1
|
Dreyer LW, Eklund A, Rognes ME, Malm J, Qvarlander S, Støverud KH, Mardal KA, Vinje V. Modeling CSF circulation and the glymphatic system during infusion using subject specific intracranial pressures and brain geometries. Fluids Barriers CNS 2024; 21:82. [PMID: 39407250 PMCID: PMC11481529 DOI: 10.1186/s12987-024-00582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Infusion testing is an established method for assessing CSF resistance in patients with idiopathic normal pressure hydrocephalus (iNPH). To what extent the increased resistance is related to the glymphatic system is an open question. Here we introduce a computational model that includes the glymphatic system and enables us to determine the importance of (1) brain geometry, (2) intracranial pressure, and (3) physiological parameters on the outcome of and response to an infusion test. METHODS We implemented a seven-compartment multiple network porous medium model with subject specific geometries from MR images using the finite element library FEniCS. The model consists of the arterial, capillary and venous blood vessels, their corresponding perivascular spaces, and the extracellular space (ECS). Both subject specific brain geometries and subject specific infusion tests were used in the modeling of both healthy adults and iNPH patients. Furthermore, we performed a systematic study of the effect of variations in model parameters. RESULTS Both the iNPH group and the control group reached a similar steady state solution when subject specific geometries under identical boundary conditions was used in simulation. The difference in terms of average fluid pressure and velocity between the iNPH and control groups, was found to be less than 6% during all stages of infusion in all compartments. With subject specific boundary conditions, the largest computed difference was a 75% greater fluid speed in the arterial perivascular space (PVS) in the iNPH group compared to the control group. Changes to material parameters changed fluid speeds by several orders of magnitude in some scenarios. A considerable amount of the CSF pass through the glymphatic pathway in our models during infusion, i.e., 28% and 38% in the healthy and iNPH patients, respectively. CONCLUSIONS Using computational models, we have found the relative importance of subject specific geometries to be less important than individual differences in resistance as measured with infusion tests and model parameters such as permeability, in determining the computed pressure and flow during infusion. Model parameters are uncertain, but certain variations have large impact on the simulation results. The computations resulted in a considerable amount of the infused volume passing through the brain either through the perivascular spaces or the extracellular space.
Collapse
Affiliation(s)
- Lars Willas Dreyer
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, Oslo, Norway
- Department of Mathematics, University of Oslo, Oslo, Norway
| | - Anders Eklund
- Department of Diagnostics and Intervention, Biomedical engineering and radiation physics, Umeå University, Umeå, Sweden
| | - Marie E Rognes
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, Oslo, Norway
- KG Jebsen Center for Brain Fluid Research, Oslo, Norway
| | - Jan Malm
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Sara Qvarlander
- Department of Diagnostics and Intervention, Biomedical engineering and radiation physics, Umeå University, Umeå, Sweden
| | - Karen-Helene Støverud
- Department of Diagnostics and Intervention, Biomedical engineering and radiation physics, Umeå University, Umeå, Sweden
- Department of Health Research, SINTEF Digital, Trondheim, Norway
| | - Kent-Andre Mardal
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, Oslo, Norway.
- Department of Mathematics, University of Oslo, Oslo, Norway.
- Expert Analytics AS, Oslo, Norway.
- KG Jebsen Center for Brain Fluid Research, Oslo, Norway.
| | - Vegard Vinje
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, Oslo, Norway
- Expert Analytics AS, Oslo, Norway
- BI Norwegian Business School, Oslo, Norway
| |
Collapse
|
2
|
Vinje V, Zapf B, Ringstad G, Eide PK, Rognes ME, Mardal KA. Human brain solute transport quantified by glymphatic MRI-informed biophysics during sleep and sleep deprivation. Fluids Barriers CNS 2023; 20:62. [PMID: 37596635 PMCID: PMC10439559 DOI: 10.1186/s12987-023-00459-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/21/2023] [Indexed: 08/20/2023] Open
Abstract
Whether you are reading, running or sleeping, your brain and its fluid environment continuously interacts to distribute nutrients and clear metabolic waste. Yet, the precise mechanisms for solute transport within the human brain have remained hard to quantify using imaging techniques alone. From multi-modal human brain MRI data sets in sleeping and sleep-deprived subjects, we identify and quantify CSF tracer transport parameters using forward and inverse subject-specific computational modelling. Our findings support the notion that extracellular diffusion alone is not sufficient as a brain-wide tracer transport mechanism. Instead, we show that human MRI observations align well with transport by either by an effective diffusion coefficent 3.5[Formula: see text] that of extracellular diffusion in combination with local clearance rates corresponding to a tracer half-life of up to 5 h, or by extracellular diffusion augmented by advection with brain-wide average flow speeds on the order of 1-9 [Formula: see text]m/min. Reduced advection fully explains reduced tracer clearance after sleep-deprivation, supporting the role of sleep and sleep deprivation on human brain clearance.
Collapse
Affiliation(s)
- Vegard Vinje
- Simula Research Laboratory, Kristian Augusts gate 23, 0164, Oslo, Norway
- Expert Analytics AS, Møllergata 8, 0179, Oslo, Norway
| | - Bastian Zapf
- Department of Mathematics, University of Oslo, Oslo, Norway
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal Medicine, Sørlandet Hospital, Arendal, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Marie E Rognes
- Simula Research Laboratory, Kristian Augusts gate 23, 0164, Oslo, Norway
| | - Kent-Andre Mardal
- Simula Research Laboratory, Kristian Augusts gate 23, 0164, Oslo, Norway.
- Department of Mathematics, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Boster KAS, Cai S, Ladrón-de-Guevara A, Sun J, Zheng X, Du T, Thomas JH, Nedergaard M, Karniadakis GE, Kelley DH. Artificial intelligence velocimetry reveals in vivo flow rates, pressure gradients, and shear stresses in murine perivascular flows. Proc Natl Acad Sci U S A 2023; 120:e2217744120. [PMID: 36989300 PMCID: PMC10083563 DOI: 10.1073/pnas.2217744120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/15/2023] [Indexed: 03/30/2023] Open
Abstract
Quantifying the flow of cerebrospinal fluid (CSF) is crucial for understanding brain waste clearance and nutrient delivery, as well as edema in pathological conditions such as stroke. However, existing in vivo techniques are limited to sparse velocity measurements in pial perivascular spaces (PVSs) or low-resolution measurements from brain-wide imaging. Additionally, volume flow rate, pressure, and shear stress variation in PVSs are essentially impossible to measure in vivo. Here, we show that artificial intelligence velocimetry (AIV) can integrate sparse velocity measurements with physics-informed neural networks to quantify CSF flow in PVSs. With AIV, we infer three-dimensional (3D), high-resolution velocity, pressure, and shear stress. Validation comes from training with 70% of PTV measurements and demonstrating close agreement with the remaining 30%. A sensitivity analysis on the AIV inputs shows that the uncertainty in AIV inferred quantities due to uncertainties in the PVS boundary locations inherent to in vivo imaging is less than 30%, and the uncertainty from the neural net initialization is less than 1%. In PVSs of N = 4 wild-type mice we find mean flow speed 16.33 ± 11.09 µm/s, volume flow rate 2.22 ± 1.983 × 103 µm3/s, axial pressure gradient ( - 2.75 ± 2.01)×10-4 Pa/µm (-2.07 ± 1.51 mmHg/m), and wall shear stress (3.00 ± 1.45)×10-3 Pa (all mean ± SE). Pressure gradients, flow rates, and resistances agree with prior predictions. AIV infers in vivo PVS flows in remarkable detail, which will improve fluid dynamic models and potentially clarify how CSF flow changes with aging, Alzheimer's disease, and small vessel disease.
