1
|
Jiang C, Shi T, Mo Z, Zhao C. Across a phylogeographic break in the Qinling Mountains-Huaihe River Line: Quaternary evolutionary history of a medicinal and edible homologous plant (Allium macrostemon) in China. BMC Ecol Evol 2024; 24:107. [PMID: 39138401 PMCID: PMC11323607 DOI: 10.1186/s12862-024-02297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Biogeographic barriers to gene flow are central to studies of plant phylogeography. There are many physical and geographic barriers in China, but few studies have used molecular ecological evidence to investigate the natural geographic isolation barrier of the Qinling Mountains-Huaihe River Line (QHL). Allium macrostemon is a precious Chinese perennial herb belonging to the Amaryllidaceae family. It is used as a food and medicine, with a variety of health and healing properties. Five SSR markers, three chloroplast DNA (cpDNA) markers (psbA-trnH, rps16 and trnL-F), one nuclear ribosomal DNA (nrDNA) marker (ITS), and simplified genome GBS sequencing were used to analyse the genetic diversity and structure of A. macrostemon. Combining SSR, cpDNA, nrDNA ITS data and GBS analysis results, we divided A. macrostemon populations into northern and southern groups, with the southern group further divided into southwestern and central-southeastern groups. Niche simulation results reveal that the distribution area of A. macrostemon will reach its maximum in the future. These data indicate that the regional separation of A. macrostemon has been maintained by the combined influence of a geographical barrier and Quaternary climate, and that the back-and-forth fluctuations of QHL and Quaternary climate have played an important role in this process. QHL acts as a north-south dividing line in phylogeography and population genetic structure, promoting physical geographic isolation. This study provides a theoretical basis for the conservation, development, and utilization of A. macrostemon resources. It further provides a reference for understanding the systematic geographical pattern of the large-scale spatial distribution of plants in China and enriches our understanding of Quaternary plant evolution in areas with complex terrain.
Collapse
Affiliation(s)
- Chunxue Jiang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering(CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Tian Shi
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering(CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Zhongmei Mo
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering(CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Cai Zhao
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering(CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
2
|
Jin J, Zhao W, Chen S, Gu C, Chen Z, Liu Z, Liao W, Fan Q. Which contributes more to the relict flora distribution pattern in East Asia, geographical processes or climate change? New evidence from the phylogeography of Rehderodendron kwangtungense. BMC PLANT BIOLOGY 2024; 24:459. [PMID: 38797839 PMCID: PMC11129394 DOI: 10.1186/s12870-024-05181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Relict species are important for enhancing the understanding of modern biogeographic distribution patterns. Although both geological and climatic changes since the Cenozoic have affected the relict flora in East Asia, the contributions of geographical processes remain unclear. In this study, we employed restriction-site associated DNA sequencing (RAD-seq) and shallow genome sequencing data, in conjunction with ecological niche modeling (ENM), to investigate the spatial genetic patterns and population differentiation history of the relict species Rehderodendron kwangtungense Chun. RESULTS A total of 138 individuals from 16 populations were collected, largely covering the natural distribution of R. kwangtungense. The genetic diversity within the R. kwangtungense populations was extremely low (HO = 0.048 ± 0.019; HE = 0.033 ± 0.011). Mantel tests revealed isolation-by-distance pattern (R2 = 0.38, P < 0.001), and AMOVA analysis showed that the genetic variation of R. kwangtungense occurs mainly between populations (86.88%, K = 7). Between 23 and 21 Ma, R. kwangtungense underwent a period of rapid differentiation that coincided with the rise of the Himalayas and the establishment of the East Asian monsoon. According to ENM and population demographic history, the suitable area and effective population size of R. kwangtungense decreased sharply during the glacial period and expanded after the last glacial maximum (LGM). CONCLUSION Our study shows that the distribution pattern of southern China mountain relict flora may have developed during the panplain stage between the middle Oligocene and the early Miocene. Then, the flora later fragmented under the force of orogenesis, including intermittent uplift during the Cenozoic Himalayan orogeny and the formation of abundant rainfall associated with the East Asian monsoon. The findings emphasized the predominant role of geographical processes in shaping relict plant distribution patterns.
