.)
- Protim, Inserm U1085, Irset, Campus de Beaulieu, University of Rennes 1, Proteomics Core Facility, 35000 Rennes, France
| | | | - Pascal Mermillod
- INRAE, CNRS, Université de Tours, IFCE, UMR PRC, 37380 Nouzilly, France; (C.B.); (G.T.); (V.L.); (P.M.)
| | - Marie Saint-Dizier
- INRAE, CNRS, Université de Tours, IFCE, UMR PRC, 37380 Nouzilly, France; (C.B.); (G.T.); (V.L.); (P.M.)
- Faculty of Sciences and Techniques, Department Agrosciences, University of Tours, 37000 Tours, France
- Correspondence: ; Tel.: +33-2-47-42-75-08
| |
Collapse
|
31
|
Composing the Early Embryonic Microenvironment: Physiology and Regulation of Oviductal Secretions. Int J Mol Sci 2019; 21:ijms21010223. [PMID: 31905654 PMCID: PMC6982147 DOI: 10.3390/ijms21010223] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/19/2019] [Accepted: 12/25/2019] [Indexed: 12/22/2022] Open
Abstract
The oviductal fluid is the first environment experienced by mammalian embryos at the very beginning of life. However, it has long been believed that the oviductal environment was not essential for proper embryonic development. Successful establishment of in vitro embryo production techniques (which completely bypass the oviduct) have reinforced this idea. Yet, it became evident that in vitro produced embryos differ markedly from their in vivo counterparts, and these differences are associated with lower pregnancy outcomes and more health issues after birth. Nowadays, researchers consider the oviduct as the most suitable microenvironment for early embryonic development and a substantial effort is made to understand its dynamic, species-specific functions. In this review, we touch on the origin and molecular components of the oviductal fluid in mammals, where recent progress has been made thanks to the wider use of mass spectrometry techniques. Some of the factors and processes known to regulate oviductal secretions, including the embryo itself, as well as ovulation, insemination, endogenous and exogenous hormones, and metabolic and heat stress, are summarized. Special emphasis is laid on farm animals because, owing to the availability of sample material and the economic importance of fertility in livestock husbandry, a large part of the work on this topic has been carried out in domestic animals used for dairy and/or meat production.
Collapse
|
32
|
Gatien J, Mermillod P, Tsikis G, Bernardi O, Janati Idrissi S, Uzbekov R, Le Bourhis D, Salvetti P, Almiñana C, Saint-Dizier M. Metabolomic Profile of Oviductal Extracellular Vesicles across the Estrous Cycle in Cattle. Int J Mol Sci 2019; 20:ijms20246339. [PMID: 31888194 PMCID: PMC6941065 DOI: 10.3390/ijms20246339] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 02/08/2023] Open
Abstract
Oviductal extracellular vesicles (oEVs) have been proposed as key modulators of gamete/embryo maternal interactions. The aim of this study was to examine the metabolite content of oEVs and its regulation across the estrous cycle in cattle. Oviductal EVs were isolated from bovine oviducts ipsilateral and contralateral to ovulation at four stages of the estrous cycle (post-ovulatory stage, early and late luteal phases, and pre-ovulatory stage). The metabolomic profiling of EVs was performed by proton nuclear magnetic resonance spectroscopy (NMR). NMR identified 22 metabolites in oEVs, among which 15 were quantified. Lactate, myoinositol, and glycine were the most abundant metabolites throughout the estrous cycle. The side relative to ovulation had no effect on the oEVs' metabolite concentrations. However, levels of glucose-1-phosphate and maltose were greatly affected by the cycle stage, showing up to 100-fold higher levels at the luteal phase than at the peri-ovulatory phases. In contrast, levels of methionine were significantly higher at peri-ovulatory phases than at the late-luteal phase. Quantitative enrichment analyses of oEV-metabolites across the cycle evidenced several significantly regulated metabolic pathways related to sucrose, glucose, and lactose metabolism. This study provides the first metabolomic characterization of oEVs, increasing our understanding of the potential role of oEVs in promoting fertilization and early embryo development.