Collapse
Affiliation(s)
| | - Shengze Cai
- Institute of Cyber-Systems and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou310027, Zhejiang, China
| | - Antonio Ladrón-de-Guevara
- Center for Translational Neuromedicine and Department of Neuroscience, University of Rochester Medical Center, Rochester, NY14627
| | - Jiatong Sun
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627
| | - Xiaoning Zheng
- Department of Mathematics, College of Information Science and Technology, Jinan University, Guangzhou510632, China
| | - Ting Du
- Center for Translational Neuromedicine and Department of Neuroscience, University of Rochester Medical Center, Rochester, NY14627
- School of Pharmacy, China Medical University, Shenyang, Liaoning110122, China
| | - John H. Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627
| | - Maiken Nedergaard
- Center for Translational Neuromedicine and Department of Neuroscience, University of Rochester Medical Center, Rochester, NY14627
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, RI02912
- School of Engineering, Brown University, Providence, RI02912
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627
| |
Collapse
|
4
|
Müller SJ, Henkes E, Gounis MJ, Felber S, Ganslandt O, Henkes H. Non-Invasive Intracranial Pressure Monitoring. J Clin Med 2023; 12:jcm12062209. [PMID: 36983213 PMCID: PMC10051320 DOI: 10.3390/jcm12062209] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
(1) Background: Intracranial pressure (ICP) monitoring plays a key role in the treatment of patients in intensive care units, as well as during long-term surgeries and interventions. The gold standard is invasive measurement and monitoring via ventricular drainage or a parenchymal probe. In recent decades, numerous methods for non-invasive measurement have been evaluated but none have become established in routine clinical practice. The aim of this study was to reflect on the current state of research and shed light on relevant techniques for future clinical application. (2) Methods: We performed a PubMed search for “non-invasive AND ICP AND (measurement OR monitoring)” and identified 306 results. On the basis of these search results, we conducted an in-depth source analysis to identify additional methods. Studies were analyzed for design, patient type (e.g., infants, adults, and shunt patients), statistical evaluation (correlation, accuracy, and reliability), number of included measurements, and statistical assessment of accuracy and reliability. (3) Results: MRI-ICP and two-depth Doppler showed the most potential (and were the most complex methods). Tympanic membrane temperature, diffuse correlation spectroscopy, natural resonance frequency, and retinal vein approaches were also promising. (4) Conclusions: To date, no convincing evidence supports the use of a particular method for non-invasive intracranial pressure measurement. However, many new approaches are under development.
Collapse
Affiliation(s)
- Sebastian Johannes Müller
- Neuroradiologische Klinik, Klinikum Stuttgart, D-70174 Stuttgart, Germany
- Correspondence: ; Tel.: +49-(0)711-278-34501
| | - Elina Henkes
- Neuroradiologische Klinik, Klinikum Stuttgart, D-70174 Stuttgart, Germany
| | - Matthew J. Gounis
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts, Worcester, MA 01655, USA
| | - Stephan Felber
- Institut für Diagnostische und Interventionelle Radiologie und Neuroradiologie, Stiftungsklinikum Mittelrhein, D-56068 Koblenz, Germany
| | - Oliver Ganslandt
- Neurochirurgische Klinik, Klinikum Stuttgart, D-70174 Stuttgart, Germany
| | - Hans Henkes
- Neuroradiologische Klinik, Klinikum Stuttgart, D-70174 Stuttgart, Germany
- Medizinische Fakultät, Universität Duisburg-Essen, D-47057 Duisburg, Germany
| |
Collapse
|
5
|
Domogo AA, Reinstrup P, Ottesen JT. Mechanistic-mathematical modeling of intracranial pressure (ICP) profiles over a single heart cycle. The fundament of the ICP curve form. J Theor Biol 2023; 564:111451. [PMID: 36907263 DOI: 10.1016/j.jtbi.2023.111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/31/2022] [Accepted: 02/28/2023] [Indexed: 03/13/2023]
Abstract
The intracranial pressure (ICP) curve with its different peaks has been comprehensively studied, but the exact physiological mechanisms behind its morphology has not been revealed. If the pathophysiology behind deviations from the normal ICP curve form could be identified, it could be vital information to diagnose and treat each single patient. A mathematical model of the hydrodynamics in the intracranial cavity over single heart cycles was developed. A Windkessel model approach was generalized but the unsteady Bernoulli equation was utilized for blood flow and CSF flow. This is a modification of earlier models using the extended and simplified classical Windkessel analogies to a model that is based on mechanisms rooted in the laws of physics. The improved model was calibrated with patient data for cerebral arterial inflow, venous outflow, cerebrospinal fluid (CSF), and ICP over one heart cycle from 10 neuro-intensive care unit patients. A priori model parameter values were obtained by considering patient data and values taken from earlier studies. These values were used as an initial guess for an iterated constrained-ODE (ordinary differential equation) optimization problem with cerebral arterial inflow data as input into the system of ODEs. The optimization routine found patient-specific model parameter values that produced model ICP curves that showed excellent agreement with clinical measurements while model venous and CSF flow were within a physiologically acceptable range. The improved model and the automated optimization routine gave better model calibration results compared to previous studies. Moreover, patient-specific values of physiologically important parameters like intracranial compliance, arterial and venous elastance, and venous outflow resistance were determined. The model was used to simulate intracranial hydrodynamics and to explain the underlying mechanisms of the ICP curve morphology. Sensitivity analysis showed that the order of the three main peaks of the ICP curve was affected by a decrease in arterial elastance, a large increase in resistance to arteriovenous flow, an increase in venous elastance, or a decrease in resistance to CSF flow in the foramen magnum; and the frequency of oscillations were notably affected by intracranial elastance. In particular, certain pathological peak patterns were caused by these changes in physiological parameters. To the best of our knowledge, there are no other mechanism-based models associating the pathological peak patterns to variation of the physiological parameters.
Collapse
Affiliation(s)
- Andrei A Domogo
- Department of Mathematics and Computer Science, University of the Philippines Baguio, Baguio City 2600, Philippines; IMFUFA, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark.
| | - Peter Reinstrup
- Intensive and Perioperative Care, Skåne University Hospital, Lund, Sweden.
| | - Johnny T Ottesen
- Center for Mathematical Modeling - Human Health and Disease (COMMAND), Roskilde University, 4000 Roskilde, Denmark; IMFUFA, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark.
| |
Collapse
|
6
|
Causemann M, Vinje V, Rognes ME. Human intracranial pulsatility during the cardiac cycle: a computational modelling framework. Fluids Barriers CNS 2022; 19:84. [PMID: 36320038 PMCID: PMC9623946 DOI: 10.1186/s12987-022-00376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Today's availability of medical imaging and computational resources set the scene for high-fidelity computational modelling of brain biomechanics. The brain and its environment feature a dynamic and complex interplay between the tissue, blood, cerebrospinal fluid (CSF) and interstitial fluid (ISF). Here, we design a computational platform for modelling and simulation of intracranial dynamics, and assess the models' validity in terms of clinically relevant indicators of brain pulsatility. Focusing on the dynamic interaction between tissue motion and ISF/CSF flow, we treat the pulsatile cerebral blood flow as a prescribed input of the model. METHODS We develop finite element models of cardiac-induced fully coupled pulsatile CSF flow and tissue motion in the human brain environment. The three-dimensional model geometry is derived from magnetic resonance images (MRI) and features a high level of detail including the brain tissue, the ventricular system, and the cranial subarachnoid space (SAS). We model the brain parenchyma at the organ-scale as an elastic medium permeated by an extracellular fluid network and describe flow of CSF in the SAS and ventricles as viscous fluid movement. Representing vascular expansion during the cardiac cycle, a prescribed pulsatile net blood flow distributed over the brain parenchyma acts as the driver of motion. Additionally, we investigate the effect of model variations on a set of clinically relevant quantities of interest. RESULTS Our model predicts a complex interplay between the CSF-filled spaces and poroelastic parenchyma in terms of ICP, CSF flow, and parenchymal displacements. Variations in the ICP are dominated by their temporal amplitude, but with small spatial variations in both the CSF-filled spaces and the parenchyma. Induced by ICP differences, we find substantial ventricular and cranial-spinal CSF flow, some flow in the cranial SAS, and small pulsatile ISF velocities in the brain parenchyma. Moreover, the model predicts a funnel-shaped deformation of parenchymal tissue in dorsal direction at the beginning of the cardiac cycle. CONCLUSIONS Our model accurately depicts the complex interplay of ICP, CSF flow and brain tissue movement and is well-aligned with clinical observations. It offers a qualitative and quantitative platform for detailed investigation of coupled intracranial dynamics and interplay, both under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Marius Causemann
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Kristian Augusts gate 23, 0164 Oslo, Norway
| | - Vegard Vinje
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Kristian Augusts gate 23, 0164 Oslo, Norway
| | - Marie E. Rognes
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Kristian Augusts gate 23, 0164 Oslo, Norway
- Department of Mathematics, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway
| |
Collapse
|
7
|
Jacobsen HH, Jørstad ØK, Moe MC, Petrovski G, Pripp AH, Sandell T, Eide PK. Noninvasive Estimation of Pulsatile and Static Intracranial Pressure by Optical Coherence Tomography. Transl Vis Sci Technol 2022; 11:31. [PMID: 35050344 PMCID: PMC8787623 DOI: 10.1167/tvst.11.1.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To explore the ability of optical coherence tomography (OCT) to noninvasively estimate pulsatile and static intracranial pressure (ICP). Methods An OCT examination was performed in patients who underwent continuous overnight monitoring of the pulsatile and static ICP for diagnostic purpose. We included two patient groups, patients with idiopathic intracranial hypertension (IIH; n = 20) and patients with no verified cerebrospinal fluid disturbances (reference; n = 12). Several OCT parameters were acquired using spectral-domain OCT (RS-3000 Advance; NIDEK, Singapore). The ICP measurements were obtained using a parenchymal sensor (Codman ICP MicroSensor; Johnson & Johnson, Raynham, MA, USA). The pulsatile ICP was determined as the mean ICP wave amplitude (MWA), and the static ICP was determined as the mean ICP. Results The peripapillary Bruch's membrane angle (pBA) and the optic nerve head height (ONHH) differed between the IIH and reference groups and correlated with both MWA and mean ICP. Both OCT parameters predicted elevated MWA. Area under the curve and cutoffs were 0.82 (95% confidence interval [CI], 0.66–0.98) and -0.65° (sensitivity/specificity; 0.75/0.92) for pBA and 0.84 (95% CI, 0.70–0.99) and 405 µm (0.88/0.67) for ONHH. Adjusting for age and body mass index resulted in nonsignificant predictive values for mean ICP, whereas the predictive value for MWA remained significant. Conclusions This study provides evidence that the OCT parameters pBA and ONHH noninvasively can predict elevated pulsatile ICP, represented by the MWA. Translational Relevance OCT shows promise as a method for noninvasive estimation of ICP.