Collapse
Affiliation(s)
- Jiehao Jin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wanyi Zhao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Sufang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chao Gu
- Shenzhen Dapeng Peninsula National Geopark, Shenzhen, 518121, China
| | - Zhihui Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhongcheng Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenbo Liao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qiang Fan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
3
|
Yan X, Zheng K, Li P, Zhong X, Zhu Z, Zhou H, Zhu M. An efficient in vitro organogenesis protocol for the endangered relic tree species Bretschneidera sinensis and genetic fidelity assessment using DNA markers. FRONTIERS IN PLANT SCIENCE 2024; 15:1259925. [PMID: 38660444 PMCID: PMC11039884 DOI: 10.3389/fpls.2024.1259925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
Bretschneidera sinensis is a monotypic species of rare and tertiary relic trees mainly distributed in China. B. sinensis is a potentially valuable horticultural plant, which has significant ornamental and research value, and is a crucial tool for the study of phylogeography. The artificial cultivation of B. sinensis is of great scientific value and practical significance. In this study, we developed a direct organogenesis process of B. sinensis using mature zygotic embryos as initial materials. The highest sterile germination induction (54.5%) from the mature zygotic embryo was obtained in a Murashige and Skoog (MS) medium with 2.0 mg·L-1 6-benzylaminopurine (6-BA) and 0.2 mg·L-1 α-naphthaleneacetic acid (NAA). The highest percentage of shoot regeneration (90.37%) was attained using 1.0 mg·L-1 6-BA and 0.01 mg·L-1 NAA in the MS medium. The Woody Plant Medium (WPM) had the greatest adventitious shoot elongation rate of 93.33%. The most optimized rooting rate was 88.89% in a half-strength MS medium containing 2.0 mg·L-1 indole-3-butyric acid (IBA) and 1.0 mg·L-1 NAA. The genetic fidelity of in vitro regenerated plantlets was assessed using inter-simple sequence repeats and random amplified polymorphic DNA molecular markers, confirming the genetic uniformity and stability of regenerated B. sinensis plantlets. Our research presents an effective in vitro propagation system for B. sinensis, laying the groundwork for its germplasm conservation and large-scale production while maintaining high genetic integrity.
Collapse
Affiliation(s)
- Xuetong Yan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai, China
| | - Keyuan Zheng
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai, China
| | - Peng Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Xin Zhong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Zongwei Zhu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huijing Zhou
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Mulan Zhu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai, China
| |
Collapse
|
4
|
Zhang H, Du X, Dong C, Zheng Z, Mu W, Zhu M, Yang Y, Li X, Hu H, Shrestha N, Li M, Yang Y. Genomes and demographic histories of the endangered Bretschneidera sinensis (Akaniaceae). Gigascience 2022; 11:giac050. [PMID: 35701375 PMCID: PMC9197684 DOI: 10.1093/gigascience/giac050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/02/2022] [Accepted: 04/23/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Bretschneidera sinensis is an endangered relic tree species in the Akaniaceae family and is sporadically distributed in eastern Asia. As opposed to its current narrow and rare distribution, the fossil pollen of B. sinensis has been found to be frequent and widespread in the Northern Hemisphere during the Late Miocene. B. sinensis is also a typical mycorrhizal plant, and its annual seedlings exhibit high mortality rates in absence of mycorrhizal development. The chromosome-level high-quality genome of B. sinensis will help us to more deeply understand the survival and demographic histories of this relic species. RESULTS A total of 25.39 Gb HiFi reads and 109.17 Gb Hi-C reads were used to construct the chromosome-level genome of B. sinensis, which is 1.21 Gb in length with the contig N50 of 64.13 Mb and chromosome N50 of 146.54 Mb. The identified transposable elements account for 55.21% of the genome. A total of 45,839 protein-coding genes were predicted in B. sinensis. A lineage-specific whole-genome duplication was detected, and 7,283 lineage-specific expanded gene families with functions related to the specialized endotrophic mycorrhizal adaptation were identified. The historical effective population size (Ne) of B. sinensis was found to oscillate greatly in response to Quaternary climatic changes. The Ne of B. sinensis has decreased rapidly in the recent past, making its extant Ne extremely lower. Our additional evolutionary genomic analyses suggested that the developed mycorrhizal adaption might have been repeatedly disrupted by environmental changes caused by Quaternary climatic oscillations. The environmental changes and an already decreased population size during the Holocene may have led to the current rarity of B. sinensis. CONCLUSION This is a detailed report of the genome sequences for the family Akaniaceae distributed in evergreen forests in eastern Asia. Such a high-quality genomic resource may provide critical clues for comparative genomics studies of this family in the future.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xin Du
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Congcong Dong
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zeyu Zheng
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenjie Mu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mingjia Zhu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingbo Yang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaojie Li
- Emeishan Biological Resources Experimental Station, Emei 511181, Sichuan, China
| | - Hongyin Hu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Nawal Shrestha
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Minjie Li