Collapse
Affiliation(s)
- Julie Gatien
- Allice, 37380 Nouzilly, France; (J.G.); (S.J.I.); (D.L.B.); (P.S.)
| | - Pascal Mermillod
- Institut National de la Recherche Agronomique (INRA), CNRS 7247, University of Tours, IFCE, UMR85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (P.M.); (G.T.); (O.B.); (C.A.)
| | - Guillaume Tsikis
- Institut National de la Recherche Agronomique (INRA), CNRS 7247, University of Tours, IFCE, UMR85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (P.M.); (G.T.); (O.B.); (C.A.)
| | - Ophélie Bernardi
- Institut National de la Recherche Agronomique (INRA), CNRS 7247, University of Tours, IFCE, UMR85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (P.M.); (G.T.); (O.B.); (C.A.)
| | | | - Rustem Uzbekov
- Faculty of Medicine, University of Tours, 37000 Tours, France;
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119991 Moscow, Russia
| | | | - Pascal Salvetti
- Allice, 37380 Nouzilly, France; (J.G.); (S.J.I.); (D.L.B.); (P.S.)
| | - Carmen Almiñana
- Institut National de la Recherche Agronomique (INRA), CNRS 7247, University of Tours, IFCE, UMR85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (P.M.); (G.T.); (O.B.); (C.A.)
- VetSuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Marie Saint-Dizier
- Institut National de la Recherche Agronomique (INRA), CNRS 7247, University of Tours, IFCE, UMR85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (P.M.); (G.T.); (O.B.); (C.A.)
- Faculty of Sciences and Techniques, University of Tours, 37200 Tours, France
- Correspondence: ; Tel.: +33-247-427-508
| |
Collapse
|
33
|
Swelum AAA, Saadeldin IM, Abdelnour SA, Ba-Awadh H, Abd El-Hack ME, Sheiha AM. Relationship between concentrations of macro and trace elements in serum and follicular, oviductal, and uterine fluids of the dromedary camel (Camelus dromedarius). Trop Anim Health Prod 2019; 52:1315-1324. [PMID: 31760562 DOI: 10.1007/s11250-019-02137-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022]
Abstract
This study aimed at investigating the relationship between concentrations of macro and trace elements in blood serum, and fluids from small and large follicles (SFF and LFF, respectively), oviduct (OF), and uterus (UF) of female dromedary camels. Fluids from small (2-6 mm) and large follicles (7-20 mm), oviduct and uterus, and blood samples were collected from 19 camels. The results indicated that the concentrations of serum Mg, Fe, and Mn were significantly higher than their follicular fluid, OF, and UF concentrations. Levels of Zn, Fe, Cu, Cr, and Mn were significantly higher in SFF than in LFF. Se and Mo concentrations were higher in LFF. Co concentration was lower in serum than in reproductive tract fluids. Cr concentration was higher in UF and OF than in the serum, SFF, and LFF. High Ca concentration was observed for serum and SFF, followed by LFF. The concentration of Na was about 1.18-fold higher in SFF than in serum, OF, and LFF, and approximately 4.1-fold higher in serum than in UF. K was present in higher concentration in SFF than in serum and LFF; however, its concentration was low in UF and OF. In conclusion, this study shows the concentrations of certain elements in small and large follicular, uterine, and oviductal fluids, which may be low or high depending on their function in the development and growth of follicles. This information can support the development of new media for in vitro oocyte maturation and fertilization of female camels.
Collapse
Affiliation(s)
- Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, P.O Box 2460, Riyradh, 11451, Kingdom of Saudi Arabia. .,Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Islam M Saadeldin
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt. .,Physiology Department, Faculty of veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Sameh A Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Hani Ba-Awadh
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, P.O Box 2460, Riyradh, 11451, Kingdom of Saudi Arabia
| | | | - Asmaa M Sheiha
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
34
|
Fontes PK, Razza EM, Pupulim AGR, Barros CM, de Souza Castilho AC. Equine chorionic gonadotropin increases estradiol levels in the bovine oviduct and drives the transcription of genes related to fertilization in superstimulated cows. Mol Reprod Dev 2019; 86:1582-1591. [PMID: 31353672 DOI: 10.1002/mrd.23243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/30/2019] [Indexed: 11/05/2022]
Abstract
In the bovine oviduct, estradiol (E2) stimulates secretion and cell proliferation, whereas progesterone (P4) suppresses them. In this study, we have evaluated the effect of two superstimulatory protocols (follicle-stimulating hormone [FSH] or FSH combined with equine chorionic gonadotropin [eCG]) on the oviductal levels of E2 and P4 and its outcome on oviductal cells. Compared with the control group (a single pre-ovulatory follicle), we have observed that the cows submitted to FSH/eCG treatment showed a higher concentration of E2 in the oviduct tissue, together with a higher abundance of messenger RNA encoding steroid receptors (ESR1 and progesterone receptor), and genes linked to gamete interactions and regulation of polyspermy (oviduct-specific glycoprotein 1, heat-shock protein family A member 5, α-l-fucosidase 1 [FUCA1], and FUCA2) in the infundibulum and ampulla segments of the oviduct. However, we did not observe any modulation of gene expression in the isthmus segment. Even though the FSH protocol upregulated some of the genes analyzed, we may infer that the steady effect of FSH combined with eCG on oviduct regulation might benefit fertilization and may potentially increase pregnancy rates.