Collapse
Affiliation(s)
- Henrik Holvin Jacobsen
- Department of Ophthalmology, Oslo University Hospital-Ullevål, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øystein Kalsnes Jørstad
- Department of Ophthalmology, Oslo University Hospital-Ullevål, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Morten C Moe
- Department of Ophthalmology, Oslo University Hospital-Ullevål, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Goran Petrovski
- Department of Ophthalmology, Oslo University Hospital-Ullevål, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Ophthalmology, University of Split School of Medicine, Split, Croatia
| | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - Tiril Sandell
- Department of Ophthalmology, Oslo University Hospital-Ullevål, Oslo, Norway.,Department of Ophthalmology, Vestre Viken Hospital, Drammen, Norway
| | - Per Kristian Eide
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
8
|
Ye G, Balasubramanian V, Li JKJ, Kaya M. Machine Learning-Based Continuous Intracranial Pressure Prediction for Traumatic Injury Patients. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022; 10:4901008. [PMID: 35795876 PMCID: PMC9252333 DOI: 10.1109/jtehm.2022.3179874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/06/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022]
Abstract
Structured Abstract—Objective: Abnormal elevation of intracranial pressure (ICP) can cause dangerous or even fatal outcomes. The early detection of high intracranial pressure events can be crucial in saving lives in an intensive care unit (ICU). Despite many applications of machine learning (ML) techniques related to clinical diagnosis, ML applications for continuous ICP detection or short-term predictions have been rarely reported. This study proposes an efficient method of applying an artificial recurrent neural network on the early prediction of ICP evaluation continuously for TBI patients. Methods: After ICP data preprocessing, the learning model is generated for thirteen patients to continuously predict the ICP signal occurrence and classify events for the upcoming 10 minutes by inputting the previous 20-minutes of the ICP signal. Results: As the overall model performance, the average accuracy is 94.62%, the average sensitivity is 74.91%, the average specificity is 94.83%, and the average root mean square error is approximately 2.18 mmHg. Conclusion: This research addresses a significant clinical problem with the management of traumatic brain injury patients. The machine learning model data enables early prediction of ICP continuously in a real-time fashion, which is crucial for appropriate clinical interventions. The results show that our machine learning-based model has high adaptive performance, accuracy, and efficiency.
Collapse
Affiliation(s)
- Guochang Ye
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Vignesh Balasubramanian
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - John K-J. Li
- Department of Biomedical Engineering, Rutgers University, New Brunswick, NJ, USA
| | - Mehmet Kaya
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| |
Collapse
|
9
|
Thavarajasingam SG, El-Khatib M, Rea M, Russo S, Lemcke J, Al-Nusair L, Vajkoczy P. Clinical predictors of shunt response in the diagnosis and treatment of idiopathic normal pressure hydrocephalus: a systematic review and meta-analysis. Acta Neurochir (Wien) 2021; 163:2641-2672. [PMID: 34235589 PMCID: PMC8437907 DOI: 10.1007/s00701-021-04922-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/13/2021] [Indexed: 11/29/2022]
Abstract
Background Positive shunt response (SR) remains the gold standard for diagnosing idiopathic normal pressure hydrocephalus (iNPH). However, multiple pathologies mimic iNPH symptoms, making it difficult to select patients who will respond to shunt surgery. Although presenting features, extended lumbar drainage (ELD), infusion test (IT), intracranial pressure monitoring (ICPM), and tap test (TT) have been used to predict SR, uncertainty remains over which diagnostic test to choose. Objective To conduct a systematic review and meta-analysis to identify clinical predictors of shunt responsiveness, evaluate their diagnostic effectiveness, and recommend the most effective diagnostic tests. Methods Embase, MEDLINE, Scopus, PubMed, Google Scholar, and JSTOR were searched for original studies investigating clinical predictors of SR in iNPH patients. Included studies were assessed using the QUADAS-2 tool, and eligible studies were evaluated using univariate and bivariate meta-analyses. Results Thirty-five studies were included. Nine studies discussed the diagnostic use of presenting clinical features, 8 studies ELD, 8 studies IT, 11 studies ICPM, and 6 studies TT. A meta-analysis of 21 eligible studies was conducted for TT, ELD, IT, and ICPM. ICPM yielded the highest diagnostic effectiveness, with diagnostic odds ratio (DOR) = 50.9 and area under curve (AUC) = 0.836. ELD yielded DOR = 27.70 and AUC = 0.753, IT had DOR = 5.70 and AUC = 0.729, and TT scored DOR = 3.86 and AUC = 0.711. Conclusion Intraparenchymal ICPM is statistically the most effective diagnostic test, followed by ELD, IT, and lastly TT. Due to the higher accessibility of TT and IT, they are recommended to be used first line, using a timed-up-and-go improvement ≥ 5.6 s or a Rout cut-off range between 13 and 16 mmHg, respectively. Patients who test negative should ideally be followed up with ICPM, using mean ICP wave amplitude \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ge$$\end{document}≥ 4 mmHg, or 1- to 4-day ELD with an MMSE cut-off improvement \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ge$$\end{document}≥ 3. Future research must use standardized methodologies for each diagnostic test and uniform criteria for SR to allow better comparison.
Collapse
Affiliation(s)
| | - Mahmoud El-Khatib
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mark Rea
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Salvatore Russo
- Department of Neurosurgery, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Johannes Lemcke
- Department of Neurosurgery, Unfallkrankenhaus Berlin, Berlin, Germany
| | - Lana Al-Nusair
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Wu D, Moghekar A, Shi W, Blitz AM, Mori S. Systematic volumetric analysis predicts response to CSF drainage and outcome to shunt surgery in idiopathic normal pressure hydrocephalus. Eur Radiol 2021; 31:4972-4980. [PMID: 33389035 PMCID: PMC8213563 DOI: 10.1007/s00330-020-07531-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Idiopathic normal pressure hydrocephalus (INPH) is a neurodegenerative disorder characterized by excess cerebrospinal fluid (CSF) in the ventricles, which can be diagnosed by invasive CSF drainage test and treated by shunt placement. Here, we aim to investigate the diagnostic and prognostic power of systematic volumetric analysis based on brain structural MRI for INPH. METHODS We performed a retrospective study with a cohort of 104 probable INPH patients who underwent CSF drainage tests and another cohort of 41 INPH patients who had shunt placement. High-resolution T1-weighted images of the patients were segmented using an automated pipeline into 283 structures that are grouped into different granularity levels for volumetric analysis. Volumes at multi-granularity levels were used in a recursive feature elimination model to classify CSF drainage responders and non-responders. We then used pre-surgical brain volumes to predict Tinetti and MMSE scores after shunting, based on the least absolute shrinkage and selection operator. RESULTS The classification accuracy of differentiating the CSF drainage responders and non-responders increased as the granularity increased. The highest diagnostic accuracy was achieved at the finest segmentation with a sensitivity/specificity/precision/accuracy of 0.89/0.91/0.84/0.90 and an area under the curve of 0.94. The predicted post-surgical neurological scores showed high correlations with the ground truth, with r = 0.80 for Tinetti and r = 0.88 for MMSE. The anatomical features that played important roles in the diagnostic and prognostic tasks were also illustrated. CONCLUSIONS We demonstrated that volumetric analysis with fine segmentation could reliably differentiate CSF drainage responders from other INPH-like patients, and it could accurately predict the neurological outcomes after shunting. KEY POINTS • We performed a fully automated segmentation of brain MRI at multiple granularity levels for systematic volumetric analysis of idiopathic normal pressure hydrocephalus (INPH) patients. • We were able to differentiate patients that responded to CSF drainage test with an accuracy of 0.90 and area under the curve of 0.94 in a cohort of 104 probable INPH patients, as well as to predict the post-shunt gait and cognitive scores with a coefficient of 0.80 for Tinetti and 0.88 for MMSE. • Feature analysis showed the inferior lateral ventricle, bilateral hippocampus, and orbital cortex are positive indicators of CSF drainage responders, whereas the posterior deep white matter and parietal subcortical white matter were negative predictors.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Wen Shi
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Ari M Blitz
- Department of Radiology, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Susumu Mori
- Department of Radiology, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA.