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Shang C, Li E, Yu Z, Lian M, Chen Z, Liu K, Xu L, Tong Z, Wang M, Dong W. Chloroplast Genomic Resources and Genetic Divergence of Endangered Species Bretschneidera sinensis (Bretschneideraceae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.873100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bretschneidera sinensis is an endangered woody species found in East and South China. Comprehensive intraspecies chloroplast genome studies have demonstrated novel genetic resources to assess the genetic variation and diversity of this species. Using genome skimming method, we assembled the whole chloroplast genome of 12 genotypes of B. sinensis from different geographical locations, covering most wild populations. The B. sinensis chloroplast genome size ranged from 158,959 to 159,045 base pairs (bp) and displayed a typical circular quadripartite structure. Comparative analyses of 12 B. sinensis chloroplast genome revealed 33 polymorphic simple sequence repeats (SSRs), 105 polymorphic single nucleotide polymorphisms (SNPs), and 55 indels. Phylogenetic analysis showed that the 12 genotypes were grouped into 2 branches, which is consistent with the geographical distribution (Eastern clade and Western clade). Divergence time estimates showed that the two clades were divergent from 0.6 Ma in the late Pleistocene. Ex situ conservation is essential for this species. In this study, we identified SNPs, indels, and microsatellites of B. sinensis by comparative analyses of chloroplast genomes and determined genetic variation between populations using these genomic markers. Chloroplast genomic resources are also important for further domestication, population genetic, and phylogenetic analysis, possibly in combination with molecular markers of mitochondrial and/or nuclear genomes.
Collapse
|
6
|
Liu HL, Harris AJ, Wang ZF, Chen HF, Li ZA, Wei X. The genome of the Paleogene relic tree Bretschneidera sinensis: insights into trade-offs in gene family evolution, demographic history, and adaptive SNPs. DNA Res 2022; 29:6523039. [PMID: 35137004 PMCID: PMC8825261 DOI: 10.1093/dnares/dsac003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Among relic species, genomic information may provide the key to inferring their long-term survival. Therefore, in this study, we investigated the genome of the Paleogene relic tree species, Bretschneidera sinensis, which is a rare endemic species within southeastern Asia. Specifically, we assembled a high-quality genome for B. sinensis using PacBio high-fidelity and high-throughput chromosome conformation capture reads and annotated it with long and short RNA sequencing reads. Using the genome, we then detected a trade-off between active and passive disease defences among the gene families. Gene families involved in salicylic acid and MAPK signalling pathways expanded as active defence mechanisms against disease, but families involved in terpene synthase activity as passive defences contracted. When inferring the long evolutionary history of B. sinensis, we detected population declines corresponding to historical climate change around the Eocene–Oligocene transition and to climatic fluctuations in the Quaternary. Additionally, based on this genome, we identified 388 single nucleotide polymorphisms (SNPs) that were likely under selection, and showed diverse functions in growth and stress responses. Among them, we further found 41 climate-associated SNPs. The genome of B. sinensis and the SNP dataset will be important resources for understanding extinction/diversification processes using comparative genomics in different lineages.
Collapse
Affiliation(s)
- Hai-Lin Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Guangzhou, 510640, China
| | - A J Harris
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zheng-Feng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.,Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hong-Feng Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhi-An Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.,Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiao Wei
- Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin, 541006, China
| |
Collapse
|
7
|
Hou H, Ye H, Wang Z, Wu J, Gao Y, Han W, Na D, Sun G, Wang Y. Demographic history and genetic differentiation of an endemic and endangered Ulmus lamellosa (Ulmus). BMC PLANT BIOLOGY 2020; 20:526. [PMID: 33203402 PMCID: PMC7672979 DOI: 10.1186/s12870-020-02723-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 10/26/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Ulmus lamellosa (one of the ancient species of Ulmus) is an endemic and endangered plant that has undergone climatic oscillations and geographical changes. The elucidation of its demographic history and genetic differentiation is critical for understanding the evolutionary process and ecological adaption to forests in Northern China. RESULTS Polymorphic haplotypes were detected in most populations of U. lamellosa via DNA sequencing. All haplotypes were divided into three phylogeographic clades fundamentally corresponding to their geographical distribution, namely THM (Taihang Mountains), YM (Yinshan Mountains), and YSM (Yanshan Mountains) groups. The YSM group, which is regarded as ancestral, possessed higher genetic diversity and significant genetic variability in contrast to the YSM and YM groups. Meanwhile, the divergence time of intraspecies haplotypes occurred during the Miocene-Pliocene, which was associated with major Tertiary geological and/or climatic events. Different degrees of gene exchanges were identified between the three groups. During glaciation, the YSM and THM regions might have served as refugia for U. lamellosa. Based on ITS data, range expansion was not expected through evolutionary processes, except for the THM group. A series of mountain uplifts (e.g., Yanshan Mountains and Taihang Mountains) following the Miocene-Pliocene, and subsequently quaternary climatic oscillations in Northern China, further promoted divergence between U. lamellosa populations. CONCLUSIONS Geographical topology and climate change in Northern China played a critical role in establishing the current phylogeographic structural patterns of U. lamellosa. These results provide important data and clues that facilitate the demographic study of tree species in Northern China.