Collapse
Affiliation(s)
- Patricia K Fontes
- Departament of Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Eduardo M Razza
- Departament of Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | | | - Ciro M Barros
- Departament of Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | | |
Collapse
|
35
|
Pillai VV, Siqueira LG, Das M, Kei TG, Tu LN, Herren AW, Phinney BS, Cheong SH, Hansen PJ, Selvaraj V. Physiological profile of undifferentiated bovine blastocyst-derived trophoblasts. Biol Open 2019; 8:bio037937. [PMID: 30952696 PMCID: PMC6550082 DOI: 10.1242/bio.037937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/29/2019] [Indexed: 12/27/2022] Open
Abstract
Trophectoderm of blastocysts mediate early events in fetal-maternal communication, enabling implantation and establishment of a functional placenta. Inadequate or impaired developmental events linked to trophoblasts directly impact early embryo survival and successful implantation during a crucial period that corresponds with high incidence of pregnancy losses in dairy cows. As yet, the molecular basis of bovine trophectoderm development and signaling towards initiation of implantation remains poorly understood. In this study, we developed methods for culturing undifferentiated bovine blastocyst-derived trophoblasts and used both transcriptomics and proteomics in early colonies to categorize and elucidate their functional characteristics. A total of 9270 transcripts and 1418 proteins were identified and analyzed based on absolute abundance. We profiled an extensive list of growth factors, cytokines and other relevant factors that can effectively influence paracrine communication in the uterine microenvironment. Functional categorization and analysis revealed novel information on structural organization, extracellular matrix composition, cell junction and adhesion components, transcription networks, and metabolic preferences. Our data showcase the fundamental physiology of bovine trophectoderm and indicate hallmarks of the self-renewing undifferentiated state akin to trophoblast stem cells described in other species. Functional features uncovered are essential for understanding early events in bovine pregnancy towards initiation of implantation.
Collapse
Affiliation(s)
- Viju Vijayan Pillai
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Luiz G Siqueira
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
- Brazilian Agricultural Research Corporation - Embrapa Gado de Leite, Juiz de Fora, Minas Gerais 36038-330, Brazil
| | - Moubani Das
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Tiffany G Kei
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Lan N Tu
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Anthony W Herren
- Genome Center, Proteomics Core Facility, University of California, Davis, CA 95616, USA
| | - Brett S Phinney
- Genome Center, Proteomics Core Facility, University of California, Davis, CA 95616, USA
| | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Peter J Hansen
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
36
|
Almiñana C, Bauersachs S. Extracellular Vesicles in the Oviduct: Progress, Challenges and Implications for the Reproductive Success. Bioengineering (Basel) 2019; 6:bioengineering6020032. [PMID: 31013857 PMCID: PMC6632016 DOI: 10.3390/bioengineering6020032] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
The oviduct is the anatomical part of the female reproductive tract where the early reproductive events take place, from gamete transport, fertilization and early embryo development to the delivery of a competent embryo to the uterus, which can implant and develop to term. The success of all these events rely upon a two-way dialogue between the oviduct (lining epithelium and secretions) and the gametes/embryo(s). Recently, extracellular vesicles (EVs) have been identified as major components of oviductal secretions and pointed to as mediators of the gamete/embryo-maternal interactions. EVs, comprising exosomes and microvesicles, have emerged as important agents of cell-to-cell communication by the transfer of biomolecules (i.e., mRNAs, miRNAs, proteins) that can modulate the activities of recipient cells. Here, we provide the current knowledge of EVs in the oviductal environment, from isolation to characterization, and a description of the EVs molecular content and associated functional aspects in different species. The potential role of oviductal EVs (oEVs) as modulators of gamete/embryo-oviduct interactions and their implications in the success of early reproductive events is addressed. Lastly, we discuss current challenges and future directions towards the potential application of oEVs as therapeutic vectors to improve pregnancy disorders, infertility problems and increase the success of assisted reproductive technologies.