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, 21205, USA.
| |
Collapse
|
11
|
Dias SF, Jehli E, Haas-Lude K, Bevot A, Okechi H, Zipfel J, Schuhmann MU. Ventriculomegaly in children: nocturnal ICP dynamics identify pressure-compensated but active paediatric hydrocephalus. Childs Nerv Syst 2021; 37:1883-1893. [PMID: 33884480 DOI: 10.1007/s00381-021-05164-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Paediatric ventriculomegaly without obvious signs or symptoms of raised intracranial pressure (ICP) is often interpreted as resulting from either relative brain atrophy, arrested "benign" hydrocephalus, or "successful" endoscopic third ventriculostomy (ETV). We hypothesise that the typical ICP "signature" found in symptomatic hydrocephalus can be present in asymptomatic or oligosymptomatic children, indicating pressure-compensated, but active hydrocephalus. METHODS A total of 37 children fulfilling the mentioned criteria underwent computerised ICP overnight monitoring (ONM). Fifteen children had previous hydrocephalus treatment. ICP was analysed for nocturnal dynamics of ICP, ICP amplitudes (AMP), magnitude of slow waves (SLOW), and ICP/AMP correlation index RAP. Depending on the ONM results, children were either treated or observed. The ventricular width was determined at the time of ONM and at 1-year follow-up. RESULTS The recordings of 14 children (group A) were considered normal. In the 23 children with pathologic recordings (group B), all ICP values and dependent variables (AMP, SLOW) were significantly higher, except for RAP. In group B, 12 of 15 children had received a pre-treatment and 11 of 22 without previous treatment. All group B children received treatment for hydrocephalus and showed a significant reduction of frontal-occipital horn ratio at 1 year. During follow-up, a positive neurological development was seen in 74% of children of group A and 100% of group B. CONCLUSION Ventriculomegaly in the absence of signs and symptoms of raised ICP was associated in 62% of cases to pathological ICP dynamics. In 80% of pre-treated cases, ETV or shunt failure was found. Treating children with abnormal ICP dynamics resulted in an outcome at least as favourable as in the group with normal ICP dynamics. Thus, asymptomatic ventriculomegaly in children deserves further investigation and, if associated with abnormal ICP dynamics, should be treated in order to provide a normalised intracranial physiology as basis for best possible long-term outcome.
Collapse
Affiliation(s)
- Sandra F Dias
- Section of Paediatric Neurosurgery, Department of Neurosurgery, University Hospital of Tübingen, Tübingen, Germany. .,Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
| | - Elisabeth Jehli
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Karin Haas-Lude
- Department of Paediatric Neurology, University Children's Hospital of Tübingen, Tübingen, Germany
| | - Andrea Bevot
- Department of Paediatric Neurology, University Children's Hospital of Tübingen, Tübingen, Germany
| | - Humphrey Okechi
- Section of Paediatric Neurosurgery, Department of Neurosurgery, University Hospital of Tübingen, Tübingen, Germany
| | - Julian Zipfel
- Section of Paediatric Neurosurgery, Department of Neurosurgery, University Hospital of Tübingen, Tübingen, Germany
| | - Martin U Schuhmann
- Section of Paediatric Neurosurgery, Department of Neurosurgery, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Eide PK, Valnes LM, Lindstrøm EK, Mardal KA, Ringstad G. Direction and magnitude of cerebrospinal fluid flow vary substantially across central nervous system diseases. Fluids Barriers CNS 2021; 18:16. [PMID: 33794929 PMCID: PMC8017867 DOI: 10.1186/s12987-021-00251-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background Several central nervous system diseases are associated with disturbed cerebrospinal fluid (CSF) flow patterns and have typically been characterized in vivo by phase-contrast magnetic resonance imaging (MRI). This technique is, however, limited by its applicability in space and time. Phase-contrast MRI has yet to be compared directly with CSF tracer enhanced imaging, which can be considered gold standard for assessing long-term CSF flow dynamics within the intracranial compartment. Methods Here, we studied patients with various CSF disorders and compared MRI biomarkers of CSF space anatomy and phase-contrast MRI at level of the aqueduct and cranio-cervical junction with dynamic intrathecal contrast-enhanced MRI using the contrast agent gadobutrol as CSF tracer. Tracer enrichment of cerebral ventricles was graded 0–4 by visual assessment. An intracranial pressure (ICP) score was used as surrogate marker of intracranial compliance. Results The study included 94 patients and disclosed marked variation of CSF flow measures across disease categories. The grade of supra-aqueductal reflux of tracer varied, with strong reflux (grades 3–4) in half of patients. Ventricular tracer reflux correlated with stroke volume and aqueductal CSF pressure gradient. CSF flow in the cerebral aqueduct was retrograde (from 4th to 3rd ventricle) in one third of patients, with estimated CSF net flow volume about 1.0 L/24 h. In the cranio-cervical junction, net flow was cranially directed in 78% patients, with estimated CSF net flow volume about 4.7 L/24 h. Conclusions The present observations provide in vivo quantitative evidence for substantial variation in direction and magnitude of CSF flow, with re-direction of aqueductal flow in communicating hydrocephalus, and significant extra-cranial CSF production. The grading of ventricular reflux of tracer shows promise as a clinical useful method to assess CSF flow pattern disturbances in patients. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00251-6.
Collapse
Affiliation(s)
- Per Kristian Eide
- Deptartment of Neurosurgery, Oslo University Hospital-Rikshospitalet, Nydalen, PB 4950, 0424, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Lars Magnus Valnes
- Deptartment of Neurosurgery, Oslo University Hospital-Rikshospitalet, Nydalen, PB 4950, 0424, Oslo, Norway
| | - Erika Kristina Lindstrøm
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Kent-Andre Mardal
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| | - Geir Ringstad
- Department. of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
13
|
Young BA, Adams J, Beary JM, Mardal KA, Schneider R, Kondrashova T. Variations in the cerebrospinal fluid dynamics of the American alligator (Alligator mississippiensis). Fluids Barriers CNS 2021; 18:11. [PMID: 33712028 PMCID: PMC7953579 DOI: 10.1186/s12987-021-00248-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Studies of mammalian CSF dynamics have been focused on three things: paravascular flow, pressure and pulsatility, and "bulk" flow; and three (respective) potential motive forces have been identified: vasomotor, cardiac, and ventilatory. There are unresolved questions in each area, and few links between the different areas. The American alligator (Alligator mississippiensis) has pronounced plasticity in its ventilatory and cardiovascular systems. This study was designed to test the hypothesis that the greater cardiovascular and ventilatory plasticity of A. mississippiensis would result in more variation within the CSF dynamics of this species. METHODS Pressure transducers were surgically implanted into the cranial subarachnoid space of 12 sub-adult alligators; CSF pressure and pulsatility were monitored along with EKG and the exhalatory gases. In four of the alligators a second pressure transducer was implanted into the spinal subarachnoid space. In five of the alligators the CSF was labeled with artificial microspheres and Doppler ultrasonography used to quantify aspects of the spinal CSF flow. RESULTS Both temporal and frequency analyses of the CSF pulsations showed highly variable contributions of both the cardiac and ventilatory cycles. Unlike the mammalian condition, the CSF pressure pulsations in the alligator are often of long (~ 3 s) duration, and similar duration CSF unidirectional flow pulses were recorded along the spinal cord. Reduction of the duration of the CSF pulsations, as during tachycardia, can lead to a "summation" of the pulsations. There appears to be a minimum duration (~ 1 s) of isolated CSF pulsations. Simultaneous recordings of cranial and spinal CSF pressures reveal a 200 ms delay in the propagation of the pressure pulse from the cranium to the vertebral canal. CONCLUSIONS Most of the CSF flow dynamics recorded from the alligators, are similar to what has been reported from studies of the human CSF. It is hypothesized that the link between ventilatory mechanics and CSF pulsations in the alligator is mediated by displacement of the spinal dura. The results of the study suggest that understanding the CSF dynamics of Alligator may provide unique insights into the evolutionary origins and functional regulation of the human CSF dynamics.