Collapse
Affiliation(s)
- Huimin Hou
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Hang Ye
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Zhi Wang
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Jiahui Wu
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Yue Gao
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Wei Han
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Dongchen Na
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| | - Genlou Sun
- Saint Mary’s University, Halifax, Canada
| | - Yiling Wang
- School of Life Science, Shanxi Normal University, Linfen, 041000 P. R. China
| |
Collapse
|
8
|
Hebbar P, Ravikanth G, Aravind NA. A review on the conservation genetic studies of Indian amphibians and their implications on developing strategies for conservation†. J Genet 2019. [DOI: 10.1007/s12041-019-1159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Hebbar P, Ravikanth G, Aravind NA. A review on the conservation genetic studies of Indian amphibians and their implications on developing strategies for conservation. J Genet 2019; 98:114. [PMID: 31819027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Amphibians show a very high level of diversity and endemism and are facing global declines from the past few decades. Studies have shown that the molecular tools can be helpful in their conservation efforts. In India, more than 80% of amphibians are endemic and most show a narrow range of distribution. Most of the Indian amphibians lack information on their genetic diversity. In this study, were view the overall trend on amphibian studies in India with the specific focus on conservation genetics. Overall, of the 173 studies, only 14 dealt with the conservation of amphibians through genetic tools and five studies estimated the genetic diversity or gene structure. Here, we discuss the gaps and provide future directions on how genetic studies can be helpful in Indian amphibian conservation.
Collapse
Affiliation(s)
- Priti Hebbar
- Suri Sehgal Centre for Biodiversity and Conservation, Ashoka Trust for Research in Ecology and the Environment (ATREE), Bengaluru 560 064, India.
| | | | | |
Collapse
|
10
|
Conran JG, Kaulfuss U, Bannister JM, Mildenhall DC, Lee DE. An Akania (Akaniaceae) inflorescence with associated pollen from the early Miocene of New Zealand. AMERICAN JOURNAL OF BOTANY 2019; 106:292-302. [PMID: 30791095 DOI: 10.1002/ajb2.1236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY An Akania-like inflorescence, including flowers with in situ pollen was recovered from the remarkable Konservat-Lagerstätte lacustrine diatomite deposit at Foulden Maar, Otago indicating the presence of Akaniaceae in southern New Zealand during the early Miocene. The flowers, although slightly smaller than the sole modern Australian species, A. bidwillii, contain pollen grains that are very like that taxon. The pollen also resembles that of the monospecific sister genus Bretschneidera from Southeast Asia and India, although that taxon has flowers with very different morphology from this genus. METHODS The floral morphology of the fossil and in situ pollen grains were compared with flowers and pollen grains from extant species of Akaniaceae and related taxa. KEY RESULTS The fossil inflorescence and associated pollen are referred to a new, extinct species of Akania: Akania gibsonorum. The floral structures and pollen resemble those of the modern Australian Akania species. CONCLUSIONS The discovery of fossil flowers of Akania in an early Miocene lake deposit in New Zealand, coupled with earlier recognition of Akaniaceae leaves from the Paleocene epoch and wood from the Miocene epoch in South America suggests that the genus was once widespread in former Gondwana landmasses. The extinction of Akaniaceae in New Zealand and South America, and its present relictual distribution in eastern Australia, is most likely related to post-Miocene climatic cooling.
Collapse
Affiliation(s)
- John G Conran
- Australian Centre for Evolutionary Biology and Biodiversity & Sprigg Geobiology Centre, School of Biological Sciences, Benham Bldg DX 650 312, The University of Adelaide, SA, 5005, Australia
| | - Uwe Kaulfuss
- Department of Geology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Jennifer M Bannister
- Department of Botany, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | | | - Daphne E Lee
- Department of Geology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|