Collapse
Affiliation(s)
- Carmen Almiñana
- Genetics and Functional Genomics Group, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380 Nouzilly, France.
| | - Stefan Bauersachs
- Genetics and Functional Genomics Group, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
37
|
Yu H, Hackenbroch L, Meyer FRL, Reiser J, Razzazi-Fazeli E, Nöbauer K, Besenfelder U, Vogl C, Brem G, Mayrhofer C. Identification of Rabbit Oviductal Fluid Proteins Involved in Pre-Fertilization Processes by Quantitative Proteomics. Proteomics 2019; 19:e1800319. [PMID: 30637940 DOI: 10.1002/pmic.201800319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/28/2018] [Indexed: 01/28/2023]
Abstract
Oviductal fluid (ODF) proteins modulate and support reproductive processes in the oviduct. In the present study, proteins involved in the biological events that precede fertilization have been identified in the rabbit ODF proteome, isolated from the ampulla and isthmus of the oviduct at different time points within 8 h after intrauterine insemination. A workflow is used that integrates lectin affinity capture with stable-isotope dimethyl labeling prior to nanoLC-MS/MS analysis. In total, over 400 ODF proteins, including 214 lectin enriched glycoproteins, are identified and quantified. Selected data are validated by Western blot analysis. Spatiotemporal alterations in the abundance of ODF proteins in response to insemination are detected by global analysis. A subset of 63 potentially biologically relevant ODF proteins is identified, including extracellular matrix components, chaperones, oxidoreductases, and immunity proteins. Functional enrichment analysis reveals an altered peptidase regulator activity upon insemination. In addition to protein identification and abundance changes, N-glycopeptide analysis further identifies 281 glycosites on 199 proteins. Taken together, these results show, for the first time, the evolving oviductal milieu early upon insemination. The identified proteins are likely those that modulate in vitro processes, including spermatozoa function.
Collapse
Affiliation(s)
- Hans Yu
- Institute of Biotechnology in Animal Production, Interuniversity Department for Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences Vienna, 3430, Tulln, Austria.,Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Lena Hackenbroch
- Institute of Biotechnology in Animal Production, Interuniversity Department for Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences Vienna, 3430, Tulln, Austria.,Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Florian R L Meyer
- Institute of Biotechnology in Animal Production, Interuniversity Department for Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences Vienna, 3430, Tulln, Austria.,Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Judith Reiser
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilian University, 85764, Munich, Germany
| | - Ebrahim Razzazi-Fazeli
- VetCore Facility for Research, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Katharina Nöbauer
- VetCore Facility for Research, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Urban Besenfelder
- Reproduction Centre Wieselburg, University of Veterinary Medicine Vienna, 3250, Vienna, Austria
| | - Claus Vogl
- Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Gottfried Brem
- Institute of Biotechnology in Animal Production, Interuniversity Department for Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences Vienna, 3430, Tulln, Austria.,Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Corina Mayrhofer
- Institute of Biotechnology in Animal Production, Interuniversity Department for Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences Vienna, 3430, Tulln, Austria.,Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| |
Collapse
|
38
|
García EV, Oliva ME, LeBlanc JG, Barrera AD. Epi-nutrients in the oviductal environment: Folate levels and differential gene expression of its receptors and transporters in the bovine oviduct. Theriogenology 2018; 119:189-197. [PMID: 30025295 DOI: 10.1016/j.theriogenology.2018.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/02/2018] [Accepted: 07/08/2018] [Indexed: 10/28/2022]
Abstract