Collapse
Affiliation(s)
- Bruce A Young
- Department of Anatomy, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, 63501, USA.
| | - James Adams
- Department of Anatomy, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, 63501, USA
| | - Jonathan M Beary
- Behavioral Neuroscience, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, 63501, USA
| | | | - Robert Schneider
- Family Medicine, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, 63501, USA
| | - Tatyana Kondrashova
- Family Medicine, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, 63501, USA
| |
Collapse
|
14
|
Daversin-Catty C, Vinje V, Mardal KA, Rognes ME. The mechanisms behind perivascular fluid flow. PLoS One 2020; 15:e0244442. [PMID: 33373419 PMCID: PMC7771676 DOI: 10.1371/journal.pone.0244442] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/09/2020] [Indexed: 11/26/2022] Open
Abstract
Flow of cerebrospinal fluid (CSF) in perivascular spaces (PVS) is one of the key concepts involved in theories concerning clearance from the brain. Experimental studies have demonstrated both net and oscillatory movement of microspheres in PVS (Mestre et al. (2018), Bedussi et al. (2018)). The oscillatory particle movement has a clear cardiac component, while the mechanisms involved in net movement remain disputed. Using computational fluid dynamics, we computed the CSF velocity and pressure in a PVS surrounding a cerebral artery subject to different forces, representing arterial wall expansion, systemic CSF pressure changes and rigid motions of the artery. The arterial wall expansion generated velocity amplitudes of 60-260 μm/s, which is in the upper range of previously observed values. In the absence of a static pressure gradient, predicted net flow velocities were small (<0.5 μm/s), though reaching up to 7 μm/s for non-physiological PVS lengths. In realistic geometries, a static systemic pressure increase of physiologically plausible magnitude was sufficient to induce net flow velocities of 20-30 μm/s. Moreover, rigid motions of the artery added to the complexity of flow patterns in the PVS. Our study demonstrates that the combination of arterial wall expansion, rigid motions and a static CSF pressure gradient generates net and oscillatory PVS flow, quantitatively comparable with experimental findings. The static CSF pressure gradient required for net flow is small, suggesting that its origin is yet to be determined.
Collapse
Affiliation(s)
- Cécile Daversin-Catty
- Simula Research Laboratory, Department of Numerical Analysis and Scientific Computing, Lysaker, Norway
| | - Vegard Vinje
- Simula Research Laboratory, Department of Numerical Analysis and Scientific Computing, Lysaker, Norway
| | - Kent-André Mardal
- Simula Research Laboratory, Department of Numerical Analysis and Scientific Computing, Lysaker, Norway
- Department of Mathematics, University of Oslo, Oslo, Norway
| | - Marie E. Rognes
- Simula Research Laboratory, Department of Numerical Analysis and Scientific Computing, Lysaker, Norway
| |
Collapse
|
15
|
König RE, Stucht D, Baecke S, Rashidi A, Speck O, Sandalcioglu IE, Luchtmann M. Phase‐Contrast MRI Detection of Ventricular Shunt CSF Flow: Proof of Principle. J Neuroimaging 2020; 30:746-753. [DOI: 10.1111/jon.12794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 11/27/2022] Open
Affiliation(s)
- Rebecca E. König
- Department of Neurosurgery, Medical Faculty Otto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Daniel Stucht
- Department of Biomedical Magnetic Resonance Otto‐von‐Guericke University Magdeburg Magdeburg Germany
- Institute of Biometrics and Medical Informatics, Medical Faculty Otto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Sebastian Baecke
- Institute of Biometrics and Medical Informatics, Medical Faculty Otto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Ali Rashidi
- Department of Neurosurgery, Medical Faculty Otto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance Otto‐von‐Guericke University Magdeburg Magdeburg Germany
- Leibniz Institute for Neurobiology Magdeburg Germany
| | - I. Erol Sandalcioglu
- Department of Neurosurgery, Medical Faculty Otto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Michael Luchtmann
- Department of Neurosurgery, Medical Faculty Otto‐von‐Guericke University Magdeburg Magdeburg Germany
| |
Collapse
|
16
|
Evensen KB, Eide PK. Measuring intracranial pressure by invasive, less invasive or non-invasive means: limitations and avenues for improvement. Fluids Barriers CNS 2020; 17:34. [PMID: 32375853 PMCID: PMC7201553 DOI: 10.1186/s12987-020-00195-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/19/2020] [Indexed: 12/20/2022] Open
Abstract
Sixty years have passed since neurosurgeon Nils Lundberg presented his thesis about intracranial pressure (ICP) monitoring, which represents a milestone for its clinical introduction. Monitoring of ICP has since become a clinical routine worldwide, and today represents a cornerstone in surveillance of patients with acute brain injury or disease, and a diagnostic of individuals with chronic neurological disease. There is, however, controversy regarding indications, clinical usefulness and the clinical role of the various ICP scores. In this paper, we critically review limitations and weaknesses with the current ICP measurement approaches for invasive, less invasive and non-invasive ICP monitoring. While risk related to the invasiveness of ICP monitoring is extensively covered in the literature, we highlight other limitations in current ICP measurement technologies, including limited ICP source signal quality control, shifts and drifts in zero pressure reference level, affecting mean ICP scores and mean ICP-derived indices. Control of the quality of the ICP source signal is particularly important for non-invasive and less invasive ICP measurements. We conclude that we need more focus on mitigation of the current limitations of today's ICP modalities if we are to improve the clinical utility of ICP monitoring.
Collapse
Affiliation(s)
- Karen Brastad Evensen
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, P.O. Box 4950, Nydalen, 0424, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
17
|
Vinje V, Eklund A, Mardal KA, Rognes ME, Støverud KH. Intracranial pressure elevation alters CSF clearance pathways. Fluids Barriers CNS 2020; 17:29. [PMID: 32299464 PMCID: PMC7161287 DOI: 10.1186/s12987-020-00189-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/28/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Infusion testing is a common procedure to determine whether shunting will be beneficial in patients with normal pressure hydrocephalus. The method has a well-developed theoretical foundation and corresponding mathematical models that describe the CSF circulation from the choroid plexus to the arachnoid granulations. Here, we investigate to what extent the proposed glymphatic or paravascular pathway (or similar pathways) modifies the results of the traditional mathematical models. METHODS We used a compartment model to estimate pressure in the subarachnoid space and the paravascular spaces. For the arachnoid granulations, the cribriform plate and the glymphatic circulation, resistances were calculated and used to estimate pressure and flow before and during an infusion test. Finally, different variations to the model were tested to evaluate the sensitivity of selected parameters. RESULTS At baseline intracranial pressure (ICP), we found a very small paravascular flow directed into the subarachnoid space, while 60% of the fluid left through the arachnoid granulations and 40% left through the cribriform plate. However, during the infusion, 80% of the fluid left through the arachnoid granulations, 20% through the cribriform plate and flow in the PVS was stagnant. Resistance through the glymphatic system was computed to be 2.73 mmHg/(mL/min), considerably lower than other fluid pathways, giving non-realistic ICP during infusion if combined with a lymphatic drainage route. CONCLUSIONS The relative distribution of CSF flow to different clearance pathways depends on ICP, with the arachnoid granulations as the main contributor to outflow. As such, ICP increase is an important factor that should be addressed when determining the pathways of injected substances in the subarachnoid space. Our results suggest that the glymphatic resistance is too high to allow for pressure driven flow by arterial pulsations and at the same time too small to allow for a direct drainage route from PVS to cervical lymphatics.