Recent studies have demonstrated that the oviductal environment plays an active role in modulating the epigenetic marks of the preimplantation embryo genome, but the molecular factors that mediate this epigenetic effect are unknown. Folate is a well-known epi-nutrient that can impact on cell epigenetic machinery during embryonic and fetal development. However, the study of this epi-nutrient in the oviduct is still limited. The present study was conducted to confirm the presence and physiological concentration of folate in bovine oviductal fluid (OF) and to determine if bovine oviduct epithelial cells (BOECs) are able to regulate the uptake of this micronutrient. Samples of OF from ipsi- and contralateral oviducts were collected at different stages of the estrous cycle and folate levels were determined using a competitive receptor binding immunoassay. In addition, gene expression of folate receptors (FOLR1, FOLR2) and transporters (SLC19A1, SLC46A1) were analyzed in BOECs from ampulla and isthmus regions during different stages of the estrous cycle using RT-qPCR. In vitro culture assays were also performed to evaluate whether expression of these genes responds to hormonal stimulation. Our results demonstrated presence of folate in the OF, showing changes of its concentration in the ipsilateral oviduct during the estrous cycle and significantly lower levels at the postovulatory stage. Moreover, gene expression of folate receptors and transporters was detected in BOECs, showing regional and cycle-dependent changes. In particular, differential expression of FOLR1 mRNA was observed in BOECs from the isthmus region, reaching significantly higher levels during the postovulatory stage. Under in vitro culture conditions, gene expression of folate receptors and transporters was maintained in BOEC explants and a particular susceptibility to steroid hormone stimulation was observed. In conclusion, the present study confirms the presence of folate in the bovine oviduct and proves the existence of a fine-tuned regulation of the expression of its receptors and transporters, highlighting the importance to expand the knowledge about this epi-nutrient in the oviductal context.
Collapse
Affiliation(s)
- Elina V García
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina; Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina
| | - María E Oliva
- Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina
| | - Jean G LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET). Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina
| | - Antonio D Barrera
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina; Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
39
|
Effect of exogenous transforming growth factor β1 (TGF-β1) on early bovine embryo development. ZYGOTE 2018; 26:232-241. [DOI: 10.1017/s096719941800014x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryDuring preimplantation development, embryos are exposed and have the capacity to respond to different growth factors present in the maternal environment. Among these factors, transforming growth factor β1 (TGF-β1) is a well known modulator of embryonic growth and development. However, its action during the first stages of development, when the embryo transits through the oviduct, has not been yet elucidated. The objective of the present study was to examine the effect of early exposure to exogenous TGF-β1 on embryo development and expression of pluripotency (OCT4, NANOG) and DNA methylation (DNMT1, DNMT3A, DNMT3B) genes in bovine embryos produced in vitro. First, gene expression analysis of TGF-β receptors confirmed a stage-specific expression pattern, showing greater mRNA abundance of TGFBR1 and TGFBR2 from the 2- to the 8-cell stage, before embryonic genome activation. Second, embryo culture for the first 48 h in serum-free CR1aa medium supplemented with 50 or 100 ng/ml recombinant TGF-β1 did not affect the cleavage and blastocyst rate (days 7 and 8). However, RT-qPCR analysis showed a significant increase in the relative abundance of NANOG and DNMT3A in the 8-cell stage embryos and expanded blastocysts (day 8) derived from TGF-β1 treated embryos. These results suggest an early action of exogenous TGF-β1 on the bovine embryo, highlighting the importance to provide a more comprehensive understanding of the role of TGF-β signalling during early embryogenesis.
Collapse
|
40
|
Abstract
Millions or billions of sperm are deposited by artificial insemination or natural mating into the cow reproductive tract but only a few arrive at the site of fertilization and only one fertilizes an oocyte. The remarkable journey that successful sperm take to reach an oocyte is long and tortuous, and includes movement through viscous fluid, avoiding dead ends and hostile immune cells. The privileged collection of sperm that complete this journey must pass selection steps in the vagina, cervix, uterus, utero-tubal junction and oviduct. In many locations in the female reproductive tract, sperm interact with the epithelium and the luminal fluid, which can affect sperm motility and function. Sperm must also be tolerated by the immune system of the female for an adequate time to allow fertilization to occur. This review emphasizes literature about cattle but also includes work in other species that emphasizes critical broad concepts. Although all parts of the female reproductive tract are reviewed, particular attention is given to the sperm destination, the oviduct.
Collapse
|