Collapse
Affiliation(s)
- Vegard Vinje
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, Lysaker, Norway.
| | - Anders Eklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Kent-Andre Mardal
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, Lysaker, Norway.,Department of Mathematics, University of Oslo, Oslo, Norway
| | - Marie E Rognes
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, Lysaker, Norway
| | | |
Collapse
|
18
|
Jakimovski D, Zivadinov R, Weinstock-Guttman B, Bergsland N, Dwyer MG, Lagana MM. Longitudinal analysis of cerebral aqueduct flow measures: multiple sclerosis flow changes driven by brain atrophy. Fluids Barriers CNS 2020; 17:9. [PMID: 32000809 PMCID: PMC6993504 DOI: 10.1186/s12987-020-0172-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/21/2020] [Indexed: 12/28/2022] Open
Abstract
Background Several small cross-sectional studies have investigated cerebrospinal fluid (CSF) flow dynamics in multiple sclerosis (MS) patients and have reported mixed results. Currently, there are no longitudinal studies that investigate CSF dynamics in MS patients. Objective To determine longitudinal changes in CSF dynamics measured at the level of aqueduct of Sylvius (AoS) in MS patients and matched healthy controls (HCs). Materials and methods Forty (40) MS patients and 20 HCs underwent 3T MRI cine phase contrast imaging with velocity-encoded pulse-gated sequence at baseline and 5-year follow-up. For atrophy determination, MS patients underwent additional high-resolution 3D T1-weighted imaging. Measures of AoS cross-sectional area (CSA), average systolic and diastolic velocity peaks, maximal systolic and diastolic velocity peaks and average CSF flow rates were determined. Brain atrophy and ventricular CSF (vCSF) expansion rates were determined. Cross-sectional and longitudinal changes were derived by analysis of covariance (ANCOVA) and paired repeated tests. Confirmatory general linear models were also performed. False discovery rate (FDR)-corrected p-values lower than 0.05 were considered significant. Results The MS population demonstrated significant increase in maximal diastolic peak (from 7.23 to 7.86 cm/s, non-adjusted p = 0.037), diastolic peak flow rate (7.76 ml/min to 9.33 ml/min, non-adjusted p = 0.023) and AoS CSA (from 3.12 to 3.69 mm2, adjusted p = 0.001). The only differentiator between MS patients and HCs was the greater AoS CSA (3.58 mm2 vs. 2.57 mm2, age- and sex-adjusted ANCOVA, p = 0.045). The AoS CSA change was associated with vCSF expansion rate (age- and sex-adjusted Spearman’s correlation r = 0.496, p = 0.019) and not with baseline nor change in maximal velocity. The expansion rate of the vCSF space explained an additional 23.8% of variance in change of AoS CSA variance when compared to age and sex alone (R2 = 0.273, t = 2.557, standardized β = 0.51, and p = 0.019). Conclusion MS patients present with significant longitudinal AoS enlargement, potentially due to regional atrophy changes and ex-vacuo expansion of the aqueduct.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.,MRI Laboratory, CADiTeR, IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Via Alfonso Capecelatro 66, 20148, Milan, Italy
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Marcella Maria Lagana
- MRI Laboratory, CADiTeR, IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Via Alfonso Capecelatro 66, 20148, Milan, Italy.
| |
Collapse
|
19
|
Pedersen SH, Lilja-Cyron A, Astrand R, Juhler M. Monitoring and Measurement of Intracranial Pressure in Pediatric Head Trauma. Front Neurol 2020; 10:1376. [PMID: 32010042 PMCID: PMC6973131 DOI: 10.3389/fneur.2019.01376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/12/2019] [Indexed: 01/09/2023] Open
Abstract
Purpose of Review: Monitoring of intracranial pressure (ICP) is an important and integrated part of the treatment algorithm for children with severe traumatic brain injury (TBI). Guidelines often recommend ICP monitoring with a treatment threshold of 20 mmHg. This focused review discusses; (1) different ICP technologies and how ICP should be monitored in pediatric patients with severe TBI, (2) existing evidence behind guideline recommendations, and (3) how we could move forward to increase knowledge about normal ICP in children to support treatment decisions. Summary: Current reference values for normal ICP in adults lie between 7 and 15 mmHg. Recent studies conducted in “pseudonormal” adults, however, suggest a normal range below this level where ICP is highly dependent on body posture and decreases to negative values in sitting and standing position. Despite obvious physiological differences between children and adults, no age or body size related reference values exist for normal ICP in children. Recent guidelines for treatment of severe TBI in pediatric patients recommend ICP monitoring to guide treatment of intracranial hypertension. Decision on ICP monitoring modalities are based on local standards, the individual case, and the clinician's choice. The recommended treatment threshold is 20 mmHg for a duration of 5 min. Both prospective and retrospective observational studies applying different thresholds and treatment strategies for intracranial hypertension were included to support this recommendation. While some studies suggest improved outcome related to ICP monitoring (lower rate of mortality and severe disability), most studies identify high ICP as a marker of worse outcome. Only one study applied age-differentiated thresholds, but this study did not evaluate the effect of these different thresholds on outcome. The quality of evidence behind ICP monitoring and treatment thresholds in severe pediatric TBI is low and treatment can potentially be improved by knowledge about normal ICP from observational studies in healthy children and cohorts of pediatric “pseudonormal” patients expected to have normal ICP. Acceptable levels of ICP − and thus also treatment thresholds—probably vary with age, disease and whether the patient has intact cerebral autoregulation. Future treatment algorithms should reflect these differences and be more personalized and dynamic.
Collapse
Affiliation(s)
| | | | - Ramona Astrand
- Department of Neurosurgery, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
20
|
Sartoretti T, Wyss M, Sartoretti E, Reischauer C, Hainc N, Graf N, Binkert C, Najafi A, Sartoretti-Schefer S. Sex and Age Dependencies of Aqueductal Cerebrospinal Fluid Dynamics Parameters in Healthy Subjects. Front Aging Neurosci 2019; 11:199. [PMID: 31427956 PMCID: PMC6688190 DOI: 10.3389/fnagi.2019.00199] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/16/2019] [Indexed: 11/29/2022] Open
Abstract
Objectives To assess the influence of age and sex on 10 cerebrospinal fluid (CSF) flow dynamics parameters measured with an MR phase contrast (PC) sequence within the cerebral aqueduct at the level of the intercollicular sulcus. Materials and Methods 128 healthy subjects (66 female subjects with a mean age of 52.9 years and 62 male subjects with a mean age of 51.8 years) with a normal Evans index, normal medial temporal atrophy (MTA) score, and without known disorders of the CSF circulation were included in the study. A PC MR sequence on a 3T MR scanner was used. Ten different flow parameters were analyzed using postprocessing software. Ordinal and linear regression models were calculated. Results The parameters stroke volume (sex: p < 0.001, age: p = 0.003), forward flow volume (sex: p < 0.001, age: p = 0.002), backward flow volume (sex: p < 0.001, age: p = 0.018), absolute stroke volume (sex: p < 0.001, age: p = 0.005), mean flux (sex: p < 0.001, age: p = 0.001), peak velocity (sex: p = 0.009, age: p = 0.0016), and peak pressure gradient (sex: p = 0.029, age: p = 0.028) are significantly influenced by sex and age. The parameters regurgitant fraction, stroke distance, and mean velocity are not significantly influenced by sex and age. Conclusion CSF flow dynamics parameters measured in the cerebral aqueduct are partly age and sex dependent. For establishment of reliable reference values for clinical use in future studies, the impact of sex and age should be considered and incorporated.
Collapse
Affiliation(s)
- Thomas Sartoretti
- Laboratory of Translational Nutrition Biology, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Michael Wyss
- Philips Healthcare, Zurich, Switzerland.,Department of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | | | - Carolin Reischauer
- Department of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland.,Department of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Radiology, HFR Fribourg - Hôpital Cantonal, Fribourg, Switzerland
| | - Nicolin Hainc
- Department of Neuroradiology, University Hospital Zürich, University of Zürich, Zurich, Switzerland
| | | | - Christoph Binkert
- Department of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Arash Najafi
- Department of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | | |
Collapse
|
21
|
Vinje V, Ringstad G, Lindstrøm EK, Valnes LM, Rognes ME, Eide PK, Mardal KA. Respiratory influence on cerebrospinal fluid flow - a computational study based on long-term intracranial pressure measurements. Sci Rep 2019; 9:9732. [PMID: 31278278 PMCID: PMC6611841 DOI: 10.1038/s41598-019-46055-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/17/2019] [Indexed: 11/27/2022] Open
Abstract
Current theories suggest that waste solutes are cleared from the brain via cerebrospinal fluid (CSF) flow, driven by pressure pulsations of possibly both cardiac and respiratory origin. In this study, we explored the importance of respiratory versus cardiac pressure gradients for CSF flow within one of the main conduits of the brain, the cerebral aqueduct. We obtained overnight intracranial pressure measurements from two different locations in 10 idiopathic normal pressure hydrocephalus (iNPH) patients. The resulting pressure gradients were analyzed with respect to cardiac and respiratory frequencies and amplitudes (182,000 cardiac and 48,000 respiratory cycles). Pressure gradients were used to compute CSF flow in simplified and patient-specific models of the aqueduct. The average ratio between cardiac over respiratory flow volume was 0.21 ± 0.09, even though the corresponding ratio between the pressure gradient amplitudes was 2.85 ± 1.06. The cardiac cycle was 0.25 ± 0.04 times the length of the respiratory cycle, allowing the respiratory pressure gradient to build considerable momentum despite its small magnitude. No significant differences in pressure gradient pulsations were found in the sleeping versus awake state. Pressure gradients underlying CSF flow in the cerebral aqueduct are dominated by cardiac pulsations, but induce CSF flow volumes dominated by respiration.
Collapse
Affiliation(s)
- Vegard Vinje
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, 1325, Lysaker, Norway.
| | - Geir Ringstad
- Department of Radiology and Nuclear Medicine, Oslo University Hospital - Rikshospitalet, 0372, Oslo, Norway
| | | | | | - Marie E Rognes
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, 1325, Lysaker, Norway
| | - Per Kristian Eide
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315, Oslo, Norway.,Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, 0372, Oslo, Norway
| | - Kent-Andre Mardal
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, 1325, Lysaker, Norway.,Department of Mathematics, University of Oslo, 0315, Oslo, Norway
| |
Collapse
|
22
|
Benninghaus A, Balédent O, Lokossou A, Castelar C, Leonhardt S, Radermacher K. Enhanced in vitro model of the CSF dynamics. Fluids Barriers CNS 2019; 16:11. [PMID: 31039805 PMCID: PMC6492379 DOI: 10.1186/s12987-019-0131-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/15/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Fluid dynamics of the craniospinal system are complex and still not completely understood. In vivo flow and pressure measurements of the cerebrospinal fluid (CSF) are limited. Whereas in silico modeling can be an adequate pathway for parameter studies, in vitro modeling of the craniospinal system is essential for testing and evaluation of therapeutic measures associated with innovative implants relating to, for example, normal pressure hydrocephalus and other fluid disorders. Previously-reported in vitro models focused on the investigation of only one hypothesis of the fluid dynamics rather than developing a modular set-up to allow changes in focus of the investigation. The aim of this study is to present an enhanced and validated in vitro model of the CSF system which enables the future embedding of implants, the validation of in silico models or phase-contrast magnetic resonance imaging (PC-MRI) measurements and a variety of sensitivity analyses regarding pathological behavior, such as reduced CSF compliances, higher resistances or altered blood dynamics. METHODS The in vitro model consists of a ventricular system which is connected via the aqueduct to the cranial and spinal subarachnoid spaces. Two compliance chambers are integrated to cushion the arteriovenous blood flow generated by a cam plate unit enabling the modeling of patient specific flow dynamics. The CSF dynamics are monitored using three cranial pressure sensors and a spinal ultrasound flow meter. Measurements of the in vitro spinal flow were compared to cervical flow data recorded with PC-MRI from nine healthy young volunteers, and pressure measurements were compared to the literature values reported for intracranial pressure (ICP) to validate the newly developed in vitro model. RESULTS The maximum spinal CSF flow recorded in the in vitro simulation was 133.60 ml/min in the caudal direction and 68.01 ml/min in the cranial direction, whereas the PC-MRI flow data of the subjects showed 122.82 ml/min in the caudal and 77.86 ml/min in the cranial direction. In addition, the mean ICP (in vitro) was 12.68 mmHg and the pressure wave amplitude, 4.86 mmHg, which is in the physiological range. CONCLUSIONS The in vitro pressure values were in the physiological range. The amplitudes of the flow results were in good agreement with PC-MRI data of young and healthy volunteers. However, the maximum cranial flow in the in vitro model occurred earlier than in the PC-MRI data, which might be due to a lack of an in vitro dynamic compliance. Implementing dynamic compliances and related sensitivity analyses are major aspects of our ongoing research.
Collapse
Affiliation(s)
- Anne Benninghaus
- Chair of Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany.
| | - Olivier Balédent
- Department of Image Processing, University Hospital, E.A 7516, CHIMERE, Jules Verne University of Picardy, 80054, Amiens cedex, France
| | - Armelle Lokossou
- Department of Image Processing, University Hospital, E.A 7516, CHIMERE, Jules Verne University of Picardy, 80054, Amiens cedex, France
| | - Carlos Castelar
- Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Steffen Leonhardt
- Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Klaus Radermacher
- Chair of Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| |
Collapse
|
23
|
Possenti L, di Gregorio S, Gerosa FM, Raimondi G, Casagrande G, Costantino ML, Zunino P. A computational model for microcirculation including Fahraeus-Lindqvist effect, plasma skimming and fluid exchange with the tissue interstitium. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3165. [PMID: 30358172 DOI: 10.1002/cnm.3165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 09/06/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
We present a two-phase model for microcirculation that describes the interaction of plasma with red blood cells. The model takes into account of typical effects characterizing the microcirculation, such as the Fahraeus-Lindqvist effect and plasma skimming. Besides these features, the model describes the interaction of capillaries with the surrounding tissue. More precisely, the model accounts for the interaction of capillary transmural flow with the surrounding interstitial pressure. Furthermore, the capillaries are represented as one-dimensional channels with arbitrary, possibly curved configuration. The latter two features rely on the unique ability of the model to account for variations of flow rate and pressure along the axis of the capillary, according to a local differential formulation of mass and momentum conservation. Indeed, the model stands on a solid mathematical foundation, which is also addressed in this work. In particular, we present the model derivation, the variational formulation, and its approximation using the finite element method. Finally, we conclude the work with a comparative computational study of the importance of the Fahraeus-Lindqvist, plasma skimming, and capillary leakage effects on the distribution of flow in a microvascular network.
Collapse
Affiliation(s)
- Luca Possenti
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Simone di Gregorio
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milan, Italy
- MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy
| | | | - Giorgio Raimondi
- MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Giustina Casagrande
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Maria Laura Costantino
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Paolo Zunino
- MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy
| |
Collapse
|
24
|
Burman R, Shah AH, Benveniste R, Jimsheleishvili G, Lee SH, Loewenstein D, Alperin N. Comparing invasive with MRI-derived intracranial pressure measurements in healthy elderly and brain trauma cases: A pilot study. J Magn Reson Imaging 2019; 50:975-981. [PMID: 30801895 DOI: 10.1002/jmri.26695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Intracranial pressure (ICP) is an important physiological parameter in several neurological disorders. Considerable effort has been made to measure ICP noninvasively. MR-based ICP (MR-ICP) is a nonempirical method based on principles of cerebrospinal fluid (CSF) physiology, where ICP is obtained from measurements of blood and CSF flows to and from the cranium during the cardiac cycle. PURPOSE To compare MR-ICP with invasive ICP measurements obtained using lumbar puncture (LP) or external ventricular drainage (EVD). STUDY TYPE Prospective, cross-sectional, observational study. SUBJECTS Ten cognitively healthy elderly subjects (age 69.6 ± 6.6 years; seven females) and six brain trauma patients (age 36.8 ± 19.7 years; two females). FIELD STRENGTH Velocity encoding cine phase-contrast at 1.5 T and 3 T. ASSESSMENT MR-ICP and craniospinal compliance distribution were estimated from arterial inflow and venous outflow to and from cranium, and craniospinal CSF flow at the upper cervical region, measured using cine phase contrast MRI. LP (done 177 ± 163 days after scan) and EVD measurements (at the time of scan) were performed in lateral recumbent and supine positions, respectively. STATISTICAL TESTS Linear regression was used to assess the relationships of MR-ICP with invasive ICP, and the dependency of these measurements on age, weight, height, and BMI. A Shapiro-Wilks test and Bland-Altman plot were respectively used to evaluate the normality and agreement between these two pressure distributions. Student's t-test was used throughout the analysis to compare differences between the EVD and LP cohorts. RESULTS In the combined cohort, MR-ICP and invasive ICP were positively correlated (r = 0.95, P < 0.001), with invasive ICP being higher than MR-ICP by 2.2 mmHg on average. In the healthy cohort, the cranial contribution to total craniospinal compliance was negatively correlated with MR-ICP (r = -0.90, P < 0.001). DATA CONCLUSION MR-ICP provides a reliable estimate of ICP, with 14 out of 16 datapoints within the clinically acceptable error. Craniospinal compliance distribution plays a role in modulating ICP in supine position. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:975-981.
Collapse
Affiliation(s)
- Ritambhar Burman
- University of Miami, Biomedical Engineering Department, Coral Gables, Florida, USA
| | - Ashish H Shah
- University of Miami, Department of Neurological Surgery, Florida, USA
| | - Ronald Benveniste
- University of Miami, Department of Neurological Surgery, Florida, USA
| | | | - Sang H Lee
- University of Miami, Radiology Department, Miami, Florida, USA
| | - David Loewenstein
- University of Miami, Department of Psychiatry and Behavioral Sciences, Florida, USA
| | - Noam Alperin
- University of Miami, Biomedical Engineering Department, Coral Gables, Florida, USA.,University of Miami, Radiology Department, Miami, Florida, USA
| |
Collapse
|
25
|
Lindstrøm EK, Ringstad G, Sorteberg A, Sorteberg W, Mardal KA, Eide PK. Magnitude and direction of aqueductal cerebrospinal fluid flow: large variations in patients with intracranial aneurysms with or without a previous subarachnoid hemorrhage. Acta Neurochir (Wien) 2019; 161:247-256. [PMID: 30443816 DOI: 10.1007/s00701-018-3730-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Net cerebrospinal fluid (CSF) flow within the cerebral aqueduct is usually considered to be antegrade, i.e., from the third to the fourth ventricle with volumes ranging between 500 and 600 ml over 24 h. Knowledge of individual CSF flow dynamics, however, is hitherto scarcely investigated. In order to explore individual CSF flow rate and direction, we assessed net aqueductal CSF flow in individuals with intracranial aneurysms with or without a previous subarachnoid hemorrhage (SAH). METHODS A prospective observational study was performed utilizing phase-contrast magnetic resonance imaging (PC-MRI) to determine the magnitude and direction of aqueductal CSF flow with an in-depth, pixel-by-pixel approach. Estimation of net flow was used to calculate CSF flow volumes over 24 h. PC-MRI provides positive values when flow is retrograde. RESULTS The study included eight patients with intracranial aneurysms. Four were examined within days after their SAH; three were studied in the chronic stage after SAH while one patient had an unruptured intracranial aneurysm. There was a vast variation in magnitude and direction of aqueductal CSF flow between individuals. Net aqueductal CSF flow was retrograde, i.e., directed towards the third ventricle in 5/8 individuals. For the entire patient cohort, the estimated net aqueductal CSF volumetric flow rate (independent of direction) was median 898 ml/24 h (ranges 69 ml/24 h to 12.9 l/24 h). One of the two individuals who had a very high estimated net aqueductal CSF volumetric flow rate, 8.7 l/24 h retrograde, later needed a permanent CSF shunt. CONCLUSIONS The magnitude and direction of net aqueductal CSF flow vary extensively in patients with intracranial aneurysms. Following SAH, PC-MRI may offer the possibility to perform individualized assessments of the CSF circulation.
Collapse
Affiliation(s)
- Erika Kristina Lindstrøm
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Geir Ringstad
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Angelika Sorteberg
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, Pb 4950 Nydalen, N-0424, Oslo, Norway
| | - Wilhelm Sorteberg
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, Pb 4950 Nydalen, N-0424, Oslo, Norway
| | - Kent-Andre Mardal
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Fornebu, Norway
| | - Per Kristian Eide
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, Pb 4950 Nydalen, N-0424, Oslo, Norway.
| |
Collapse
|
26
|
Lindstrøm EK, Ringstad G, Mardal KA, Eide PK. Cerebrospinal fluid volumetric net flow rate and direction in idiopathic normal pressure hydrocephalus. NEUROIMAGE-CLINICAL 2018; 20:731-741. [PMID: 30238917 PMCID: PMC6154456 DOI: 10.1016/j.nicl.2018.09.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022]
Abstract
The aim of the present study was to examine cerebrospinal fluid (CSF) volumetric net flow rate and direction at the cranio-cervical junction (CCJ) and cerebral aqueduct in individuals with idiopathic normal pressure hydrocephalus (iNPH) using cardiac-gated phase-contrast magnetic resonance imaging (PC-MRI). An in-depth, pixel-by-pixel analysis of regions of interest from the CCJ and cerebral aqueduct, respectively, was done in 26 iNPH individuals, and in 4 healthy subjects for validation purposes. Results from patients were compared with over-night measurements of static and pulsatile intracranial pressure (ICP). In iNPH, CSF net flow at CCJ was cranially directed in 17/22 as well as in 4/4 healthy subjects. Estimated daily CSF volumetric net flow rate at CCJ was 6.9 ± 9.9 L/24 h in iNPH patients and 4.5 ± 5.0 L/24 h in healthy individuals. Within the cerebral aqueduct, the CSF net flow was antegrade in 7/21 iNPH patients and in 4/4 healthy subjects, while it was retrograde (i.e. towards ventricles) in 14/21 iNPH patients. Estimated daily CSF volumetric net flow rate in cerebral aqueduct was 1.1 ± 2.2 L/24 h in iNPH while 295 ± 53 mL/24 h in healthy individuals. Magnitude of cranially directed CSF net flow in cerebral aqueduct was highest in iNPH individuals with signs of impaired intracranial compliance. The study results indicate CSF flow volumes and direction that are profoundly different from previously assumed. We hypothesize that spinal CSF formation may serve to buffer increased demand for CSF flow through the glymphatic system during sleep and during deep inspiration to compensate for venous outflow.
Collapse
Affiliation(s)
- Erika Kristina Lindstrøm
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Geir Ringstad
- Division of Radiology and Nuclear Medicine, Department of Radiology, Oslo University Hospital - Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kent-Andre Mardal
- Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway; Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| | - Per Kristian Eide
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| |
Collapse
|
27
|
Lindstrøm EK, Schreiner J, Ringstad GA, Haughton V, Eide PK, Mardal KA. Comparison of phase-contrast MR and flow simulations for the study of CSF dynamics in the cervical spine. Neuroradiol J 2018; 31:292-298. [PMID: 29464985 DOI: 10.1177/1971400918759812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Investigators use phase-contrast magnetic resonance (PC-MR) and computational fluid dynamics (CFD) to assess cerebrospinal fluid dynamics. We compared qualitative and quantitative results from the two methods. Methods Four volunteers were imaged with a heavily T2-weighted volume gradient echo scan of the brain and cervical spine at 3T and with PC-MR. Velocities were calculated from PC-MR for each phase in the cardiac cycle. Mean pressure gradients in the PC-MR acquisition through the cardiac cycle were calculated with the Navier-Stokes equations. Volumetric MR images of the brain and upper spine were segmented and converted to meshes. Models of the subarachnoid space were created from volume images with the Vascular Modeling Toolkit. CFD simulations were performed with a previously verified flow solver. The flow patterns, velocities and pressures were compared in PC-MR and CFD flow images. Results PC-MR images consistently revealed more inhomogeneous flow patterns than CFD, especially in the anterolateral subarachnoid space where spinal nerve roots are located. On average, peak systolic and diastolic velocities in PC-MR exceeded those in CFD by 31% and 41%, respectively. On average, systolic and diastolic pressure gradients calculated from PC-MR exceeded those of CFD by 11% and 39%, respectively. Conclusions PC-MR shows local flow disturbances that are not evident in typical CFD. The velocities and pressure gradients calculated from PC-MR are systematically larger than those calculated from CFD.
Collapse
Affiliation(s)
- Erika Kristina Lindstrøm
- 1 Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Jakob Schreiner
- 2 Center for Biomedical Computation, Simula Research Laboratory, Norway
| | - Geir Andre Ringstad
- 3 Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - Victor Haughton
- 4 Department of Radiology, University of Wisconsin School of Medicine and Public Health, USA
| | | | - Kent-Andre Mardal
- 1 Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway.,2 Center for Biomedical Computation, Simula Research Laboratory, Norway
| |
Collapse
|